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1. Introduction. In 1939, Zeckendorf observed (and later published
in [I0]) the fact that every natural number can be expressed uniquely as a
sum of nonadjacent Fibonacci numbers. Equivalently, if we write F1 = 1,
Fy, =2, and for k > 2, Fj, = Fy_1 + Fji_o, then given a natural number n,
there exists a unique sequence {c,}32, of integers with the following three
properties:

(i) The natural number n can be expressed as

oo
n = E Cka.
k=1

(ii) For each index k, ¢ € {0,1}, and for all but finitely many &, ¢, = 0.
(iii) For all indices k, k > 1, if ¢, = 1, then ¢;_1 = 0.

This representation is now known as the Zeckendorf decomposition of natural
numbers.

Twelve years later, Lekkerkerker [7] independently rediscovered Zeck-
endorf’s result and further included an analysis of the asymptotic behavior
of the average number of terms (nonzero summands) required in such a de-
composition (see also the work of Daykin [3]). In particular, Lekkerkerker
proved:

THEOREM 1.1. For a natural number n, let o(n) denote the number of
terms in the Zeckendorf decomposition of n, and ¢ (k) denote the average
number of terms in the Zeckendorf decomposition among all integers n sat-
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isfying F, < n < Fii1; that is,

] Frp1—1
kY= ——M— o(n).
o0 = o 2 o
Then
k _
lim (k) = o \/520.2763....

It is well-known that the ratios Fj1/F} comprise the complete list of
convergents (or “best rational approximants”) of ¢ = (1 + v/5)/2. More
generally, given an irrational real number «, we denote its (simple) continued
fraction expansion

N 1
a=a
0 . 1
a —
! 1
az + —
by a = [ag, a1, ag, . ..], in which each partial quotient a,, is an integer and for

all n > 0, a,, > 1. We define the nth convergent of a, py(a)/qn(a) = pn/qn,
to be pn/qn = [ao, a1, ..., ay], with ged(pn,g,) = 1; in particular, pp = ag
and gg = 1. We refer to the denominator g, as the nth continuant of .
With the standard declaration ¢_; = 0, the continuants satisfy the following
second-order linear recurrence for all n > 1:

(1.1) Gn = AnGn—1 + qn—2
(we note that the elements of the sequence {p,} enjoy the same recurrence
relation with p_; = 1). There are many sources that provide the basic

properties of continued fractions that we employ throughout this work; see,
for example, [I] or [6].

The Zeckendorf decomposition is, in fact, a special case of a much more
general theorem first found by Ostrowski [8] nearly twenty years earlier.
Specifically, in 1922 Ostrowski proved the following;:

THEOREM 1.2. Let « be an irrational real number having continued frac-
tion expansion a = [ag, a1, as,...] and let qi denote the kth continuant asso-
ctated with . Then given any integer n > 0, there exists a unique sequence
{er}i2, of integers such that:

(i) The natural number n can be expressed as

[o.¢]
n = E Crqk-
k=0

(ii) For each index k, 0 < ¢ < aky1, and for all but finitely many k,
c = 0.
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(iii) The coefficient cy satisfies 0 < ¢y < a1, and for all k > 0, if
Ck = ax41, then cy_1 = 0.

We call the expansion given in the previous theorem the Ostrowski a-de-
composition of n and say that any sequence of allowable coefficients {cx}
satisfies the Ostrowski conditions. That is, a sequence of integers {c} sat-
isfies the Ostrowski conditions with respect to a = [ag, a1, ... if properties
(ii) and (iii) of Theorem 1.2 hold. Given that ¢ = [1,1,1,...] = [I] and, in
this case, pr/qx = Fi+1/Fk, we see that the Ostrowski ¢-decomposition of
a natural number n coincides with the Zeckendorf decomposition of n.

Here in this paper we extend the asymptotic result of Lekkerkerker for
the Zeckendorf decomposition of natural numbers to the more general Os-
trowski a-decomposition of natural numbers for an arbitrary real quadratic
irrational «.. Toward this end, we first recall the celebrated theorem of La-
grange stating that a real number « is a quadratic irrational if and only if
its continued fraction expansion is eventually periodic, that is, if and only if
a = [ag,a1,...,a;-1,G, -+, a+7—1), where the bar overscores the periodic
string (a¢, ..., ai+7—1). As an aside, we remark that in the results that follow
there is no implicit assumption that the period length 7' is minimal. Next,
we write @ for the (algebraic) conjugate of «, and recall that a quadratic
is called reduced if its continued fraction expansion is purely periodic. And
finally, two real numbers, o = [ag, a1,...] and 5 = [by, b1, .. .], are said to be
equivalent if the tail of one continued fraction equals the tail of the other
continued fraction; that is, if there exists integers N and m so that for all
n >N, an = bpim.

We now state our main theorem, which generalizes Lekkerkerker’s result
to all quadratic irrational real numbers.

THEOREM 1.3. If a is a quadratic irrational real number, then the asymp-
totic average of the number of terms in the Ostrowski a-decomposition ex-
ists and depends only on a reduced quadratic equivalent to o. Moreover,
that limit can be computed explicitly in terms of the following quantities.
Let o* = [ap,-.-,a7—-1] be a reduced quadratic irrational equivalent to .
Let qn, = qn(a) and gn(a*) denote the nth continuant associated with o and
o, respectively. Define M = pr_1(a*) + qr_o(a*), and let 0 and 6, 6 > 0,
denote the zeros of the polynomial x®> — Mz + (—1)T. Finally, write s, for
the kth continuant of the auziliary quadratic ay + (ag — o*)~1, define o(n)
to be the number of terms in the Ostrowski a-decomposition of n, and let
(k) denote the average number of terms in the Ostrowski a-decomposition
among all integers n satisfying qx < n < qxy1; that is,

qr+1—1

b)) =———3" o(n).

Tk+1 — 9k =
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Then
P (k)
lim ——Z
k;—>nolo k

1 TZ (s74n = s7+n-1 = (sn = 5n-1)0) (gar—n(a*) — gr—n(a*)f)
T 0(0 — 0)(ar(a*) — qo(a*)0)

If we apply Theorem to the celebrated quadratic « = ¢ = [1], then
o =@, T =1,0 = ¢, 8 = @, the corresponding auxiliary quadratic is
1+ (1—-%)"! = ¢, and hence s, = ¢ = Fj. Thus Theorem implies that

b PR —P2-9) 55—V
koo ko (e —9)(1-9) 10 -
which reproduces Lekkerkerker’s original result.

We note that in 2008, Vipismakul [9], one of the first author’s Honors
Thesis students, using an approach different from the one presented here,
was able to prove the special case of Theorem in which a has period
length 2 (T" = 2). That is, for a« = [ag,a1,...,a;-1,a,b], the asymptotic
result in Theorem [I.3] yields

Pk) a+b+2—-2G+(2(G2-G—-1)-G(a+1b))d

I -
ook —2G +2(G2 — 2)0 ’

where G = ab+2 and 0 = [1 + ab, 1, ab]. The natural connection between G
and the continued fraction expansion of « is visible through the identity

GzTrace((a 1)<b 1)):Trace<ab+1 a>
1 0 1 0 b 1

(note that the quantity M in Theorem 1.3 is the product of T' such matrices
corresponding to the period of «). It is interesting to observe that, in this
case, if the geometric mean of a and b is fixed, then the asymptotic ratio
depends only on the arithmetic mean of a and b; in particular, the limit
is maximized when the arithmetic mean is minimized. For example, if we
consider all possible (a,b) satisfying ab = 100, then our formula reveals:

a = [a,b] lim (k)/k

k— o0
[1,100] 0.4950. ..
2,50] 0.7353. ..
[4,25] 0.8481...
[, 20] 0.8677. ..
[10,10] 0.8922...
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In fact, the previous observations offer some intuition into our main re-
sult. As a heuristic, we can think of the limit of ¢/(k)/k as the asymptotic
probability that some randomly chosen term in an Ostrowski a-decompo-
sition has a nonzero coefficient. To illustrate this idea, if we return to a =
[10,10], then the allowable coefficients in the Ostrowski a-decomposition
range from 0 to 10. If the coefficients were selected at random, then the prob-
ability of picking a nonzero coefficient equals 10/11 =~ 0.909. However, we
expect the actual asymptotic limit to be slightly lower due to the Ostrowski
condition that this coefficient would be forced to equal 0 if the coefficient
of the term after it were to be 10. Indeed, as stated above, the actual limit
equals 0.8922. .., which is extremely close to our 0.909 estimate.

