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1. Introduction. In 1939, Zeckendorf observed (and later published
in [10]) the fact that every natural number can be expressed uniquely as a
sum of nonadjacent Fibonacci numbers. Equivalently, if we write F1 = 1,
F2 = 2, and for k > 2, Fk = Fk−1 + Fk−2, then given a natural number n,
there exists a unique sequence {ck}∞k=1 of integers with the following three
properties:

(i) The natural number n can be expressed as

n =
∞∑
k=1

ckFk.

(ii) For each index k, ck ∈ {0, 1}, and for all but finitely many k, ck = 0.
(iii) For all indices k, k > 1, if ck = 1, then ck−1 = 0.

This representation is now known as the Zeckendorf decomposition of natural
numbers.

Twelve years later, Lekkerkerker [7] independently rediscovered Zeck-
endorf’s result and further included an analysis of the asymptotic behavior
of the average number of terms (nonzero summands) required in such a de-
composition (see also the work of Daykin [3]). In particular, Lekkerkerker
proved:

Theorem 1.1. For a natural number n, let σ(n) denote the number of
terms in the Zeckendorf decomposition of n, and ψ(k) denote the average
number of terms in the Zeckendorf decomposition among all integers n sat-
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isfying Fk ≤ n < Fk+1; that is,

ψ(k) =
1

Fk+1 − Fk

Fk+1−1∑
n=Fk

σ(n).

Then

lim
k→∞

ψ(k)

k
=

5−
√

5

10
= 0.2763 . . . .

It is well-known that the ratios Fk+1/Fk comprise the complete list of
convergents (or “best rational approximants”) of ϕ = (1 +

√
5 )/2. More

generally, given an irrational real number α, we denote its (simple) continued
fraction expansion

α = a0 +
1

a1 +
1

a2 +
1

. . .

by α = [a0, a1, a2, . . .], in which each partial quotient an is an integer and for
all n > 0, an ≥ 1. We define the nth convergent of α, pn(α)/qn(α) = pn/qn,
to be pn/qn = [a0, a1, . . . , an], with gcd(pn, qn) = 1; in particular, p0 = a0
and q0 = 1. We refer to the denominator qn as the nth continuant of α.
With the standard declaration q−1 = 0, the continuants satisfy the following
second-order linear recurrence for all n ≥ 1:

qn = anqn−1 + qn−2(1.1)

(we note that the elements of the sequence {pn} enjoy the same recurrence
relation with p−1 = 1). There are many sources that provide the basic
properties of continued fractions that we employ throughout this work; see,
for example, [1] or [6].

The Zeckendorf decomposition is, in fact, a special case of a much more
general theorem first found by Ostrowski [8] nearly twenty years earlier.
Specifically, in 1922 Ostrowski proved the following:

Theorem 1.2. Let α be an irrational real number having continued frac-
tion expansion α = [a0, a1, a2, . . .] and let qk denote the kth continuant asso-
ciated with α. Then given any integer n ≥ 0, there exists a unique sequence
{ck}∞k=0 of integers such that:

(i) The natural number n can be expressed as

n =

∞∑
k=0

ckqk.

(ii) For each index k, 0 ≤ ck ≤ ak+1, and for all but finitely many k,
ck = 0.
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(iii) The coefficient c0 satisfies 0 ≤ c0 < a1, and for all k > 0, if
ck = ak+1, then ck−1 = 0.

We call the expansion given in the previous theorem the Ostrowski α-de-
composition of n and say that any sequence of allowable coefficients {ck}
satisfies the Ostrowski conditions. That is, a sequence of integers {ck} sat-
isfies the Ostrowski conditions with respect to α = [a0, a1, . . .] if properties
(ii) and (iii) of Theorem 1.2 hold. Given that ϕ = [1, 1, 1, . . .] = [1] and, in
this case, pk/qk = Fk+1/Fk, we see that the Ostrowski ϕ-decomposition of
a natural number n coincides with the Zeckendorf decomposition of n.

Here in this paper we extend the asymptotic result of Lekkerkerker for
the Zeckendorf decomposition of natural numbers to the more general Os-
trowski α-decomposition of natural numbers for an arbitrary real quadratic
irrational α. Toward this end, we first recall the celebrated theorem of La-
grange stating that a real number α is a quadratic irrational if and only if
its continued fraction expansion is eventually periodic, that is, if and only if
α = [a0, a1, . . . , at−1, at, . . . , at+T−1 ], where the bar overscores the periodic
string (at, . . . , at+T−1). As an aside, we remark that in the results that follow
there is no implicit assumption that the period length T is minimal. Next,
we write α for the (algebraic) conjugate of α, and recall that a quadratic
is called reduced if its continued fraction expansion is purely periodic. And
finally, two real numbers, α = [a0, a1, . . .] and β = [b0, b1, . . .], are said to be
equivalent if the tail of one continued fraction equals the tail of the other
continued fraction; that is, if there exists integers N and m so that for all
n ≥ N , an = bn+m.

We now state our main theorem, which generalizes Lekkerkerker’s result
to all quadratic irrational real numbers.

Theorem 1.3. If α is a quadratic irrational real number, then the asymp-
totic average of the number of terms in the Ostrowski α-decomposition ex-
ists and depends only on a reduced quadratic equivalent to α. Moreover,
that limit can be computed explicitly in terms of the following quantities.
Let α∗ = [a0, . . . , aT−1 ] be a reduced quadratic irrational equivalent to α.
Let qn = qn(α) and qn(α∗) denote the nth continuant associated with α and
α∗, respectively. Define M = pT−1(α

∗) + qT−2(α
∗), and let θ and θ, θ > θ,

denote the zeros of the polynomial x2 −Mx + (−1)T . Finally, write sk for
the kth continuant of the auxiliary quadratic a1 + (a0 − α∗)−1, define σ(n)
to be the number of terms in the Ostrowski α-decomposition of n, and let
ψ(k) denote the average number of terms in the Ostrowski α-decomposition
among all integers n satisfying qk ≤ n < qk+1; that is,

ψ(k) =
1

qk+1 − qk

qk+1−1∑
n=qk

σ(n).
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Then

lim
k→∞

ψ(k)

k

=
1

T

T−1∑
h=0

(sT+h − sT+h−1 − (sh − sh−1)θ )(q2T−h(α∗)− qT−h(α∗)θ )

θ(θ − θ )(qT (α∗)− q0(α∗)θ )
.

If we apply Theorem 1.3 to the celebrated quadratic α = ϕ = [1], then
α∗ = ϕ, T = 1, θ = ϕ, θ = ϕ, the corresponding auxiliary quadratic is
1 + (1−ϕ)−1 = ϕ, and hence sk = qk = Fk. Thus Theorem 1.3 implies that

lim
k→∞

ψ(k)

k
=

−ϕ(2− ϕ)

ϕ(ϕ− ϕ)(1− ϕ)
=

5−
√

5

10
,

which reproduces Lekkerkerker’s original result.

We note that in 2008, Vipismakul [9], one of the first author’s Honors
Thesis students, using an approach different from the one presented here,
was able to prove the special case of Theorem 1.3 in which α has period
length 2 (T = 2). That is, for α = [a0, a1, . . . , at−1, a, b], the asymptotic
result in Theorem 1.3 yields

lim
k→∞

ψ(k)

k
=
a+ b+ 2− 2G+ (2(G2 −G− 1)−G(a+ b))θ

−2G+ 2(G2 − 2)θ
,

where G = ab+ 2 and θ = [1 + ab, 1, ab]. The natural connection between G
and the continued fraction expansion of α is visible through the identity

G = Trace

((
a 1

1 0

)(
b 1

1 0

))
= Trace

(
ab+ 1 a

b 1

)
(note that the quantity M in Theorem 1.3 is the product of T such matrices
corresponding to the period of α). It is interesting to observe that, in this
case, if the geometric mean of a and b is fixed, then the asymptotic ratio
depends only on the arithmetic mean of a and b; in particular, the limit
is maximized when the arithmetic mean is minimized. For example, if we
consider all possible (a, b) satisfying ab = 100, then our formula reveals:

α = [a, b] lim
k→∞

ψ(k)/k

[1, 100] 0.4950 . . .

[2, 50] 0.7353 . . .

[4, 25] 0.8481 . . .

[5, 20] 0.8677 . . .