We establish Theorem by first considering a weaker asymptotic li-
mit—instead of averaging between consecutive continuants (between g and
Qk+1), we first jump by the period length T' and average over the range from
qr. to gr+7. In Section 2 we prove that this weaker limit exists in the special
case of reduced quadratic irrationals and then, in Section 3, indicate how
to extend the result to arbitrary quadratic irrational real numbers. Given
that this weaker limit exists, in Section 4 we first show that the asymptotic
limit averaging between consecutive continuants exists and agrees with the
weaker limit found in Section 3. We then conclude by demonstrating that
two equivalent quadratic irrationals have the same asymptotic limit; in par-
ticular, the limit is unaffected by any pre-period, which will complete the
proof of our main result.

2. A weakened asymptotic limit: the reduced case. Let o be a
quadratic irrational real number having a continued fraction expansion with
period length T'. Here we introduce a new, weaker asymptotic limit that
measures the average number of terms in the Ostrowski a-decompositions,
in which the average is computed over intervals between continuants whose
indices jump by the period length T'. More precisely, if we let o(n) be the
number of terms in the Ostrowski a-decomposition of n, and £(k) be the av-
erage number of terms in the Ostrowski a-decomposition among all integers
n satisfying qr < n < qra7, that is,

1 qe+7—1
(k)= ——— o(n),
(%) Gk+T — 4k gq:k )

then we define the asymptotic period-jumping average of the number of terms
in the Ostrowski a-decomposition by

In this section we prove that this asymptotic limit exists and can be explicitly
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computed for all reduced quadratic irrational «. In particular, here we prove
the following:

ProprosITION 2.1. If o is a reduced quadratic irrational having a con-
tinued fraction expansion o = [ag,...,ar—1], then the asymptotic period-
Jumping average of the number of terms in the Ostrowski a-decomposition
exists. Moreover, that limit can be computed explicitly in terms of the follow-
ing quantities. Define M = pp_1(a)+qr_a(a), let @ and 6, 0 > 0, denote the
zeros of the polynomial x> — Mz +(—1)T, and write s;, for the kth continuant
of the auziliary quadratic ai + (ag — @)~ . Then

i §K) _ 1 Tz_:l (s71h = sT4h-1 = (5n = $h-1)0)(gor—n — gr-nF)
o kT 66— 8)(ar — a08)

To establish Proposition we begin by defining several natural quan-
tities and then proving a number of useful lemmas. For a fixed, reduced
quadratic « = [ag, ag, .-, ar—1) and natural number m, we write the Os-
trowski a-decomposition of m as

m = Zqu]',

Jj=0

where ¢; denotes the jth continuant of a and the coefficients {c;} satisfy
the Ostrowski conditions as defined in Section 1.
Given integers n and k, we define b, ;, to be the number of Ostrowski
a-decompositions that involve no more than the first n continuants (qo, g1,
.., qn—1) and have exactly k nonzero coefficients. That is,
n—1
bp = HZ c;jq; : exactly k coefficients satisfy c; # OH
j=0
If we forego the parameter k and write B, for the number of Ostrowski
a-decompositions that involve no more than the first n continuants, then it

follows that
n
B, = Z bn,kz
k=0

(in particular, By = 1). We begin by establishing the following elegant albeit
elementary result.

LEMMA 2.2. For all integers n > 0, By, = qn.

Proof. We recall that B, equals the number of permissible Ostrowski
a-decompositions of the form Z?;& ¢;jq;j- Alternatively, we can express this
quantity by conditioning on the value of the last coefficient, ¢,—1. If 0 <
Ch—1 < an, then there are no additional constraints on c¢,_o beyond the
condition that 0 < ¢,,_9 < a,_1. Thus, in this case, there are B,,_1 allowable
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ways to choose the first n — 1 coefficients. As there are a,, different choices
for the ¢,_1 coefficient (0 < ¢,,—1 < ay), we find that, in this case, there is
a total of a,B,,_1 different permissible expansions of the form Z?:_Ol ciq;-

On the other hand, if ¢,—1 = a,, the Ostrowski conditions imply that
cn—o must be 0. Hence, in this case, there are B, o ways to choose the
first n — 2 coefficients. Therefore the total number of permissible Ostrowski
a-decompositions of the form Z?;ol ¢jq; equals a,Bp—1 + B, _2, that is, we
conclude that for all n > 2,

B, = a,Bp-1+ B, 2.

The previous identity reveals that the sequences {B,} and {q¢,} satisfy
the same second-order linear recurrence relation. Thus to prove that B,, =q,,
we need only show that By = qg and B; = g1. Of course we have ¢y = 1 and
q1 = a1, and we recall that By = 1. Finally, we note that By = aj since,
in this case, the only coefficient appearing in the expansion, ¢y, may be any
of the a; integers satisfying 0 < ¢y < a1. Hence we conclude that the two
sequences are equal. m

We now define the quantity D,, to be the total number of nonzero terms
in all a-decompositions involving no more than the first n continuants. That
is,

D, = o(k),

0

where we recall that o(k) equals the number of terms in the Ostrowski
a-decomposition of k. Equivalently, we may write

D, = Zn: Kb .
k=0

We first show that the sequence {D,, } satisfies a somewhat exotic recurrence
relation.

Q
|
—

e
Il

LEMMA 2.3. For all integers n > 2,
Dn = anDn—l + Dn—2 + Bn - Bn—l.

Proof. We first claim that for all integers k£ > 1 and n > 2, we have the
recurrence identity

bk = bn—1k + b2 k-1 + (an — 1)by_1 p—1-
To establish this claim, we first recall that b, ,, equals the number of n-tuples
(co,c1, ..., cn—1) of coefficients having k nonzero ¢;, 0 < j < n—1, satisfying
the Ostrowski conditions. Again, another way to express this quantity is to
condition on the value of the last coefficient, ¢,_1. If ¢,—1 = 0, then there
are b,_1 1 ways to choose the remaining coefficients. If ¢,—1 = a,, then
cn—2 is forced to be 0, so there are now b,,_s;—; different ways to select
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the remaining coefficients. Finally, if ¢,_; takes on one of the a, — 1 other
possible values, then there are no additional restrictions on ¢,_o, and hence
there are b,_1 1 ways of choosing the remaining coefficients. Combining
these three quantities produces the desired recurrence and verifies our claim.

In view of the definition of D,, together with the recurrence identity we
just established and the recurrence relation implicit in Lemma we have

Dy = kbug = k(bn-1k+bn2k1+ (@n = Dby141)
k=0 k=1

n n—1 n—1
= kbpip+ > (k+ Dbpoop+ (an — 1) (k+ Dbp_1
k=0 k=0 k=0

=Dp1+Dyp2+By o+ (an - 1)(Dn71 + anl)
=apnDp_1+Dp_o+ (an - 1)Bn—1 + B2
= anDn—l + Dn—2 + Bn - Bn—l- u

We now introduce a suite of auxiliary objects that will be central to
our analysis. Given a reduced quadratic v = [dp,ds,...,ds—1], we use pe-
riodicity to extend the indices of the sequence of partial quotients, {d,},
to all integers in the natural way: For any integer n, we let j be the
unique integer satisfying 0 < n 4 jS < S and then define d,, = dy4js.
Returning to our given reduced quadratic o = [ag,ar,...,a7r—1), for an
integer n satisfying 0 < n < T, we define the auxiliary quadratic 3, =
[@nt1,Gny -, 00,07—1,-- -, Gnt2|. For an arbitrary integer n, we let j be the
unique integer satisfying 0 < n 4 j7' < T and define 8, = B4 7. Finally,
we let 7y, 1/sn 1 denote the kth convergent of 5, and abbreviate ry/sj for
To,kz/ S0,k-

The continuants s, j allow us to uncover some deeper structure within
the sequence of D,,. To this end, we begin with an elementary lemma showing
that the doubly-indexed s,, ; enjoy a familiar recurrence relation.

LEMMA 2.4. For any integer n, we have
Snk = OnSn—1k—1 1+ Sp—2k—2-
Proof. We first observe that
Trn—1,k—1 1 _ QpTp—2k—2 + Sp—2k—2

= a“l’L —|— =
Spn—1,k—1 Tn—2,k:—2/3n—2,k—2 Tn—2,k—2

Recalling that the integers 7, 5, and s, are relatively prime, we conclude
that the numerator and denominator of the rightmost fraction are also
relatively prime. Hence we have s,_1x-1 = Tphor—2 and rp_1p_1 =
AnTn—2k—2 + Sn—2 k—2, Which, upon combining these identities, yields

Snk = GnSn—1k—1 + Sp—2k—2- ®
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In view of Lemma [2.4) we may now express D, as a sum of Bj. In
particular we have:

LEMMA 2.5. For all integers n > 0,
n

D, = Z(Sn,k - Sn,k—l)Bn—k-
k=1

Proof. We proceed by induction on n and begin by noting that the iden-
tity holds when n = 0, since in this case both quantities equal 0. The identity
also holds for n = 1, because D1 = a; — 1, Bo =1, 511 = a1 and s19 = 1.
We now assume the identity holds for indices up to some fixed n, n > 1. In
view of Lemmas together with the facts that s, 1 = 0 and s, 0 = 1,
we have

DnJrl = anJran +Dypq + BnJrl - B,
= anJran +D, 1+ (anJrl - 1)Bn + B

n n—1
= an+1 (Z(Sn,k - Sn,k—l)Bn—k) + Z(Sn—l,k - Sn—l,k—l)Bn—l—k
k=1 k=1

+ (an+1 - 1)Bn + anl

n n
= Z an—i—l(sn,k - Sn,k—l)Bn—kz + Z(Sn—l,k—l - 5n—1,k—2)Bn—k
k=1 k=2
+ (an+1 - 1)Bn + anl
n
= Z(an-‘rlsn,k + Sn—1k-1— Opn+1Snk—1 — 8n—1,k—2)Bn—k
k=2
+ an—l—l(sn,l - Sn,O)Bn—l + (an—i-l - 1)Bn + Bp1
n
= > (Snt1kt1 = Snr14)Bok + (012 = $nt11)Bn
k=2
+ (Sn+171 - 5n+1,0>Bn
n+1
= (Snt1k — Sns1h—1)Bnri—k + (Snt12 — Sny11)Bn1
k=3
+ (Sn—l—l,l - Sn+1,0>Bn
n+1
= Z(anrl,k — Spt1,k—1)Bnti—k»
k=1
which thus establishes the identity for all n > 0. =

Recall that we defined £(m) to equal the average number of terms in the
Ostrowski a-decomposition among all integers j satisfying ¢, < j < @mat
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and that we defined D,,, by Dy, = 3% ~! 5 (k). Hence we have

D -D
gm+T — dm
Our aim is to compute

D —D
lim f(m) lim miT m

m—oo m m—00 m(qm+T — qm) ’

and toward this goal, for each integer k, 0 < k < T, we let

. Dyt (ny1yr — Dinr
L = lim .
n—=00 (k + nT)(qrt-(n+1)T — Qk+nT)

So Lj represents the limit of the subsequence formed along indices i =
k mod T. Our strategy is to first show that Lj exists for each k and then
prove that these T limits are, in fact, equal.

In view of Lemma [2.5] we see that to study the growth rate of the
difference Dy, 17 — D)y, it is enough to estimate the quantities B,, and s, j.
In order to estimate the quantity B,,, we first recall from Lemma that
B,, = q,,.- Thus it is sufficient to produce an asymptotic expression for ¢, in
the case n = k mod T. Given that the continued fraction expansion for «
is purely periodic with period length 7', it follows from Lemma 3 of [2] (see
also [0]) that we have, for any nonnegative integer k,

(2.1) Getnt = M@y (n-1yr + (=) @s n—oyrs
in which M = pr_1 + qr—_o. We now collect some basic facts about the

associated characteristic polynomial; the proof is straightforward and we do
not include it here.

LEMMA 2.6. Let M be the integer defined above and fy(x) = 2% —
Mz + (=1)T be the characteristic polynomial associated with the recurrence
m . Then far(z) has two distinct real roots. Moreover, if we let § denote
the larger root of fur(x) and 0 denote the smaller, then |0] > 1 and 0] < 1.

In view of identity (2.1) and Lemma we see that there exists a real
constant xj such that

(2.2) Qnt = 20" + O(1),

which, in view of Lemmal[2.2] immediately provides us with a useful estimate
for BkJrnT.

We now turn our attention to estimating the quantity s, ;. In view of
the definition of §, given after the proof of Lemma 2.3, we note that, due
to periodicity, for all integers j, s, 1 = sp4 7% For a fixed n, we can again
apply Lemma 3 of [2] to deduce that

_ T+1
Snk+iT = NosSn ot -1y + (=1)7 7 85 kg (-7
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where N, = r, 71 + s, 7—2. We now show that the coefficients N,, are, in
fact, all equal to the constant M appearing in identity (2.1)).

LEMMA 2.7. For all integers n, N, = M.

Proof. For an integer j, we define the matrix M; by

a; 1
- (1)
10
By the well-known connection between products of such 2 x 2 matrices and
continued fractions (see, e.g., [1]), we have M = Trace(MoM; - Mp_1).
Similarly, we find that N,, = Trace(M, 1M, - MoMp_1Mp_o--- My 2).
Therefore
Nn = Trace(MnHMn s MQMT,1 s Mn+2)
= Trace((Mpy1 My, - - - MoMp_y - - My y2)7)
= Trace(MnTJr2MnT+3 - Mf_ Mg - Mgﬂ)
(
(

= Trace((Mp+2Mpy3 - - Mr—1)(Mo - - - Myp41))
= Trace(MoM;---Mp_1) =M. m
Lemma reveals that the characteristic polynomial x?— N,x+ (—1 T,
for any index n, is identical to 22— Mz + (—1)T. Moreover, by Lemma

we conclude that for each n, 2% — Nz + (—1)7 has zeros at 6 and 6, with
|| > 1 and |#| < 1. Hence there exists a real constant y,, , satisfying

(2.3) S k+iT = yn,k9j + O(1).
We now show that the limit L, exists for each k. In particular, we prove:

LEMMA 2.8. For each k, 0 < k < T, the limit Ly, exists. Moreover, given
the constants xy, and y, 1, as defined above, we have

T-1

Z(yk,h — Yk,h—1)Th—h-

h=0

lim Dy (ni1yr — Dinr 1
n=00 (k +nT)(qry (s 1)1 — Getnr)  TTp

REMARK. We note that the previous limit is an average of T" values that
has then been scaled by the factor 1/zy. Recall that T is the period length
of the continued fraction expansion for a.