[10, 10] 0.8922 . . .
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In fact, the previous observations offer some intuition into our main re-
sult. As a heuristic, we can think of the limit of ψ(k)/k as the asymptotic
probability that some randomly chosen term in an Ostrowski α-decompo-
sition has a nonzero coefficient. To illustrate this idea, if we return to α =
[ 10, 10 ], then the allowable coefficients in the Ostrowski α-decomposition
range from 0 to 10. If the coefficients were selected at random, then the prob-
ability of picking a nonzero coefficient equals 10/11 ≈ 0.909. However, we
expect the actual asymptotic limit to be slightly lower due to the Ostrowski
condition that this coefficient would be forced to equal 0 if the coefficient
of the term after it were to be 10. Indeed, as stated above, the actual limit
equals 0.8922 . . . , which is extremely close to our 0.909 estimate.

We establish Theorem 1.3 by first considering a weaker asymptotic li-
mit—instead of averaging between consecutive continuants (between qk and
qk+1), we first jump by the period length T and average over the range from
qk to qk+T . In Section 2 we prove that this weaker limit exists in the special
case of reduced quadratic irrationals and then, in Section 3, indicate how
to extend the result to arbitrary quadratic irrational real numbers. Given
that this weaker limit exists, in Section 4 we first show that the asymptotic
limit averaging between consecutive continuants exists and agrees with the
weaker limit found in Section 3. We then conclude by demonstrating that
two equivalent quadratic irrationals have the same asymptotic limit; in par-
ticular, the limit is unaffected by any pre-period, which will complete the
proof of our main result.

2. A weakened asymptotic limit: the reduced case. Let α be a
quadratic irrational real number having a continued fraction expansion with
period length T . Here we introduce a new, weaker asymptotic limit that
measures the average number of terms in the Ostrowski α-decompositions,
in which the average is computed over intervals between continuants whose
indices jump by the period length T . More precisely, if we let σ(n) be the
number of terms in the Ostrowski α-decomposition of n, and ξ(k) be the av-
erage number of terms in the Ostrowski α-decomposition among all integers
n satisfying qk ≤ n < qk+T , that is,

ξ(k) =
1

qk+T − qk

qk+T−1∑
n=qk

σ(n),

then we define the asymptotic period-jumping average of the number of terms
in the Ostrowski α-decomposition by

lim
k→∞

ξ(k)

k
.

In this section we prove that this asymptotic limit exists and can be explicitly
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computed for all reduced quadratic irrational α. In particular, here we prove
the following:

Proposition 2.1. If α is a reduced quadratic irrational having a con-
tinued fraction expansion α = [a0, . . . , aT−1 ], then the asymptotic period-
jumping average of the number of terms in the Ostrowski α-decomposition
exists. Moreover, that limit can be computed explicitly in terms of the follow-
ing quantities. Define M = pT−1(α)+qT−2(α), let θ and θ, θ > θ, denote the
zeros of the polynomial x2−Mx+(−1)T , and write sk for the kth continuant
of the auxiliary quadratic a1 + (a0 − α)−1. Then

lim
k→∞

ξ(k)

k
=

1

T

T−1∑
h=0

(sT+h − sT+h−1 − (sh − sh−1)θ )(q2T−h − qT−hθ )

θ(θ − θ )(qT − q0θ )
.

To establish Proposition 2.1, we begin by defining several natural quan-
tities and then proving a number of useful lemmas. For a fixed, reduced
quadratic α = [a0, a1, . . . , aT−1 ] and natural number m, we write the Os-
trowski α-decomposition of m as

m =
∑
j≥0

cjqj ,

where qj denotes the jth continuant of α and the coefficients {cj} satisfy
the Ostrowski conditions as defined in Section 1.

Given integers n and k, we define bn,k to be the number of Ostrowski
α-decompositions that involve no more than the first n continuants (q0, q1,
. . . , qn−1) and have exactly k nonzero coefficients. That is,

bn,k =
∣∣∣{n−1∑

j=0

cjqj : exactly k coefficients satisfy cj 6= 0
}∣∣∣.

If we forego the parameter k and write Bn for the number of Ostrowski
α-decompositions that involve no more than the first n continuants, then it
follows that

Bn =
n∑

k=0

bn,k

(in particular, B0 = 1). We begin by establishing the following elegant albeit
elementary result.

Lemma 2.2. For all integers n ≥ 0, Bn = qn.

Proof. We recall that Bn equals the number of permissible Ostrowski
α-decompositions of the form

∑n−1
j=0 cjqj . Alternatively, we can express this

quantity by conditioning on the value of the last coefficient, cn−1. If 0 ≤
cn−1 < an, then there are no additional constraints on cn−2 beyond the
condition that 0 ≤ cn−2 ≤ an−1. Thus, in this case, there are Bn−1 allowable
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ways to choose the first n− 1 coefficients. As there are an different choices
for the cn−1 coefficient (0 ≤ cn−1 < an), we find that, in this case, there is
a total of anBn−1 different permissible expansions of the form

∑n−1
j=0 cjqj .

On the other hand, if cn−1 = an, the Ostrowski conditions imply that
cn−2 must be 0. Hence, in this case, there are Bn−2 ways to choose the
first n− 2 coefficients. Therefore the total number of permissible Ostrowski
α-decompositions of the form

∑n−1
j=0 cjqj equals anBn−1 +Bn−2, that is, we

conclude that for all n ≥ 2,

Bn = anBn−1 +Bn−2.

The previous identity reveals that the sequences {Bn} and {qn} satisfy
the same second-order linear recurrence relation. Thus to prove that Bn=qn,
we need only show that B0 = q0 and B1 = q1. Of course we have q0 = 1 and
q1 = a1, and we recall that B0 = 1. Finally, we note that B1 = a1 since,
in this case, the only coefficient appearing in the expansion, c0, may be any
of the a1 integers satisfying 0 ≤ c0 < a1. Hence we conclude that the two
sequences are equal.

We now define the quantity Dn to be the total number of nonzero terms
in all α-decompositions involving no more than the first n continuants. That
is,

Dn =

qn−1∑
k=0

σ(k),

where we recall that σ(k) equals the number of terms in the Ostrowski
α-decomposition of k. Equivalently, we may write

Dn =

n∑
k=0

kbn,k.

We first show that the sequence {Dn} satisfies a somewhat exotic recurrence
relation.

Lemma 2.3. For all integers n ≥ 2,

Dn = anDn−1 +Dn−2 +Bn −Bn−1.

Proof. We first claim that for all integers k ≥ 1 and n ≥ 2, we have the
recurrence identity

bn,k = bn−1,k + bn−2,k−1 + (an − 1)bn−1,k−1.

To establish this claim, we first recall that bn,k equals the number of n-tuples
(c0, c1, . . . , cn−1) of coefficients having k nonzero cj , 0 ≤ j ≤ n−1, satisfying
the Ostrowski conditions. Again, another way to express this quantity is to
condition on the value of the last coefficient, cn−1. If cn−1 = 0, then there
are bn−1,k ways to choose the remaining coefficients. If cn−1 = an, then
cn−2 is forced to be 0, so there are now bn−2,k−1 different ways to select
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the remaining coefficients. Finally, if cn−1 takes on one of the an − 1 other
possible values, then there are no additional restrictions on cn−2, and hence
there are bn−1,k−1 ways of choosing the remaining coefficients. Combining
these three quantities produces the desired recurrence and verifies our claim.

In view of the definition of Dn together with the recurrence identity we
just established and the recurrence relation implicit in Lemma 2.2, we have

Dn =

n∑
k=0

kbn,k =

n∑
k=1

k
(
bn−1,k + bn−2,k−1 + (an − 1)bn−1,k−1

)
=

n∑
k=0

kbn−1,k +
n−1∑
k=0

(k + 1)bn−2,k + (an − 1)
n−1∑
k=0

(k + 1)bn−1,k

= Dn−1 +Dn−2 +Bn−2 + (an − 1)(Dn−1 +Bn−1)

= anDn−1 +Dn−2 + (an − 1)Bn−1 +Bn−2

= anDn−1 +Dn−2 +Bn −Bn−1.

We now introduce a suite of auxiliary objects that will be central to
our analysis. Given a reduced quadratic γ = [d0, d1, . . . , dS−1 ], we use pe-
riodicity to extend the indices of the sequence of partial quotients, {dn},
to all integers in the natural way: For any integer n, we let j be the
unique integer satisfying 0 ≤ n + jS < S and then define dn = dn+jS .
Returning to our given reduced quadratic α = [a0, a1, . . . , aT−1 ], for an
integer n satisfying 0 ≤ n < T , we define the auxiliary quadratic βn =
[an+1, an, . . . , a0, aT−1, . . . , an+2 ]. For an arbitrary integer n, we let j be the
unique integer satisfying 0 ≤ n + jT < T and define βn = βn+jT . Finally,
we let rn,k/sn,k denote the kth convergent of βn and abbreviate rk/sk for
r0,k/s0,k.