Proof of Lemma 2.8. In view of Lemma together with Lemma [2.2
and identities (2.2) and (2.3]), we have (with the change of variables i =
mT + h in the second equality):
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k+nT

Diysinr = E (SknT,i — SktnT,i—1)BrkanT—i
i1

h=0 m=0
k n
= > (D2 (G = ra-1)8™ + O() (6™ + O(1) )
hZOTTIZO n—1
+ 37 (X (= wn1)8™ + O(D) (axp™ ™ +0(1)))
h=k+1 m=0
- Bk+nt

I
M=

(((Wrh = Yr,h—1)Th—p)(n +1)0" + O(0™))

i

0

T-1
+ Y (((Wen = Yrn1)Te—n)nb™ + O(0™)) — Brine

h=k+1
T-1
= no" Z(yk,h — Ykh—1)Th—n + O(0").
h=0
If we now define
T-1
Cr =Y (Ykh = Yrh-1)Tkn,
h=0

then our previous identity can be expressed as

Hence we conclude that
Dyt (n+1yr — Disnr nd" (0 — 1)Cy + O(6")

(k + nT)(@k+ ()7 = Gotnt) (B +nT) (200 — 1) + O(1))’
which upon letting n — oo reveals that

Ck
L= %
S T

and thus completes our proof. m

In view of Lemma 2.8 we now demonstrate that our desired asymptotic
limit exists by proving that the quantity Cj/zj is independent of k. To
establish this assertion, we require several lemmas and begin with a study
of the growth rates of xj, and y, .
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LEMMA 2.9. Let 0 and its algebraic conjugate 0 be as defined in Lem-
ma . Then the constants y, . and x can be explicitly given as

— S0 —qf
Snk+T :"’n,k and Ty = dk+T f]k .
0—46 0—0
Proof. Given Lemma and the recurrence relation that followed the
lemma, together with the definition of y,, ; from identity (2.3), we conclude

that

Ynk =

Sn,k+iT = yn,kaj + ’75]
for some constant ~. Letting j = 0 and j = 1, respectively, reveals
(24) Snk = Ynk T and Sn,k+T = yn,ke + 79
The first identity in (2.4) yields

Y = Sn,k — Yn,k>
which, in view of the second identity of (2.4)), gives

Sng+T = Yn k0 + (Sne — Yn )0,
or equivalently
Sn,k+T — Sn,ka
0—-6
An analogous argument allows us to sharpen the estimate of and derive
the corresponding formula for x;. =

Ynk =

LEMMA 2.10. For all integers n and k,
Ynk = OnYn—1k—1+ Yn—2k—2 and T = apTp_1+ Tp_2.

Proof. The first recurrence identity follows immediately from Lem-
mas [2.4] and In particular, we write

AnSn—1k+T—1 + Sn—2k+7-2 — (@nSpn—1k—1 + Sp—2.k—2)0
0—0
Sn—1,k+T—1 — Snfl,kflg Sn—2 k+T—2 — san,k72§
0—6 0—6
= pYn—1,k—1 + Yn—2,k—2-

Yn,k =

= an

The recurrence relation for x;, follows in a similar manner. =
LEMMA 2.11. For all integers k and n, we have
g =0zp—r and ynr = Oyn k-7
Proof. We recall that from the estimate in we have
Gerir = 20"+ O(1)  and  q_7y457 = Tr-10 + O(1).
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Letting ¢« = j7 — 1 in the first estimate and then equating the previous two
estimates allows us to conclude that

2077 = 267 + O(1),
after which dividing by #7~! and letting j — oo yields x; = zp_76. An
analogous argument establishes the corresponding result for y,, ;. »
LEMMA 2.12. For any integer k,

Cr = 0Ck_7.

Proof. We first note that from the definition of y; 5, and the basic prop-
erties of sy, it follows that for all k¥ and h, we have yr_7 ) = yin. This
observation together with the definition of C} and Lemma [2.11] implies

T-1

Cr—1 = Z(ykz—T,h — Yk—T\h—1)Th—T—h
h=0
T—1

= Z(yk,h - yk,h—l)xk—hg_l = O_ICk. [
h=0

LEMMA 2.13. For any integer k,
Ck = aka,l + Ck,Q.
Proof. The definition of C} together with Lemma yields

T—1
(2.5)  Ck= (Yk,h — Yk,h—1)Th—h
h=0
T—1
= (OkYk—1,h—1 + Yk—2,h—2 — AkYk—1,h—2 — Yk—2,h—3)Thk—h
h=0
T—1
= Qg (ykfl,h—l - ykfl,h72>37k7h
h=0
T-1
+ Z(yk—Z,h—2 — Yk—2,h—3)Thk—h
h=0
T—2
= ak Y (Ur1h = Yh-1h)T(k1)—h
h—1
T3

+ Z (Yk—2,n = Yk—2,n—1)T(k—2)—h-
h=—2
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An application of Lemma reveals
W = Yoh—1)Th—h = Wesr0 " = Yp(hp )10 )T (0

= (YkhtT = Yky(h+T)—1) Th— (h+T)-
This identity allows us to re-index the sums in (2.5 to conclude that

T-1 T—1
Cr=ar Y (Wh-1h = Yk-1.h1)T—1)-h + Y Uk-2.h — Yb—2.h—1)T(k2)—h
h=0 h=0

=a;Ch_1+ Cg_o. u

LEMMA 2.14. Given Cy and xi as previously defined, we have
Co Gy

i) N X1
Proof. For any real numbers ¢ and v, we denote the set (d,v)U (7, d) by
(0,7); that is, (0,7) is the open interval having endpoints § and . Recall

that if a, b, ¢, d are positive real numbers satisfying

a C
Rl

a+c a c
brd© <b’ d>‘

We proceed by contradiction; that is, we assume that Cy/xg # Cy/z1.
We now claim that for all k& > 1, Cy_1/xk—1 # Ck/xk. To establish this
claim we induct on k, noting that by our previous assumption, the assertion
holds for k£ = 1.

We now assume that Cy_1/xx_1 # Ck/zk for some k > 1. By Lemmas

[2.10] and we have

then

Cry1  ap1C0k + Oy

)
Tht1 A1 1Tk + T—1

Cr1 c <ak+1ck Ck1> B <Ck: Ckl>
) - ) )
Tk+1 Ap+1Tk  Thk—1 Tk Tk—1

and in particular, recalling that this interval is open, we deduce that
Ck/xk # Cr1/xk+1. Therefore we conclude that for all natural numbers k,
Ck—1/xi—1 # Ci/xr. We note that this argument actually proves more,

namely that for all £ > 2,
Ck c <Ck1 Ck2>

b
Tk Tk—1 Tk—2

and thus

Hence for all k¥ > 2 we have

<Ck Ck—1> - <Ck—1 Ck—2>
v 21/ T \Tho1 Th2/’




232 E. B. Burger et al.

which, after repeated applications, implies that

o (o o (3.9,
xr rr-1 TT-2 xo X1
in particular, Cp/xp # Cp/xo. However, Lemmas and yield
Cr 0Cy (o

T N 91’0 ZL‘()7
which contradicts our established claim. Therefore we conclude that our
original assumption is false, that is, Cy/z¢ = C1/z1, as desired. »

LEMMA 2.15. For all integers k > 1,
Cr  Co
T @
Proof. We proceed by induction on k. By Lemma we see that the

identity is valid in the case k = 1. We now assume the identity holds for all
indices k up to some fixed index j > 1. By Lemmas and we have

(2.6) Cjr1 _ 4G+ Cj1
Ti+l Q1%+ Tj

On the other hand, our induction hypothesis yields
aj+1CG; _ Co _ Cj

Aj4+1T4 i) Tj—1 ’
which, in view of (2.6)), implies that Cj;1 /241 = Co/x0, and thus completes
our proof. m

Putting all our observations together, we now show that for any reduced
quadratic irrational o, the asymptotic period-jumping average of the number
of terms in the Ostrowski a-decomposition exists and is given by the quantity
stated in Proposition 2.1

Proof of Proposition[2.1]. For any integer k, 0 < k < T, by an application
of Lemma 2.8 we have

. &(k+nT) Cy
lim = ,
n—oo k +nT Tx

which, in view of Lemma [2.15] implies that

. &(k+nT) Co
lim = .
n—oo k +nT Txq
Given that these limits are constant as k ranges over a complete residue

class modulo T, we conclude that

i S8 _ G0

k—oo k _T:EO.
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Applying the definition of Cy and Lemma [2.9] to evaluate z( yields

— o1
k) 1 6-0
lim = - =Y (Yon — Yo,h—1)T—h-

By the T-periodicity of the sequence {x,,}, we can replace the terms z_j
in the previous sum with zp_j. Moreover, we recall our abbreviated notation
sp = So,, for the hth continuant of Sy = [a1, ao, ar—1, ar—2, ..., 2], which,
by a result of Galois [4] (see [I]), can be expressed formally as

Bo = [CL1,CLO, —1/5} =ai + (CLO —a)_l.