The continuants sn,k allow us to uncover some deeper structure within
the sequence ofDn. To this end, we begin with an elementary lemma showing
that the doubly-indexed sn,k enjoy a familiar recurrence relation.

Lemma 2.4. For any integer n, we have

sn,k = ansn−1,k−1 + sn−2,k−2.

Proof. We first observe that

rn−1,k−1
sn−1,k−1

= an +
1

rn−2,k−2/sn−2,k−2
=
anrn−2,k−2 + sn−2,k−2

rn−2,k−2
.

Recalling that the integers rn,k and sn,k are relatively prime, we conclude
that the numerator and denominator of the rightmost fraction are also
relatively prime. Hence we have sn−1,k−1 = rn−2,k−2 and rn−1,k−1 =
anrn−2,k−2 + sn−2,k−2, which, upon combining these identities, yields

sn,k = ansn−1,k−1 + sn−2,k−2.
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In view of Lemma 2.4, we may now express Dn as a sum of Bj . In
particular we have:

Lemma 2.5. For all integers n ≥ 0,

Dn =
n∑

k=1

(sn,k − sn,k−1)Bn−k.

Proof. We proceed by induction on n and begin by noting that the iden-
tity holds when n = 0, since in this case both quantities equal 0. The identity
also holds for n = 1, because D1 = a1 − 1, B0 = 1, s1,1 = a1 and s1,0 = 1.
We now assume the identity holds for indices up to some fixed n, n ≥ 1. In
view of Lemmas 2.2–2.4, together with the facts that sn,−1 = 0 and sn,0 = 1,
we have

Dn+1 = an+1Dn +Dn−1 +Bn+1 −Bn

= an+1Dn +Dn−1 + (an+1 − 1)Bn +Bn−1

= an+1

( n∑
k=1

(sn,k − sn,k−1)Bn−k

)
+

n−1∑
k=1

(sn−1,k − sn−1,k−1)Bn−1−k

+ (an+1 − 1)Bn +Bn−1

=

n∑
k=1

an+1(sn,k − sn,k−1)Bn−k +

n∑
k=2

(sn−1,k−1 − sn−1,k−2)Bn−k

+ (an+1 − 1)Bn +Bn−1

=
n∑

k=2

(an+1sn,k + sn−1,k−1 − an+1sn,k−1 − sn−1,k−2)Bn−k

+ an+1(sn,1 − sn,0)Bn−1 + (an+1 − 1)Bn +Bn−1

=
n∑

k=2

(sn+1,k+1 − sn+1,k)Bn−k + (sn+1,2 − sn+1,1)Bn−1

+ (sn+1,1 − sn+1,0)Bn

=

n+1∑
k=3

(sn+1,k − sn+1,k−1)Bn+1−k + (sn+1,2 − sn+1,1)Bn−1

+ (sn+1,1 − sn+1,0)Bn

=

n+1∑
k=1

(sn+1,k − sn+1,k−1)Bn+1−k,

which thus establishes the identity for all n ≥ 0.

Recall that we defined ξ(m) to equal the average number of terms in the
Ostrowski α-decomposition among all integers j satisfying qm ≤ j < qm+T
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and that we defined Dm by Dm =
∑qm−1

k=0 σ(k). Hence we have

ξ(m) =
Dm+T −Dm

qm+T − qm
.

Our aim is to compute

lim
m→∞

ξ(m)

m
= lim

m→∞

Dm+T −Dm

m(qm+T − qm)
,

and toward this goal, for each integer k, 0 ≤ k < T , we let

Lk = lim
n→∞

Dk+(n+1)T −Dk+nT

(k + nT )(qk+(n+1)T − qk+nT )
.

So Lk represents the limit of the subsequence formed along indices i ≡
k mod T . Our strategy is to first show that Lk exists for each k and then
prove that these T limits are, in fact, equal.

In view of Lemma 2.5, we see that to study the growth rate of the
difference Dm+T −Dm, it is enough to estimate the quantities Bn and sn,k.
In order to estimate the quantity Bn, we first recall from Lemma 2.2 that
Bn = qn. Thus it is sufficient to produce an asymptotic expression for qn in
the case n ≡ k mod T . Given that the continued fraction expansion for α
is purely periodic with period length T , it follows from Lemma 3 of [2] (see
also [5]) that we have, for any nonnegative integer k,

qk+nT = Mqk+(n−1)T + (−1)T+1qk+(n−2)T ,(2.1)

in which M = pT−1 + qT−2. We now collect some basic facts about the
associated characteristic polynomial; the proof is straightforward and we do
not include it here.

Lemma 2.6. Let M be the integer defined above and fM (x) = x2 −
Mx+ (−1)T be the characteristic polynomial associated with the recurrence
in (2.1). Then fM (x) has two distinct real roots. Moreover, if we let θ denote
the larger root of fM (x) and θ denote the smaller, then |θ| > 1 and |θ| < 1.

In view of identity (2.1) and Lemma 2.6, we see that there exists a real
constant xk such that

qk+nT = xkθ
n +O(1),(2.2)

which, in view of Lemma 2.2, immediately provides us with a useful estimate
for Bk+nT .

We now turn our attention to estimating the quantity sn,k. In view of
the definition of βn given after the proof of Lemma 2.3, we note that, due
to periodicity, for all integers j, sn,k = sn+jT,k. For a fixed n, we can again
apply Lemma 3 of [2] to deduce that

sn,k+jT = Nnsn,k+(j−1)T + (−1)T+1sn,k+(j−2)T ,
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where Nn = rn,T−1 + sn,T−2. We now show that the coefficients Nn are, in
fact, all equal to the constant M appearing in identity (2.1).

Lemma 2.7. For all integers n, Nn = M .

Proof. For an integer j, we define the matrix Mj by

Mj =

(
aj 1

1 0

)
.

By the well-known connection between products of such 2× 2 matrices and
continued fractions (see, e.g., [1]), we have M = Trace(M0M1 · · ·MT−1).
Similarly, we find that Nn = Trace(Mn+1Mn · · ·M0MT−1MT−2 · · ·Mn+2).
Therefore

Nn = Trace(Mn+1Mn · · ·M0MT−1 · · ·Mn+2)

= Trace((Mn+1Mn · · ·M0MT−1 · · ·Mn+2)
T )

= Trace(MT
n+2M

T
n+3 · · ·MT

T−1M
T
0 · · ·MT

n+1)

= Trace((Mn+2Mn+3 · · ·MT−1)(M0 · · ·Mn+1))

= Trace(M0M1 · · ·MT−1) = M.

Lemma 2.7 reveals that the characteristic polynomial x2−Nnx+ (−1)T ,
for any index n, is identical to x2 −Mx+ (−1)T . Moreover, by Lemma 2.6,
we conclude that for each n, x2 −Nnx + (−1)T has zeros at θ and θ, with
|θ| > 1 and |θ| < 1. Hence there exists a real constant yn,k satisfying

sn,k+jT = yn,kθ
j +O(1).(2.3)

We now show that the limit Lk exists for each k. In particular, we prove:

Lemma 2.8. For each k, 0 ≤ k < T , the limit Lk exists. Moreover, given
the constants xk and yn,k as defined above, we have

lim
n→∞

Dk+(n+1)T −Dk+nT

(k + nT )(qk+(n+1)T − qk+nT )
=

1

Txk

T−1∑
h=0

(yk,h − yk,h−1)xk−h.

Remark. We note that the previous limit is an average of T values that
has then been scaled by the factor 1/xk. Recall that T is the period length
of the continued fraction expansion for α.

Proof of Lemma 2.8. In view of Lemma 2.5, together with Lemma 2.2
and identities (2.2) and (2.3), we have (with the change of variables i =
mT + h in the second equality):
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Dk+nT =

k+nT∑
i=1

(sk+nT,i − sk+nT,i−1)Bk+nT−i

=

T−1∑
h=0

(n+b(k−h)/T c∑
m=0

(sk,Tm+h − sk,Tm+h−1)B(n−m)T+(k−h)

)
−Bk+nt

=

k∑
h=0

( n∑
m=0

((yk,h − yk,h−1)θm +O(1))(xk−hθ
n−m +O(1))

)
+

T−1∑
h=k+1

(n−1∑
m=0

((yk,h − yk,h−1)θm +O(1))(xk−hθ
n−m +O(1))

)
−Bk+nt

=
k∑

h=0

(((yk,h − yk,h−1)xk−h)(n+ 1)θn +O(θn))

+
T−1∑

h=k+1

(((yk,h − yk,h−1)xk−h)nθn +O(θn))−Bk+nt

= nθn
T−1∑
h=0

(yk,h − yk,h−1)xk−h +O(θn).

If we now define

Ck =

T−1∑
h=0

(yk,h − yk,h−1)xk−h,

then our previous identity can be expressed as

Dk+nT = Cknθ
n +O(θn).

Hence we conclude that

Dk+(n+1)T −Dk+nT

(k + nT )(qk+(n+1)T − qk+nT )
=

nθn(θ − 1)Ck +O(θn)

(k + nT )(xkθn(θ − 1) +O(1))
,

which upon letting n→∞ reveals that

Lk =
Ck

Txk
,

and thus completes our proof.

In view of Lemma 2.8, we now demonstrate that our desired asymptotic
limit exists by proving that the quantity Ck/xk is independent of k. To
establish this assertion, we require several lemmas and begin with a study
of the growth rates of xk and yn,k.
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Lemma 2.9. Let θ and its algebraic conjugate θ be as defined in Lem-
ma 2.6. Then the constants yn,k and xk can be explicitly given as

yn,k =
sn,k+T − sn,kθ

θ − θ
and xk =

qk+T − qkθ
θ − θ

.

Proof. Given Lemma 2.6 and the recurrence relation that followed the
lemma, together with the definition of yn,k from identity (2.3), we conclude
that

sn,k+jT = yn,kθ
j + γθ

j

for some constant γ. Letting j = 0 and j = 1, respectively, reveals

(2.4) sn,k = yn,k + γ and sn,k+T = yn,kθ + γθ.

The first identity in (2.4) yields

γ = sn,k − yn,k,
which, in view of the second identity of (2.4), gives

sn,k+T = yn,kθ + (sn,k − yn,k)θ,

or equivalently

yn,k =
sn,k+T − sn,kθ

θ − θ
.

An analogous argument allows us to sharpen the estimate of (2.2) and derive
the corresponding formula for xk.

Lemma 2.10. For all integers n and k,

yn,k = anyn−1,k−1 + yn−2,k−2 and xk = akxk−1 + xk−2.

Proof. The first recurrence identity follows immediately from Lem-
mas 2.4 and 2.9. In particular, we write

yn,k =
ansn−1,k+T−1 + sn−2,k+T−2 − (ansn−1,k−1 + sn−2,k−2)θ

θ − θ

= an
sn−1,k+T−1 − sn−1,k−1θ

θ − θ
+
sn−2,k+T−2 − sn−2,k−2θ

θ − θ
= anyn−1,k−1 + yn−2,k−2.

The recurrence relation for xk follows in a similar manner.

Lemma 2.11. For all integers k and n, we have

xk = θxk−T and yn,k = θyn,k−T .

Proof. We recall that from the estimate in (2.2) we have

qk+iT = xkθ
i +O(1) and q(k−T )+jT = xk−T θ

j +O(1).
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Letting i = j − 1 in the first estimate and then equating the previous two
estimates allows us to conclude that

xkθ
j−1 = xk−T θ

j +O(1),

after which dividing by θj−1 and letting j → ∞ yields xk = xk−T θ. An
analogous argument establishes the corresponding result for yn,k.

Lemma 2.12. For any integer k,

Ck = θCk−T .

Proof. We first note that from the definition of yk,h and the basic prop-
erties of sk,h, it follows that for all k and h, we have yk−T,h = yk,h. This
observation together with the definition of Ck and Lemma 2.11 implies

Ck−T =
T−1∑
h=0

(yk−T,h − yk−T,h−1)xk−T−h

=
T−1∑
h=0

(yk,h − yk,h−1)xk−hθ−1 = θ−1Ck.

Lemma 2.13. For any integer k,

Ck = akCk−1 + Ck−2.

Proof. The definition of Ck together with Lemma 2.10 yields

Ck =
T−1∑
h=0

(yk,h − yk,h−1)xk−h(2.5)

=

T−1∑
h=0

(akyk−1,h−1 + yk−2,h−2 − akyk−1,h−2 − yk−2,h−3)xk−h

= ak

T−1∑
h=0

(yk−1,h−1 − yk−1,h−2)xk−h

+

T−1∑
h=0

(yk−2,h−2 − yk−2,h−3)xk−h

= ak

T−2∑
h=−1

(yk−1,h − yk−1,h−1)x(k−1)−h

+
T−3∑
h=−2

(yk−2,h − yk−2,h−1)x(k−2)−h.
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An application of Lemma 2.11 reveals

(yk,h − yk,h−1)xk−h = (yk,h+T θ
−1 − yk,(h+T )−1θ

−1)xk−(h+T )θ

= (yk,h+T − yk,(h+T )−1)xk−(h+T ).

This identity allows us to re-index the sums in (2.5) to conclude that

Ck = ak

T−1∑
h=0

(yk−1,h − yk−1,h−1)x(k−1)−h +
T−1∑
h=0

(yk−2,h − yk−2,h−1)x(k−2)−h

= akCk−1 + Ck−2.

Lemma 2.14. Given Ck and xk as previously defined, we have

C0

x0
=
C1

x1
.

Proof. For any real numbers δ and γ, we denote the set (δ, γ)∪ (γ, δ) by
〈δ, γ〉; that is, 〈δ, γ〉 is the open interval having endpoints δ and γ. Recall
that if a, b, c, d are positive real numbers satisfying

a

b
6= c

d
,

then
a+ c

b+ d
∈
〈
a

b
,
c

d

〉
.

We proceed by contradiction; that is, we assume that C0/x0 6= C1/x1.
We now claim that for all k ≥ 1, Ck−1/xk−1 6= Ck/xk. To establish this
claim we induct on k, noting that by our previous assumption, the assertion
holds for k = 1.

We now assume that Ck−1/xk−1 6= Ck/xk for some k ≥ 1. By Lemmas
2.10 and 2.13, we have

Ck+1

xk+1
=
ak+1Ck + Ck−1
ak+1xk + xk−1

,

and thus
Ck+1

xk+1
∈
〈
ak+1Ck

ak+1xk
,
Ck−1
xk−1

〉
=

〈
Ck

xk
,
Ck−1
xk−1

〉
,

and in particular, recalling that this interval is open, we deduce that
Ck/xk 6= Ck+1/xk+1. Therefore we conclude that for all natural numbers k,
Ck−1/xk−1 6= Ck/xk. We note that this argument actually proves more,
namely that for all k ≥ 2,

Ck

xk
∈
〈
Ck−1
xk−1

,
Ck−2
xk−2

〉
.

Hence for all k ≥ 2 we have〈
Ck

xk
,
Ck−1
xk−1

〉
⊆
〈
Ck−1
xk−1

,
Ck−2
xk−2

〉
,
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which, after repeated applications, implies that

CT

xT
∈
〈
CT−1
xT−1

,
CT−2
xT−2

〉
⊆
〈
C0

x0
,
C1

x1

〉
;

in particular, CT /xT 6= C0/x0. However, Lemmas 2.11 and 2.12 yield

CT

xT
=
θC0

θx0
=
C0

x0
,

which contradicts our established claim. Therefore we conclude that our
original assumption is false, that is, C0/x0 = C1/x1, as desired.

Lemma 2.15. For all integers k ≥ 1,

Ck

xk
=
C0

x0
.

Proof. We proceed by induction on k. By Lemma 2.14, we see that the
identity is valid in the case k = 1. We now assume the identity holds for all
indices k up to some fixed index j ≥ 1. By Lemmas 2.10 and 2.13, we have

Cj+1

xj+1
=
aj+1Cj + Cj−1
aj+1xj + xj−1

.(2.6)

On the other hand, our induction hypothesis yields

aj+1Cj

aj+1xj
=
C0

x0
=
Cj−1
xj−1

,

which, in view of (2.6), implies that Cj+1/xj+1 = C0/x0, and thus completes
our proof.

Putting all our observations together, we now show that for any reduced
quadratic irrational α, the asymptotic period-jumping average of the number
of terms in the Ostrowski α-decomposition exists and is given by the quantity
stated in Proposition 2.1.

Proof of Proposition 2.1. For any integer k, 0 ≤ k < T , by an application
of Lemma 2.8 we have

lim
n→∞

ξ(k + nT )

k + nT
=

Ck

Txk
,

which, in view of Lemma 2.15, implies that

lim
n→∞

ξ(k + nT )

k + nT
=

C0

Tx0
.