These observations together with another application of Lemma[2.9|to eval-
uate yo 5 allow us to deduce that

lim
k—o00

§k) 1 Til (s74n — sTn—1 — (s — sn-1)0) (qor—n — qr—10) .
kT &~ 0(60 — 0)(qr — qf) '

3. A weakened asymptotic limit: extended to arbitrary quadra-
tic irrationals. With mostly minor changes, our proof of Proposition [2.1
can be extended to all real quadratic irrationals «. In particular, here we
outline an argument showing that for any quadratic irrational real number
a, the asymptotic period-jumping average of the number of terms in the
Ostrowski a-decomposition exists and is explicitly given in the following
result.

ProposiTION 3.1. If « is a real quadratic irrational having a contin-
ued fraction expansion a = |ag, ai,...,a—1,0z, -, Gi+7—1), With pre-period
length t and period length T, then the asymptotic period-jumping average
of the number of terms in the Ostrowski a-decomposition exists. Moreover,
that limit can be computed explicitly in terms of the following quantities.
Let o* = [ap,-.-,a7—-1] be a reduced quadratic irrational equivalent to .
Let g, = qn(a) and g, (™) denote the nth continuant associated with o and
o, respectively. Define M = pr_1(a*) + qr_o(a*), and let 0 and 0, 6 > 0,
denote the zeros of the polynomial x®> — Mz + (—1)T. Finally, write sy for
the kth continuant of the auziliary quadratic az1 + (at —?)_1, define o(n)
to be the number of terms in the Ostrowski a-decomposition of n, and let
&(k) denote the average number of terms in the Ostrowski a-decomposition
among all integers n satisfying qx < n < qry1; that is,

r+7—1

R —— T}

e+ — Ak =0
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Then
T—1 i i
lim S _ 1 y (5T = STn—1 — (5 — sh_1)0)(qerse—n — qrre-nf)
h—oo ko T = 0(0 — 0)(ar+t — q:b)
Proof. Here we require auxiliary objects analogous to the (5, from our
previous argument. For any integer n > 0, we write 3, = [an+1,an,

.,a1,a0], and for integers n satisfying t <n < t+ T, we define

5:; = [an_,_l,an, NN T at+T_1, e ,an+2].

For an index n & [t,t + T) we extend our definition of 3} by periodicity;
that is, we declare ) = 3 + . for all integers j. Again we write 7y, 1,/s,,  for
the kth convergent of j, and now let 7 . /s* n. denote the kth convergent
of f; and write s; = s;,. We note that if n +1 > ¢ (recall that ¢ is the
length of the pre-period of «), then the first n — ¢ + 2 partial quotients of
Brn agree with the first n —t 4 2 partial quotients of 37, so for all integers k,
0<k<n-—t+1, rnk:r:‘lkandsnk:sjlk

We also extend our definition of s* nk to negative indices k by applying
the usual recurrence that defines the contlnuants where we define negatively
indexed partial quotients by periodicity. For example, if 3% = [bg, b1], then
sp0 =1 and sj, ; = b1, and the recurrence sj, | = bis;, o + s;, _; allows us to
compute s;, _; = 0, and hence s}, g = bos;, _ + s;, _o gives s, 5 = 1, and
Sp—1 = b— 1sn _o s, g yields s} 5 = = —b,.

With these new definitions, we see that Lemmas 2.2 through - can
be proven exactly as before. Furthermore, the argument in Lemma |2.4] also
applies to show that whenever n > t,

Spk = AnSp_1 k-1t Sp_o k2
Because of the initial run of ¢t nonperiodic partial quotients, we alter our
definition of the limit L; and declare

Dyt (nyiyr4t — Ditnr+t
k = lim ’
n—00 (k + 1T + t)(Qut(n+-1)74+t — ThetnT+t)
where again D,, denotes the total number of nonzero terms in all Ostrowski
a-decompositions involving no more than the first n continuants of «.

We now let M = pr_1(a*)+gr—2(a*) and denote the larger and smaller
zeros of the polynomial 22 — Mz + (—1)7 by 6 and 6, respectively. The
methods used in Section 2 to deduce closed formulas for ¢, and s, ; can be
applied analogously in this new context. In particular, we have the following
results.

LEMMA 3.2. Given an integer k, there exists a constant xi1y such that
for all integers n satisfying k +nT > 0, we have

Qett4nT = Tp0" + O(1).
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LEMMA 3.3. Given integers k and n, with k > 0, there exists a constant
Yn,i such that for all nonnegative integers j, we have

St = Yn k0’ + O(1).

We note that since s, = s,*%k for integers k satisfying 0 < k <n—t+1,
Lemma [3.3] also implies:

LEMMA 3.4. Given integers k and n, with k > 0, the y,  from Lem-
ma 3.3 can be chosen such that whenever i >0 and k+ jT <n—t+ 1, we
have

ST kg7 = Yn k8 + O(1).

Given that the sequence {3} is periodic with period length T', we again
note that y, 1 = ynyjrk for all natural numbers j.

We now estimate the quantity Dgijri¢. In the purely periodic case,
finding such an estimate was straightforward since we had closed formulas
for sy, 1 and ¢,. In the generalized case, we still have closed forms, but they
are slightly more delicate due to the presence of a pre-period. Thus we must
handle such estimates with a bit more care. In particular, we have

ki T+t
Dy jrie = E (SktjT+ti — SkgT+t,i—1) B jrri—i
=1
T_1 LAt
= E § (Sk+jT+t,Tm+h — 3k+jT+t,Tm+h71)B(j—m)T+(k7h)+t>
h=0 m=0
— By T4t

We know that k —h+t > —h > =T, so |(k—h+1t)/T| > —1. Thus we
write

Ditjrie =
T—1 JH[Ep
(3.1) ( > (skpgreermen — 8k+jT+t,Tm+h—1)B(j—m)T+(k—h)+t)
h=0 m=j
— Brijr+t
T-1 j-1
(32)  +) ( > (Skrjretrmen — 3k+jT+t,Tm+h71)B(j—m)T+(k7h)+t>~
h=0 m=0

To examine the double sum , we first consider the innermost sum.
As « is a real quadratic irrational, it is badly approximable, that is, there
exists a constant K such that a; < K for all ¢ > 0. Thus for any natural
number w, we have

By = Quw = QuwQuw—1 + quw—2 < Kwal + qu—1 = (K + 1)Qw71-
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Repeated application of this inequality reveals that B,, < (K + 1)%qy =
(K + 1)"”. Now in the sum (3.1]), we have m > j, so j —m < 0 and thus
B(j—m)T+(k—h)+t < Br_pyt < (K + 1)k7h+t. We know that 0 < k,h < T, so
k—h+t<T+t and thus we have
B —myr4(e—h)+t < (K + T,
so all the terms B; in the sum (3.1)) are bounded by a constant independent
of m and j. Hence we conclude that the inner sum of (3.1)) is
j+|(k—h+t)/T|
0 Z SktjT+t,Tm+h — Sk+jT+t,Tm+h—1)

m=j
J+L(k—h+t)/T|
= O( Z 5k:+jT+t,Tm+h) )

m=j
where the second estimate follows from the fact that
Sk jT+t, Tm+h = Sk+jT+t,Tm-+h—1-
If h +mT < k+ jT, we have Spi 74t hemT < Sk4jT+tk+;7, and if
h+mT >k + jT, then we argue as above to conclude
Skt it himr < (K + 1) HM=DT g oy b
We note that h—k <T—-0=Tandm—j5 < |[(k—h+t)/T| < |[(T+1t)/T],

so the exponent on K + 1 is bounded by the constant 7'+ 1+ |¢/T'|. Hence
we see that

Sk+jT+t,h+mT = O(3k+jT+t,k+jT)~
The indices of sjy 71 k47 satisfy the hypotheses of Lemma and thus
we have
Skti T+t ot g T = Ykt jT+1.:07 + O(1).
By periodicity, Yk+iT+tk = Yk+(j+1)T+t,ks SO Yk+jT+tk as a function of j is
O(1). Hence we see that
Sk+jT+t k+jT = O(Hj%
and therefore
Sk+jT+t,h+mT = o(¢’)
as well. Therefore the inner sum of is

J+(k=h+t)/T] J+Lk=h+t)/T]
0( Z Sk+jT+t,Tm+h) = O< Z QJ) .
m=j m=j

The total number of terms in this last summation is bounded by

) k—h+t . T—-0+1 t
R R e e P I M D!
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and so the entire innermost summation of (3.1)) is equal to O(67), and thus
the entire double sum of (3.1)) can be estimated by

T-1
> 07) = o).
h=0

As for the last By j74¢ term in , we recall that Biyj74¢ = Qutjr+t =
pt0? + O(1). Here xpy4 is bounded by a constant, since there are only
finitely many values of zx4, for 0 < k < T. Hence we also discover that
Byt jr4t = O(67), and so we conclude that the entirety of is O(67).