Given that these limits are constant as k ranges over a complete residue
class modulo T , we conclude that

lim
k→∞

ξ(k)

k
=

C0

Tx0
.
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Applying the definition of C0 and Lemma 2.9 to evaluate x0 yields

lim
k→∞

ξ(k)

k
=

1

T

θ − θ
qT − q0θ

T−1∑
h=0

(y0,h − y0,h−1)x−h.

By the T -periodicity of the sequence {xn}, we can replace the terms x−h
in the previous sum with xT−h. Moreover, we recall our abbreviated notation
sh = s0,h for the hth continuant of β0 = [a1, a0, aT−1, aT−2, . . . , a2 ], which,
by a result of Galois [4] (see [1]), can be expressed formally as

β0 = [a1, a0,−1/α] = a1 + (a0 − α)−1.

These observations together with another application of Lemma 2.9 to eval-
uate y0,h allow us to deduce that

lim
k→∞

ξ(k)

k
=

1

T

T−1∑
h=0

(sT+h − sT+h−1 − (sh − sh−1)θ )(q2T−h − qT−hθ )

θ(θ − θ )(qT − q0θ )
.

3. A weakened asymptotic limit: extended to arbitrary quadra-
tic irrationals. With mostly minor changes, our proof of Proposition 2.1
can be extended to all real quadratic irrationals α. In particular, here we
outline an argument showing that for any quadratic irrational real number
α, the asymptotic period-jumping average of the number of terms in the
Ostrowski α-decomposition exists and is explicitly given in the following
result.

Proposition 3.1. If α is a real quadratic irrational having a contin-
ued fraction expansion α = [a0, a1, . . . , at−1, at, . . . , at+T−1 ], with pre-period
length t and period length T , then the asymptotic period-jumping average
of the number of terms in the Ostrowski α-decomposition exists. Moreover,
that limit can be computed explicitly in terms of the following quantities.
Let α∗ = [a0, . . . , aT−1 ] be a reduced quadratic irrational equivalent to α.
Let qn = qn(α) and qn(α∗) denote the nth continuant associated with α and
α∗, respectively. Define M = pT−1(α

∗) + qT−2(α
∗), and let θ and θ, θ > θ,

denote the zeros of the polynomial x2 −Mx + (−1)T . Finally, write s∗k for

the kth continuant of the auxiliary quadratic at+1 +
(
at−α∗

)−1
, define σ(n)

to be the number of terms in the Ostrowski α-decomposition of n, and let
ξ(k) denote the average number of terms in the Ostrowski α-decomposition
among all integers n satisfying qk ≤ n < qk+T ; that is,

ξ(k) =
1

qk+T − qk

qk+T−1∑
n=qk

σ(n).
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Then

lim
k→∞

ξ(k)

k
=

1

T

T−1∑
h=0

(s∗T+h − s∗T+h−1 − (s∗h − s∗h−1)θ )(q2T+t−h − qT+t−hθ )

θ(θ − θ )(qT+t − qtθ )
.

Proof. Here we require auxiliary objects analogous to the βn from our
previous argument. For any integer n ≥ 0, we write βn = [an+1, an,
. . . , a1, a0 ], and for integers n satisfying t ≤ n < t+ T , we define

β∗n = [an+1, an, . . . , at, at+T−1, . . . , an+2 ].

For an index n 6∈ [t, t + T ), we extend our definition of β∗n by periodicity;
that is, we declare β∗n = β∗n+jT for all integers j. Again we write rn,k/sn,k for
the kth convergent of βn and now let r∗n,k/s

∗
n,k denote the kth convergent

of β∗n and write s∗k = s∗t,k. We note that if n + 1 ≥ t (recall that t is the
length of the pre-period of α), then the first n − t + 2 partial quotients of
βn agree with the first n− t+ 2 partial quotients of β∗n, so for all integers k,
0 ≤ k ≤ n− t+ 1, rn,k = r∗n,k and sn,k = s∗n,k.

We also extend our definition of s∗n,k to negative indices k by applying
the usual recurrence that defines the continuants, where we define negatively
indexed partial quotients by periodicity. For example, if β∗n = [b0, b1 ], then
s∗n,0 = 1 and s∗n,1 = b1, and the recurrence s∗n,1 = b1s

∗
n,0 + s∗n,−1 allows us to

compute s∗n,−1 = 0, and hence s∗n,0 = b0s
∗
n,−1 + s∗n,−2 gives s∗n,−2 = 1, and

s∗n,−1 = b−1s
∗
n,−2 + s∗n,−3 yields s∗n,−3 = −b1.

With these new definitions, we see that Lemmas 2.2 through 2.5 can
be proven exactly as before. Furthermore, the argument in Lemma 2.4 also
applies to show that whenever n ≥ t,

s∗n,k = ans
∗
n−1,k−1 + s∗n−2,k−2.

Because of the initial run of t nonperiodic partial quotients, we alter our
definition of the limit Lk and declare

Lk = lim
n→∞

Dk+(n+1)T+t −Dk+nT+t

(k + nT + t)(qk+(n+1)T+t − qk+nT+t)
,

where again Dn denotes the total number of nonzero terms in all Ostrowski
α-decompositions involving no more than the first n continuants of α.

We now let M = pT−1(α
∗) + qT−2(α

∗) and denote the larger and smaller
zeros of the polynomial x2 − Mx + (−1)T by θ and θ, respectively. The
methods used in Section 2 to deduce closed formulas for qn and sn,k can be
applied analogously in this new context. In particular, we have the following
results.

Lemma 3.2. Given an integer k, there exists a constant xk+t such that
for all integers n satisfying k + nT ≥ 0, we have

qk+t+nT = xk+tθ
n +O(1).
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Lemma 3.3. Given integers k and n, with k ≥ 0, there exists a constant
yn,k such that for all nonnegative integers j, we have

s∗n,k+jT = yn,kθ
j +O(1).

We note that since sn,k = s∗n,k for integers k satisfying 0 ≤ k ≤ n− t+ 1,
Lemma 3.3 also implies:

Lemma 3.4. Given integers k and n, with k ≥ 0, the yn,k from Lem-
ma 3.3 can be chosen such that whenever i ≥ 0 and k + jT ≤ n− t+ 1, we
have

sn+iT,k+jT = yn,kθ
j +O(1).

Given that the sequence {β∗n} is periodic with period length T , we again
note that yn,k = yn+jT,k for all natural numbers j.

We now estimate the quantity Dk+jT+t. In the purely periodic case,
finding such an estimate was straightforward since we had closed formulas
for sn,k and qn. In the generalized case, we still have closed forms, but they
are slightly more delicate due to the presence of a pre-period. Thus we must
handle such estimates with a bit more care. In particular, we have

Dk+jT+t =

k+jT+t∑
i=1

(sk+jT+t,i − sk+jT+t,i−1)Bk+jT+t−i

=
T−1∑
h=0

( j+b k−h+t
T
c∑

m=0

(sk+jT+t,Tm+h − sk+jT+t,Tm+h−1)B(j−m)T+(k−h)+t

)
−Bk+jT+t.

We know that k − h + t ≥ −h > −T , so b(k − h+ t)/T c ≥ −1. Thus we
write

Dk+jT+t =

(3.1)
T−1∑
h=0

( j+b k−h+t
T
c∑

m=j

(sk+jT+t,Tm+h − sk+jT+t,Tm+h−1)B(j−m)T+(k−h)+t

)
−Bk+jT+t

(3.2) +
T−1∑
h=0

( j−1∑
m=0

(sk+jT+t,Tm+h − sk+jT+t,Tm+h−1)B(j−m)T+(k−h)+t

)
.

To examine the double sum (3.1), we first consider the innermost sum.
As α is a real quadratic irrational, it is badly approximable, that is, there
exists a constant K such that ai ≤ K for all i ≥ 0. Thus for any natural
number w, we have

Bw = qw = awqw−1 + qw−2 ≤ Kqw−1 + qw−1 = (K + 1)qw−1.
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Repeated application of this inequality reveals that Bw ≤ (K + 1)wq0 =
(K + 1)w. Now in the sum (3.1), we have m ≥ j, so j − m ≤ 0 and thus
B(j−m)T+(k−h)+t ≤ Bk−h+t ≤ (K + 1)k−h+t. We know that 0 ≤ k, h < T , so
k − h+ t ≤ T + t and thus we have

B(j−m)T+(k−h)+t ≤ (K + 1)T+t,

so all the terms Bi in the sum (3.1) are bounded by a constant independent
of m and j. Hence we conclude that the inner sum of (3.1) is

O
( j+b(k−h+t)/T c∑

m=j

sk+jT+t,Tm+h − sk+jT+t,Tm+h−1

)

= O
( j+b(k−h+t)/T c∑

m=j

sk+jT+t,Tm+h

)
,

where the second estimate follows from the fact that

sk+jT+t,Tm+h ≥ sk+jT+t,Tm+h−1.

If h + mT ≤ k + jT , we have sk+jT+t,h+mT ≤ sk+jT+t,k+jT , and if
h+mT > k + jT , then we argue as above to conclude

sk+jT+t,h+mT ≤ (K + 1)(h−k)+(m−j)T sk+jT+t,k+jT .

We note that h−k ≤ T−0 = T and m−j ≤ b(k − h+ t)/T c ≤ b(T + t)/T c,
so the exponent on K + 1 is bounded by the constant T + 1 + bt/T c. Hence
we see that

sk+jT+t,h+mT = O(sk+jT+t,k+jT ).

The indices of sk+jT+t,k+jT satisfy the hypotheses of Lemma 3.4 and thus
we have

sk+jT+t,k+jT = yk+jT+t,kθ
j +O(1).

By periodicity, yk+jT+t,k = yk+(j+1)T+t,k, so yk+jT+t,k as a function of j is
O(1). Hence we see that

sk+jT+t,k+jT = O(θj),

and therefore
sk+jT+t,h+mT = O(θj)

as well. Therefore the inner sum of (3.1) is

O
( j+b(k−h+t)/T c∑

m=j

sk+jT+t,Tm+h

)
= O

( j+b(k−h+t)/T c∑
m=j

θj
)
.

The total number of terms in this last summation is bounded by

j +

⌊
k − h+ t

T

⌋
− j + 1 ≤

⌊
T − 0 + t

T

⌋
+ 1 ≤ 2 +

⌊
t

T

⌋
= O(1),
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and so the entire innermost summation of (3.1) is equal to O(θj), and thus
the entire double sum of (3.1) can be estimated by

T−1∑
h=0

O(θj) = O(θj).

As for the last Bk+jT+t term in (3.1), we recall that Bk+jT+t = qk+jT+t =
xk+tθ

j + O(1). Here xk+t is bounded by a constant, since there are only
finitely many values of xk+t for 0 ≤ k < T . Hence we also discover that
Bk+jT+t = O(θj), and so we conclude that the entirety of (3.1) is O(θj).

We now turn to the double sum (3.2). To apply Lemma 3.4 to produce
a closed form for sn,k in this sum, we require that mT + h ≤ k + jT + 1.
However, we havem ≤ j−1, and thusmT+h ≤ jT+h−T < jT ≤ k+ jT+1;
hence we can apply the estimate from Lemma 3.4.

To apply the estimate implicitly given in Lemma 3.2 for B(j−m)T+(k−h)+t

= q(j−m)T+(k−h)+t, we require that the indices satisfy (j −m)T + (k − h)
≥ 0. This inequality clearly holds, since, in the double sum (3.2), we have
(j −m)T + (k − h) ≥ T + (k − h) > 0.

Applying the estimates of Lemmas 3.2 and 3.4 to (3.2) reveals

T−1∑
h=0

( j−1∑
m=0

((yk+jT+t,h − yk+jT+t,h−1)θ
m +O(1))(xk−h+T+tθ

j−m−1 +O(1))
)

=
T−1∑
h=0

(((yk+jT+t,h − yk+jT+t,h−1)xk−h+T+t)jθ
j−1 +O(θj))

= jθj−1
(T−1∑
h=0

(yk+jT+t,h − yk+jT+t,h−1)xk−h+T+t

)
+O(θj)

= jθj−1
(T−1∑
h=0

(yk+T+t,h − yk+T+t,h−1)xk−h+T+t

)
+O(θj).

Combining these two estimates for (3.1) and (3.2) yields

Dk+jT+t = Ck+tjθ
j−1 +O(θj),

where again we define

Ck =

T−1∑
h=0

(yk+T,h − yk+T,h−1)xk−h+T .

Hence our average becomes

Dk+(j+1)T+t −Dk+jT+t

(k + jT + t)(qk+(j+1)T+t − qk+jT+t)
=

jθj−1(θ − 1)Ck+t +O(θj)

(k + jT + t)(xk+tθj(θ − 1) +O(1))
,
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and thus the limit we desire along subsequences modulo T is given by

Lk = lim
j→∞

Dk+(j+1)T+t −Dk+jT+t

(k + jT + t)(qk+(j+1)T+t − qk+jT+t)
=

Ck+t

Tθxk+t
,

where the T in the denominator arises because j/(k + jT + t) → 1/T as
j →∞.

From this point, the remainder of the argument is virtually identical
to the purely periodic case. In particular, we show that the quantities
Ck+t/xk+t do not depend upon the value of k. Our proof for the purely
periodic case required closed formulas for xk and yn,k and several recur-
rence relations. The analogous lemmas hold in this more general setting and
the proofs follow in a similar fashion. In particular, we can establish the
following results.

Lemma 3.5. For all integers n and k, k ≥ 0, we have the following
formulas for yn,k and xk:

yn,k =
s∗n,k+T − θs∗n,k

θ − θ
and xk+t =

qk+T+t − θqk+t

θ − θ
.

Lemma 3.6. For all integers n, n ≥ t, we have

yn,k = anyn−1,k−1 + yn−2,k−2 and xn = anxn−1 + xn−2.

Lemma 3.7. For all integers n and k, k ≥ 0, we have

yn,k = θ−1yn,k+T and xk+t = θ−1xk+t+T .

Lemma 3.8. For all integers k, k ≥ t, we have

Ck = θ−1Ck+T and Ck = akCk−1 + Ck−2.

Lemma 3.9. Given a real quadratic irrational α, having a continued frac-
tion expansion with pre-period length t, and the notation above,

Ct

xt
=
Ct+1

xt+1
.

Lemma 3.10. For any integer k ≥ 0,

Ct+k

xt+k
=
C0

x0
.

With these lemmas now at our disposal, except for the shift of t in the
indices of the continuants, the proof of Proposition 3.1 exactly parallels our
argument in Section 2 that established Proposition 2.1.

4. The asymptotic limit for Ostrowski α-decompositions. In the
previous section we showed for a quadratic irrational real number α that the
asymptotic period-jumping average of the number of terms in the Ostrowski
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α-decomposition exists; that is, we established that limk→∞ ξ(k)/k exists,
in which

ξ(k) =
1

qk+T − qk

qk+T−1∑
n=qk

σ(n),

and σ(n) equals the number of terms in the Ostrowski α-decomposition of n.

Here in this final section, we return to the stronger asymptotic limit
introduced at the beginning of this paper, which is the ultimate generaliza-
tion of Lekkerkerker’s work on ϕ. In particular, we wish to replace the weak
average ξ(k) with the complete average given by

ψ(k) =
1

qk+1 − qk

qk+1−1∑
n=qk

σ(n).

We first apply Proposition 3.1 to prove that the asymptotic limit we seek,
limk→∞ ψ(k)/k, exists and equals the asymptotics computed in Section 3.
We state this result as:

Proposition 4.1. Given a quadratic irrational real number α and the
notation above, the limit

lim
k→∞

ψ(k)

k

exists, and is equal to the limit given in Proposition 3.1, that is,

lim
k→∞

ψ(k)

k
= lim

k→∞

ξ(k)

k
.

Before establishing Proposition 4.1, we first introduce several new quanti-
ties. To that end, we recall two objects defined at the beginning of Section 2:
Bn, which denotes the number of Ostrowski α-decompositions that involve
no more than the first n continuants; and Dn, which equals the total number
of nonzero terms in all α-decompositions involving no more than the first n
continuants.

We now let ∂n be the number of α-decompositions whose largest contin-
uant is qn, and let ∆n denote the total number of nonzero terms in all such
α-decompositions. That is,

∂n = Bn+1 −Bn = qn+1 − qn and ∆n = Dn+1 −Dn.

Given this new notation, we can rewrite the limit we seek as

lim
k→∞

ψ(k)

k
= lim

k→∞

∆k

k∂k
.