We now turn to the double sum . To apply Lemma to produce
a closed form for s, in this sum, we require that mT" + h < k + jT' + 1.
However, we have m < j—1, and thus mT+h < jT+h—T < jT < k+ jT+1;
hence we can apply the estimate from Lemma [3.4

To apply the estimate implicitly given in Lemma for B(j_m)T+(k—n)+t
= q(j—m)T+(k—h)+t> We require that the indices satisfy (j —m)T + (k — h)
> 0. This inequality clearly holds, since, in the double sum , we have
(j—m)T+(k—h)>T+ (k—h)>0.

Applying the estimates of Lemmas and to reveals

T-1 j-1
( ((WktiT+th — YreriTen-1)0" + O(1)) (@p—pir 0?1 + 0(1))>
h=0 m=0
T-1 ' .
= Z(((yk+jT+t,h — Yk T t,h—1) Tkt T+) 07+ O(67))
h=0
. Til .
= jor (Z(yk+jT+t,h - yk+jT+t,h71)$k7h+T+t> + O(6”)
h=0
. T_l .
= jo’ ! <Z(yk+T+t,h - ykJrTth,hfl)xkchrTth) +O(07).
h=0

Combining these two estimates for (3.1) and (3.2) yields
Dy jrst = Croprd® 1+ O(67),
where again we define
T-1
Cr =Y (UkaToh — Ykt Th—1)Thoh 4T
h=0
Hence our average becomes

Dyt (j41)7+t — Ditjr+t B GO — 1)Chys + O(09)

(43T + t) (@t 417+t — Qhrgrre) (b + T + 1) (@p407(0 — 1) + O(1))’
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and thus the limit we desire along subsequences modulo 7' is given by

Lp = lim Diy(j+1)7+t = Ditjrse _ Cre
j=o0 (k4 JT + t) (Gt (4174t — GerjTrt)  TOTRyt

where the 7' in the denominator arises because j/(k+ jT +t) — 1/T as
j — oo.

From this point, the remainder of the argument is virtually identical
to the purely periodic case. In particular, we show that the quantities
Crtt/Tk+t do not depend upon the value of k. Our proof for the purely
periodic case required closed formulas for x; and ¥, and several recur-
rence relations. The analogous lemmas hold in this more general setting and
the proofs follow in a similar fashion. In particular, we can establish the
following results.

LEMMA 3.5. For all integers n and k, k > 0, we have the following
formulas for y, 1 and xy:

St — 05n 1 kT4t — 9Qk+t
p=——"——=—>— and g =
Yn, 0_0d +t = 0_19

LEMMA 3.6. For all integers n, n > t, we have
Ynk = OnYn—1k—-1+ Yn—2k—2 and Tp = ApTp_1 + Tpn_2.
LEMMA 3.7. For all integers n and k, k > 0, we have
Ynk =0 ynrrr and Tpy =0 'op .
LEMMA 3.8. For all integers k, k > t, we have
Cr=0"1Chyr and Cp = aCh_i + Cp_o.

LEMMA 3.9. Given a real quadratic irrational o, having a continued frac-
tion expansion with pre-period length t, and the notation above,

G Cina

Tt Li+1 '
LeEMMA 3.10. For any integer k > 0,
Civre _ Co

Ttk Zo '
With these lemmas now at our disposal, except for the shift of ¢ in the
indices of the continuants, the proof of Proposition [3.1] exactly parallels our
argument in Section 2 that established Proposition .

4. The asymptotic limit for Ostrowski a-decompositions. In the
previous section we showed for a quadratic irrational real number « that the
asymptotic period-jumping average of the number of terms in the Ostrowski
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a-decomposition exists; that is, we established that limy_,. £(k)/k exists,
in which

1 qr+7—1
k)= —— on),
<F) Ak+T — 4k nzqk ()

and o(n) equals the number of terms in the Ostrowski a-decomposition of n.

Here in this final section, we return to the stronger asymptotic limit
introduced at the beginning of this paper, which is the ultimate generaliza-
tion of Lekkerkerker’s work on . In particular, we wish to replace the weak
average {(k) with the complete average given by

qr+1—1
1

b(k) = ———— 3 on).

Te+1 = 9k =0

We first apply Proposition to prove that the asymptotic limit we seek,
limg_, 00 ¥(k)/k, exists and equals the asymptotics computed in Section 3.
We state this result as:

PrOPOSITION 4.1. Given a quadratic irrational real number o and the
notation above, the limit

lim L(k)
k—o00
exists, and is equal to the limit given in Proposition that 1is,
k) L €(R)
klggo ko klgrolo k-

Before establishing Proposition[4.1], we first introduce several new quanti-
ties. To that end, we recall two objects defined at the beginning of Section 2:
B,,, which denotes the number of Ostrowski a-decompositions that involve
no more than the first n continuants; and D,,, which equals the total number
of nonzero terms in all a-decompositions involving no more than the first n
continuants.

We now let 0,, be the number of a-decompositions whose largest contin-
uant is ¢,, and let A,, denote the total number of nonzero terms in all such
a-decompositions. That is,

871 = Bn+1 - Bn =(4dn+1 — Qn and An = Dn+1 - Dn-
Given this new notation, we can rewrite the limit we seek as

lim L(k) = lim ﬁ

k—oo k k—ro0 k‘@k'
To establish the existence of the desired limit, it will be useful to study
the various sublimits taken along indices of various residue classes modulo

the period length of the continued fraction expansion of o (which we recall
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is T'). More precisely, for a fixed integer m > 0, we define ¢,, by
vik) _ lim A _ lim Y(m + kT)

b= lim 2 el ,
kl—glo k k—oo kO koo m+ kT
k=m (T) k=m (T)
and write ¢ for the value of the limit in Proposition that is,
¢ = lim 75(1&‘)
k—oo k

Thus to prove Proposition we need to show that for each m, the limit
L, exists and, furthermore, that £, = ¢£. Toward this end, we require two
additional pairs of auxiliary quantities: We define

n+71-1 n+7T-1
Uy = Z A; and v, = Z 10,
=n =n

and
Xp=Anir— 4, and Y, = (n+T)0h+1 — nOy.

In view of the definition of A,, and 0,,, the quantities uy, v,, X, Y, are all
positive integers and satisfy the identities

(4.1) Upt1 = Un + X,  and  vp1 = vy + Vn.

LEMMA 4.2. If the period length T satisfies T > 2, then the sequence of
ratios {vi/Vx} is a bounded sequence.

Proof. Given that « is a quadratic irrational real number, its partial
quotients are bounded; that is, if &« = [ag, a1, . . .|, then there exists an integer
A satisfying a < A for all k¥ > 0. We apply this observation to deduce two
basic inequalities. The first inequality bounds the growth of the continuants;
in particular,

(4.2) QGoer < (A+1D)Tg,

for all £ > 0, which is an immediate consequence of repeated applications of
the recurrence relation for the continuants given in together with our
bound on the partial quotients. The second inequality bounds the growth
of the 0y sequence; specifically, we claim that for all k£ > 0,

(4.3) Ok < (A+1)0k41-
To establish this inequality, we first recall the following well-known identity
from the theory of continued fractions (see, for example, [I] or [6]):
Q1
dk
This identity, together with our bound on the partial quotients of «, reveals

= [ag+1, aky - .-, a1].
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that
O _ Gk+1—ak _ 1= (qr/qt1)
Ok+1 Q2 — W1 (Qrr2/qut1) — 1
1 1
< =~
[ak+2,ak+1,...,a1] -1 [O,ak+1,ak,...,a1]

= [ak+1,ak,...,a1] <A+1,
which establishes the inequality claimed in (4.3)).
Repeated application of within the definition of v; implies
k+T—1 E+T—1
ve= Y i <(k+T—=1) Y 0<(k+T—-DT(A+1)"Opyr_1.
i=k i=k
Hence

(4.4) ;—’Z <T(A+ 1)T<(

k+T — 1)8k+T1>
Yk ’

and thus to establish the lemma we need only bound the ratio within the
parentheses.

Toward this end, we first note that by the hypothesis that T" > 2, it
easily follows that
(4.5) (k + T)qk+7-1 — kg1 > 0.
Next, we define the constant C' = 2(A + 1)7, and select the integer K so
large that for all K > K, (k4 T)/k < 2. This inequality, together with (4.2)
and (4.5]), reveals

C (k+T)q+r (k+T)gr+r
> > :

kay, kai, + (k + T)qr+1-1 — kg1
which, upon taking reciprocals, then adding 1, and recalling that a; > 1 for
all £ > 0 as well as the recurrence (|1.1)), yields

14 L ket (k+T)ar+r + (k + T)gesr-—1 — kg
C (k + T)qr+T
< kqp + (b +T)apiri1qesr + (b +T)qryr—1 — kqryt
(k+T)qrsr
_kge + (b + T)grrr 1 — kg
B (k+T)aqrsr '

The previous inequality implies the weaker inequality
(C+1)(k+T) = Daptr + Chair
< C(k+T)grsr+1 + (k+T — 1)qeyr—1 + Ckay,

which is equivalent to

(k+T = 1)(gk+7 — Gkt1-1) < C((k + T)(qh+7+1 — Qi) — K(Qht1 — @)
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This last inequality, in view of the definition of Jy, can be rewritten as
(k+T—1)0kyr—1 < C((k+T)0ksr — KOk,

which, given the definition of Vg, yields

(k+T —1)0kyr—1
Yk

In view of inequality (4.4]), we conclude that for all £ > K, we have

Y A+ 1T,

Vi

which implies that this sequence of ratios is bounded for all &k, as desired. =

Proof of Proposition[{.1 In the case T' = 1, ¥(k) = &(k) for all k > 1,
and hence the proposition is equivalent to Proposition Thus we now
consider the remaining case T' > 2. We begin by observing that
(4.6) (k) _ Dipr—Dy _ i tA U,

koo klar —a)  k(OOHIe)  k(SHTIe)
We now claim that the difference between vy and the denominator of the
rightmost fraction above is o(u,) as n — oo, where we are adopting the
little-o notation. To establish this claim, we apply Proposition which in
this context implies that the limit as k — oo of (4.6 exists and is nonzero
(what we named earlier as ¢), and deduce that

< C.

k+T-1 k+T-1 k+T-1 k+T—-1
ve —k Z o= 3 (i-ko< Y (T—l)al-:o<k 3 8i>:0(uk).
i=k i=k i=k

Hence we Conclude that
lim =& = Jim —— —im fB)
koo U  k—oo k(Ziik -1 d) —o(uy) k—oo k

In particular, this limit implies that for any fixed integer m, 0 < m < T, we

have
b (i) -
k=m (T)
Applying the identities from yields

X
) up + X uk . Xk — Viug ) e~ 7;*:
k:E;;(z%) Uk k Ok kzzo(%) KUk Uk kzzﬁﬁ%) Vi

In view of Lemma the only way for the previous limit to equal 0 is if
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and thus we see that

Given that this limit holds for every choice of m modulo T, we conclude
that

(4.7) lim =& =¢.

Finally, we claim that
lim = = lim ﬁ
k—oo Vi k—ro0 kak7
which would complete our proof.
To establish this final claim, we fix € > 0. Given the limit of , there

exists an integer K so that for all k > K, |X, — Vil| < Vke, that is,
(4.8) Vel —e) < X < Vp(l+¢).
Now for a fixed integer k, k > KT, we can write it as kK = m + j7T for some
integers j and m satisfying 7 > K and 0 < m < T. Hence, we can express
the ratio we wish to study as a ratio of telescoping sums and rewrite it as
Ay Ap+ X+ Xopr + -+ X
kO mOm + Vi + Vst + -+ Vet
(A + Y ) + YT mosr
(ma + Zm—f— (K-1)T yz) + Zz T er yz
7 O(1) + Xy kT + Xppp(k41y7 + -+ X
O+ Vs kT + Vi (k41 + -+ Vo1

where the big-O notation represents functions of «, K, and m, and thus
constant functions of k. In view of the fact that the sequences {X%} and
{Vk} both tend to infinity as k — oo, we see that for all sufficiently large k,
the O(1) terms will change the last ratio above by a quantity less than e,
that is, there exists K/, K’ > KT, so that for all k > K’ satisfying k = m
mod T,

Ay Xmgrr + Xk yyr + -+ X
kdy  Vmixr + Ymyx+nyr + -+ V-1
This inequality together with implies that
Ax Xngrr + Xy (kg + o+ Ao
kOk — Vmt+kr + Vmyx+yyr + -+ V-1
_ U+ ) Vmrrr + U+ ) Vmp(ksnyr + -+ L+ )V L
Vim+ kT + Vmypx+1)r + -+ V-1

+e€

={ + 2e.
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A symmetric argument, now subtracting € and using the other inequality

of (4.8)), reveals that

Ay

ko’

and thus for a fixed integer m, 0 < m < T, we have

{—2e <

k—o0 ko koo k:@k
k=m (T) k=m (T)
Given that this limit holds for all residue classes modulo T', we conclude
that
lim M =/,
k—oo k

which completes our proof of Proposition 4.1. =

Finally, we study equivalent quadratic irrationals, a and 5, and demon-
strate that the asymptotic average of the number of terms in the Ostrowski
a-decomposition equals the asymptotic average associated to the Ostrowski
B-decomposition. To that end, we now write Ag (), Ok(a), and ¢(«) to ex-
plicitly highlight the dependence of these quantities on «.

PROPOSITION 4.3. If o and B are two equivalent quadratic irrational

numbers, then
l(a) = €(B).

To establish this result, it is enough to show that the asymptotic average
for a quadratic irrational « is equal to the asymptotic average for an equiv-
alent reduced quadratic. That is, if « = [ag, a1, ...,at-1,az, -, Gr7—1) and
we write oy for the equivalent reduced quadratic oy = [ag, .- -, ary7—1], then
to prove the proposition it is enough to show that ¢(a) = ().

Given an irrational real number a = [ag, a1, a2, ...|, we define the nth
complete quotient, a,, by ayn = [ap, Gni1, Ant2,--.]. We now prove two im-
portant lemmas regarding the complete quotients of «. The first lemma
offers two new combinatorial identities.

LEMMA 4.4. If a = [ag,a1,...] is an irrational real number, then for all
integers k > 2 and n > 0,
Ap(an) = ant1k—1(ang1) + (ant1 — 1)0k—1(any1)
+ Ag—2(ant2) + O—2(ant2)
and
Ok(an) = angp10k—1(any1) + Op—2(nq2).

Proof. We begin by establishing the first identity. Recall that Ag (o)
represents the total number of nonzero allowable coefficients, (cg, c1, ..., ck),
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in any Ostrowski ay,-decomposition having g as the largest continuant ap-
pearing in the sum. The Ostrowski conditions require that 0 < ¢; < ap490.
We now consider two cases.