To establish the existence of the desired limit, it will be useful to study
the various sublimits taken along indices of various residue classes modulo
the period length of the continued fraction expansion of α (which we recall
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is T ). More precisely, for a fixed integer m ≥ 0, we define `m by

`m = lim
k→∞

k≡m (T )

ψ(k)

k
= lim

k→∞
k≡m (T )

∆k

k∂k
= lim

k→∞

ψ(m+ kT )

m+ kT
,

and write ` for the value of the limit in Proposition 3.1, that is,

` = lim
k→∞

ξ(k)

k
.

Thus to prove Proposition 4.1, we need to show that for each m, the limit
`m exists and, furthermore, that `m = `. Toward this end, we require two
additional pairs of auxiliary quantities: We define

un =
n+T−1∑
i=n

∆i and vn =
n+T−1∑
i=n

i∂i,

and

Xn = ∆n+T −∆n and Yn = (n+ T )∂n+T − n∂n.

In view of the definition of ∆n and ∂n, the quantities un, vn,Xn,Yn are all
positive integers and satisfy the identities

un+1 = un + Xn and vn+1 = vn + Yn.(4.1)

Lemma 4.2. If the period length T satisfies T ≥ 2, then the sequence of
ratios {vk/Yk} is a bounded sequence.

Proof. Given that α is a quadratic irrational real number, its partial
quotients are bounded; that is, if α = [a0, a1, . . .], then there exists an integer
A satisfying ak ≤ A for all k ≥ 0. We apply this observation to deduce two
basic inequalities. The first inequality bounds the growth of the continuants;
in particular,

qk+T < (A+ 1)T qk(4.2)

for all k ≥ 0, which is an immediate consequence of repeated applications of
the recurrence relation for the continuants given in (1.1) together with our
bound on the partial quotients. The second inequality bounds the growth
of the ∂k sequence; specifically, we claim that for all k ≥ 0,

∂k < (A+ 1)∂k+1.(4.3)

To establish this inequality, we first recall the following well-known identity
from the theory of continued fractions (see, for example, [1] or [6]):

qk+1

qk
= [ak+1, ak, . . . , a1].

This identity, together with our bound on the partial quotients of α, reveals
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that
∂k
∂k+1

=
qk+1 − qk
qk+2 − qk+1

=
1− (qk/qk+1)

(qk+2/qk+1)− 1

<
1

[ak+2, ak+1, . . . , a1]− 1
≤ 1

[0, ak+1, ak, . . . , a1]

= [ak+1, ak, . . . , a1] ≤ A+ 1,

which establishes the inequality claimed in (4.3).
Repeated application of (4.3) within the definition of vk implies

vk =

k+T−1∑
i=k

i∂i < (k + T − 1)

k+T−1∑
i=k

∂i < (k + T − 1)T (A+ 1)T∂k+T−1.

Hence
vk
Yk

< T (A+ 1)T
(

(k + T − 1)∂k+T−1
Yk

)
,(4.4)

and thus to establish the lemma we need only bound the ratio within the
parentheses.

Toward this end, we first note that by the hypothesis that T ≥ 2, it
easily follows that

(k + T )qk+T−1 − kqk+1 > 0.(4.5)

Next, we define the constant C = 2(A + 1)T , and select the integer K so
large that for all k ≥ K, (k + T )/k < 2. This inequality, together with (4.2)
and (4.5), reveals

C >
(k + T )qk+T

kqk
>

(k + T )qk+T

kqk + (k + T )qk+T−1 − kqk+1
,

which, upon taking reciprocals, then adding 1, and recalling that ak ≥ 1 for
all k > 0 as well as the recurrence (1.1), yields

1 +
1

C
<
kqk + (k + T )qk+T + (k + T )qk+T−1 − kqk+1

(k + T )qk+T

<
kqk + (k + T )ak+T+1qk+T + (k + T )qk+T−1 − kqk+1

(k + T )qk+T

=
kqk + (k + T )qk+T+1 − kqk+1

(k + T )qk+T
.

The previous inequality implies the weaker inequality

((C + 1)(k + T )− 1)qk+T + Ckqk+1

< C(k + T )qk+T+1 + (k + T − 1)qk+T−1 + Ckqk,

which is equivalent to

(k + T − 1)(qk+T − qk+T−1) < C((k + T )(qk+T+1 − qk+T )− k(qk+1 − qk)).
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This last inequality, in view of the definition of ∂k, can be rewritten as

(k + T − 1)∂k+T−1 < C((k + T )∂k+T − k∂k),

which, given the definition of Yk, yields

(k + T − 1)∂k+T−1
Yk

< C.

In view of inequality (4.4), we conclude that for all k ≥ K, we have
vk
Yk

< T (A+ 1)TC,

which implies that this sequence of ratios is bounded for all k, as desired.

Proof of Proposition 4.1. In the case T = 1, ψ(k) = ξ(k) for all k ≥ 1,
and hence the proposition is equivalent to Proposition 3.1. Thus we now
consider the remaining case T ≥ 2. We begin by observing that

ξ(k)

k
=

Dk+T −Dk

k(qk+T − qk)
=

∑k+T−1
i=k ∆i

k(
∑k+T−1

i=k ∂i)
=

uk

k(
∑k+T−1

i=k ∂i)
.(4.6)

We now claim that the difference between vk and the denominator of the
rightmost fraction above is o(un) as n → ∞, where we are adopting the
little-o notation. To establish this claim, we apply Proposition 3.1, which in
this context implies that the limit as k → ∞ of (4.6) exists and is nonzero
(what we named earlier as `), and deduce that

vk−k
k+T−1∑
i=k

∂i =

k+T−1∑
i=k

(i−k)∂i ≤
k+T−1∑
i=k

(T −1)∂i = o
(
k

k+T−1∑
i=k

∂i

)
= o(uk).

Hence we conclude that

lim
k→∞

uk
vk

= lim
k→∞

uk

k(
∑k+T−1

i=k ∂i)− o(uk)
= lim

k→∞

ξ(k)

k
= `.

In particular, this limit implies that for any fixed integer m, 0 ≤ m < T , we
have

lim
k→∞

k≡m (T )

(
uk+1

vk+1
− uk
vk

)
= 0.

Applying the identities from (4.1) yields

0 = lim
k→∞

k≡m (T )

(
uk + Xk

vk + Yk
− uk
vk

)
= lim

k→∞
k≡m (T )

Xkvk − Ykuk
Ykvk + v2k

= lim
k→∞

k≡m (T )

Xk
Yk −

uk
vk

1 + vk
Yk

.

In view of Lemma 4.2, the only way for the previous limit to equal 0 is if

lim
k→∞

k≡m (T )

(
Xk

Yk
− uk
vk

)
= 0,
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and thus we see that

lim
k→∞

k≡m (T )

Xk

Yk
= `.

Given that this limit holds for every choice of m modulo T , we conclude
that

lim
k→∞

Xk

Yk
= `.(4.7)

Finally, we claim that

lim
k→∞

Xk

Yk
= lim

k→∞

∆k

k∂k
,

which would complete our proof.
To establish this final claim, we fix ε > 0. Given the limit of (4.7), there

exists an integer K so that for all k ≥ K, |Xk − Yk`| < Ykε, that is,

Yk(`− ε) < Xk < Yk(`+ ε).(4.8)

Now for a fixed integer k, k > KT , we can write it as k = m+ jT for some
integers j and m satisfying j ≥ K and 0 ≤ m < T . Hence, we can express
the ratio we wish to study as a ratio of telescoping sums and rewrite it as

∆k

k∂k
=

∆m + Xm + Xm+T + · · ·+ Xk−T
m∂m + Ym + Ym+T + · · ·+ Yk−T

=
(∆m +

∑m+(K−1)T
i=m Xi) +

∑k−T
i=m+KT Xi

(m∂m +
∑m+(K−1)T

i=m Yi) +
∑k−T

i=m+KT Yi

=
O(1) + Xm+KT + Xm+(K+1)T + · · ·+ Xk−T

O(1) + Ym+KT + Ym+(K+1)T + · · ·+ Yk−T
,

where the big-O notation represents functions of α, K, and m, and thus
constant functions of k. In view of the fact that the sequences {Xk} and
{Yk} both tend to infinity as k →∞, we see that for all sufficiently large k,
the O(1) terms will change the last ratio above by a quantity less than ε,
that is, there exists K ′, K ′ ≥ KT , so that for all k ≥ K ′ satisfying k ≡ m
mod T , ∣∣∣∣∆k

k∂k
−
Xm+KT + Xm+(K+1)T + · · ·+ Xk−T

Ym+KT + Ym+(K+1)T + · · ·+ Yk−T

∣∣∣∣ < ε.