In the case 0 < ¢ < an42, the sequences of allowable coefficients are just
sequences of the form (cg, ¢, ..., cx), in which the subsequence (cq, ..., c)
is any allowable sequence of coefficients for Ostrowski ay,11-decompositions.
The allowable values of ¢y range from 0 to apy1 — 1. If ¢¢ = 0, then
we have a contribution of Ag_j(au,+1) distinct, allowable sequences. If ¢
is any value in the range 0 < ¢9 < any1 — 1, then we have a contri-
bution of Ag_i(a,41) for the number of nonzero, allowable coefficients
from (c1,c2,...,c;) plus we must count the nonzero term ¢y for each of
these expansions (hence we add J_1(apn+1)). Thus, in this case, we have
a contribution of (an41 — 1)(Ak—1(an+1) + Ok—1(an41)) distinct, allowable
sequences. Adding these two contributions produces the total number of
nonzero terms for all allowable sequences in which 0 < ¢; < ap42, namely
a1 Ak—1(ny1) + (ang1 — 1)Ok—1(any1).

We now consider the remaining case ¢; = any2. By the Ostrowski con-
ditions, if ¢; = ap42, then ¢y = 0; thus our sequence must be of the form
(0, ap+2,c2, ..., ), in which (eg,...,cx) is any allowable sequence of coeffi-
cients from the Ostrowski «,,+o-decompositions. These sequences contribute
an additional Ag_o(apt2) + Ok—2(ap+2) nonzero terms (as in the previous
case, we must add Jg_s(a,+2) to count each occurrence of the nonzero a2
term).

Adding the counts found in each of the two cases above produces the
desired identity. The proof of the second identity, involving Ok (c, ), follows
a similar method of conditioning on the value of ¢, and thus we suppress
the details here. m

The following lemma contains the essential ingredient required to prove
Proposition Namely, if ¢(«,) is not equal to £(c,41) or £(ap+2), then
l(any1) and £(ap42) are also not equal, and furthermore, ¢(ay,) is a value
strictly in between £(cu,+1) and ¢(c,42).

LEMMA 4.5. Given a quadratic irrational real number o and the notation
above, for all integers n > 0, if £(ay) < l(ant1), then £(ant2) < L(an); and
if U(apt1) < (o), then (o) < l(ant2).

Proof. Applying the first identity of Lemma [£.4] we see that for any
integers kK > 2 and n > 0,

Ar(an) _ ant1lk—1(oni1)
kak(an) k@k(an)
Ap—a2(omt2) | (an+1 — 1)0k—1(ont1) + Op—2(0n42)
kak(an) kak(an) '

_l’_
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By the second identity of Lemma [£.4] we see that the rightmost ratio above
is less than 1/n and thus is o(1) as n — oco. Hence, after multiplying by 1,
we have

Ar(an) _ < Ag_1(ony1) ) (k - 1) (an+15k—1(an+1))
ké)k(an) (k - 1)8k_1(an+1) k 8k(05n)
Ap—2(any2) > (k - 2) <3k2(0¢n+2)>
+ +o(1).
(5 () (™) o
Given that from Proposition for all n, the limit

T Ak(an)
o) = lim o o)

exists and, by the second identity in Lemma both Ok—1(an+1)/0k (o)
and Og_o(ap42)/0k () are bounded functions of k, we can collect all the
terms that are of the order 1/k, as k — oo, into the o(1) term to conclude

Aglom) Ap—1(ant1) an+10k—1(nt1)
e = () (el

(b)) ow

We now assume that £(a,) < f(ap+1). Again by Proposition for a
fixed € > 0, there exists an integer K so that for all £ > K, the following
three inequalities hold:

Ag(an)
k?ak(an) B E(an) <eg,
Ap_1(ang1)
’ (k—1)0_1(ans1) U apgr)| <,
Ap—2(ant2)

‘ (k - 2)8k_2(an+2) B é(an+2) < €.

We now require that the integer K be chosen large enough so that for
all £ > K, the o(1) term in identity (4.9) is less than ¢ in absolute value.

Next, we define
Pron — an+18k—1(an+1)7
Ok ()
and note that by Lemma [4:4] it follows that

Or—2(nt2)
ak(an)

Since Py, and 1 — Py, are clearly positive, we have 0 < Py, < 1 for all &

1-— Pk,n =
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and n. Given this new notation, we can rewrite identity (4.9) as
Ay (an) < Ap—1(an+1) > < Ap—2(an+2) >
W)~ \G— U0k a(onn) )7 = 200 a(0ni) )77
+o(1),

which is equivalent to

< Ag_o(ani2)
(k —2)Ok—2(any2)

)= P
_ Aplom) < Ap—1(ant1)
kOk(om)  \ (k= 1)0k—1(an+1)

Thus for any k > K, we can apply the previous three inequalities guaranteed
by our original choice of K to the above identity to conclude that

(Ulang2) —€)(1 = Prn) < lloy) +e— (Uont1) — €)Prn + &,
which, as 0 < Py, < 1, implies that
U omt2)(1 = Prp) < lan)(1 —Prp) — (Ulont1) — (o)) Prn + 4e,

or equivalently,

)Pk,n + o(1).

Prn 4e
{ons2) < Lon) = (Uontr) = Ham)) 75—+ 75—

We now claim that Py ,, is bounded away from both 0 and 1 by a fixed,
positive constant. Assuming the validity of this claim for the moment, we
observe that as ¢ — 0, the previous inequality reveals that

Uany2) < lan) — (Uant1) — an))C
for some positive constant C. Therefore our hypothesis that ¢(ay,) < £(ap41)
implies that
l(ant2) < (o),

which is the desired inequality asserted in the lemma.

Therefore, to complete the proof, we need only establish our claim that
Prn is bounded away from both 0 and 1 by a fixed, positive constant. We
begin by recalling that because the partial quotients of o are bounded, there

exists an integer A so that a,, < A for all n. By the second identity of Lemma
[4.4 we have

—1(n+1) = ant20k—2(ant2) + O—3(an+3) > Op—2(an42),
and hence another application of Lemma 4.4 reveals

On(ag) = ant10k—1(nt1) + Ok—2(0n42)
< (an+1 + 1)8}6,1((1”_&_1) < (A + 1)8]4,1(0471_;,_1).
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Consequently, we are able to bound P, ,, away from 0 by observing that
ant10k-1(@n1) o an1(A+ 1)~ "9k (an) 5 1

Prn = > 0,
N Olom) A (om) ~A+1
and similarly, we are able to bound Py, ,, away from 1 by noting that
Op—a(ansa) _ (A+1)"20(an) 1
1— Py, = > = > 0.
k Ok(an) — Ok () (A+1)?

These two inequalities establish our claim and therefore prove the first as-
sertion of the lemma, namely, if {(a;,) < l(ant1), then £(apt2) < (o).
The proof of the second assertion, stating that if {(a,+1) < ¢(ay,), then
Uay) < l(apy2), follows from a symmetric argument and hence we sup-
press the details. m

Proof of Proposition[{.3. We proceed by contradiction and assume that
there exists an integer n such that f(ay,) # ¢(an+1); and without loss of
generality we now assume that (o) < ¢(op+1). By Lemma we have
U o) > €(op+2), which implies ¢(ap41) > ¢(ap42). Thus we are able to
apply Lemma again. Continuing inductively, we find that

s < Ll apga) < lapt2) < o) < Uant1) < lants) < lloapgs) < -+,

in particular, we see that ¢(cu,4;) # ¢(onj) for all positive integers i and
j, ¢ # j. However, given that the length of the pre-period of the contin-
ued fraction expansion of « is t and its period length is T, it follows that
Qp+t = Qpier and thus plainly we have (ap4¢) = €(Qnie47), which is a
contradiction. Therefore £(c,) = £(a,+1) for all integers n > 0, and thus, in
particular, {(a) = ¢(ay), as desired. m

Assembling all our work allows us to prove our main result in just a few
lines.

Proof of Theorem[1.3. By Proposition [£.1] we know that the asymptotic
average of the number of terms in the Ostrowski a-decomposition exists
and equals the limit given in Proposition [3.1] Proposition [£.3] asserts that
this limit is equal to the corresponding limit associated with a*, a reduced
quadratic equivalent to . Another application of Proposition [4.1| implies
that this limit is equal to the one given in Proposition 2.1} which completes
our proof. m
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