This inequality together with (4.8) implies that

∆k

k∂k
<
Xm+KT + Xm+(K+1)T + · · ·+ Xk−T

Ym+KT + Ym+(K+1)T + · · ·+ Yk−T
+ ε

<
(`+ ε)Ym+KT + (`+ ε)Ym+(K+1)T + · · ·+ (`+ ε)Yk−T

Ym+KT + Ym+(K+1)T + · · ·+ Yk−T
+ ε

= `+ 2ε.
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A symmetric argument, now subtracting ε and using the other inequality
of (4.8), reveals that

`− 2ε <
∆k

k∂k
,

and thus for a fixed integer m, 0 ≤ m < T , we have

lim
k→∞

k≡m (T )

ψ(k)

k
= lim

k→∞
k≡m (T )

∆k

k∂k
= `.

Given that this limit holds for all residue classes modulo T , we conclude
that

lim
k→∞

ψ(k)

k
= `,

which completes our proof of Proposition 4.1.

Finally, we study equivalent quadratic irrationals, α and β, and demon-
strate that the asymptotic average of the number of terms in the Ostrowski
α-decomposition equals the asymptotic average associated to the Ostrowski
β-decomposition. To that end, we now write ∆k(α), ∂k(α), and `(α) to ex-
plicitly highlight the dependence of these quantities on α.

Proposition 4.3. If α and β are two equivalent quadratic irrational
numbers, then

`(α) = `(β).

To establish this result, it is enough to show that the asymptotic average
for a quadratic irrational α is equal to the asymptotic average for an equiv-
alent reduced quadratic. That is, if α = [a0, a1, . . . , at−1, at, . . . , at+T−1] and
we write αt for the equivalent reduced quadratic αt = [at, . . . , at+T−1], then
to prove the proposition it is enough to show that `(α) = `(αt).

Given an irrational real number α = [a0, a1, a2, . . .], we define the nth
complete quotient, αn, by αn = [an, an+1, an+2, . . .]. We now prove two im-
portant lemmas regarding the complete quotients of α. The first lemma
offers two new combinatorial identities.

Lemma 4.4. If α = [a0, a1, . . .] is an irrational real number, then for all
integers k ≥ 2 and n ≥ 0,

∆k(αn) = an+1∆k−1(αn+1) + (an+1 − 1)∂k−1(αn+1)

+∆k−2(αn+2) + ∂k−2(αn+2)

and

∂k(αn) = an+1∂k−1(αn+1) + ∂k−2(αn+2).

Proof. We begin by establishing the first identity. Recall that ∆k(αn)
represents the total number of nonzero allowable coefficients, (c0, c1, . . . , ck),
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in any Ostrowski αn-decomposition having qk as the largest continuant ap-
pearing in the sum. The Ostrowski conditions require that 0 ≤ c1 ≤ an+2.
We now consider two cases.

In the case 0 ≤ c1 < an+2, the sequences of allowable coefficients are just
sequences of the form (c0, c1, . . . , ck), in which the subsequence (c1, . . . , ck)
is any allowable sequence of coefficients for Ostrowski αn+1-decompositions.
The allowable values of c0 range from 0 to an+1 − 1. If c0 = 0, then
we have a contribution of ∆k−1(αn+1) distinct, allowable sequences. If c0
is any value in the range 0 < c0 ≤ an+1 − 1, then we have a contri-
bution of ∆k−1(αn+1) for the number of nonzero, allowable coefficients
from (c1, c2, . . . , ck) plus we must count the nonzero term c0 for each of
these expansions (hence we add ∂k−1(αn+1)). Thus, in this case, we have
a contribution of (an+1 − 1)(∆k−1(αn+1) + ∂k−1(αn+1)) distinct, allowable
sequences. Adding these two contributions produces the total number of
nonzero terms for all allowable sequences in which 0 ≤ c1 < an+2, namely
an+1∆k−1(αn+1) + (an+1 − 1)∂k−1(αn+1).

We now consider the remaining case c1 = an+2. By the Ostrowski con-
ditions, if c1 = an+2, then c0 = 0; thus our sequence must be of the form
(0, an+2, c2, . . . , ck), in which (c2, . . . , ck) is any allowable sequence of coeffi-
cients from the Ostrowski αn+2-decompositions. These sequences contribute
an additional ∆k−2(αn+2) + ∂k−2(αn+2) nonzero terms (as in the previous
case, we must add ∂k−2(αn+2) to count each occurrence of the nonzero an+2

term).
Adding the counts found in each of the two cases above produces the

desired identity. The proof of the second identity, involving ∂k(αn), follows
a similar method of conditioning on the value of c1, and thus we suppress
the details here.

The following lemma contains the essential ingredient required to prove
Proposition 4.3. Namely, if `(αn) is not equal to `(αn+1) or `(αn+2), then
`(αn+1) and `(αn+2) are also not equal, and furthermore, `(αn) is a value
strictly in between `(αn+1) and `(αn+2).

Lemma 4.5. Given a quadratic irrational real number α and the notation
above, for all integers n ≥ 0, if `(αn) < `(αn+1), then `(αn+2) < `(αn); and
if `(αn+1) < `(αn), then `(αn) < `(αn+2).

Proof. Applying the first identity of Lemma 4.4, we see that for any
integers k ≥ 2 and n ≥ 0,

∆k(αn)

k∂k(αn)
=
an+1∆k−1(αn+1)

k∂k(αn)

+
∆k−2(αn+2)

k∂k(αn)
+

(an+1 − 1)∂k−1(αn+1) + ∂k−2(αn+2)

k∂k(αn)
.
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By the second identity of Lemma 4.4, we see that the rightmost ratio above
is less than 1/n and thus is o(1) as n → ∞. Hence, after multiplying by 1,
we have

∆k(αn)

k∂k(αn)
=

(
∆k−1(αn+1)

(k − 1)∂k−1(αn+1)

)(
k − 1

k

)(
an+1∂k−1(αn+1)

∂k(αn)

)
+

(
∆k−2(αn+2)

(k − 2)∂k−2(αn+2)

)(
k − 2

k

)(
∂k−2(αn+2)

∂k(αn)

)
+ o(1).

Given that from Proposition 4.1, for all n, the limit

`(αn) = lim
k→∞

∆k(αn)

k∂k(αn)

exists and, by the second identity in Lemma 4.4, both ∂k−1(αn+1)/∂k(αn)
and ∂k−2(αn+2)/∂k(αn) are bounded functions of k, we can collect all the
terms that are of the order 1/k, as k →∞, into the o(1) term to conclude

∆k(αn)

k∂k(αn)
=

(
∆k−1(αn+1)

(k − 1)∂k−1(αn+1)

)(
an+1∂k−1(αn+1)

∂k(αn)

)
(4.9)

+

(
∆k−2(αn+2)

(k − 2)∂k−2(αn+2)

)(
∂k−2(αn+2)

∂k(αn)

)
+ o(1).

We now assume that `(αn) < `(αn+1). Again by Proposition 4.1, for a
fixed ε > 0, there exists an integer K so that for all k ≥ K, the following
three inequalities hold: ∣∣∣∣∆k(αn)

k∂k(αn)
− `(αn)

∣∣∣∣ < ε,∣∣∣∣ ∆k−1(αn+1)

(k − 1)∂k−1(αn+1)
− `(αn+1)

∣∣∣∣ < ε,∣∣∣∣ ∆k−2(αn+2)

(k − 2)∂k−2(αn+2)
− `(αn+2)

∣∣∣∣ < ε.

We now require that the integer K be chosen large enough so that for
all k ≥ K, the o(1) term in identity (4.9) is less than ε in absolute value.

Next, we define

Pk,n =
an+1∂k−1(αn+1)

∂k(αn)
,

and note that by Lemma 4.4, it follows that

1− Pk,n =
∂k−2(αn+2)

∂k(αn)
.

Since Pk,n and 1− Pk,n are clearly positive, we have 0 < Pk,n < 1 for all k
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and n. Given this new notation, we can rewrite identity (4.9) as

∆k(αn)

k∂k(αn)
=

(
∆k−1(αn+1)

(k − 1)∂k−1(αn+1)

)
Pk,n +

(
∆k−2(αn+2)

(k − 2)∂k−2(αn+2)

)
(1− Pk,n)

+ o(1),

which is equivalent to(
∆k−2(αn+2)

(k − 2)∂k−2(αn+2)

)
(1− Pk,n)

=
∆k(αn)

k∂k(αn)
−
(

∆k−1(αn+1)

(k − 1)∂k−1(αn+1)

)
Pk,n + o(1).

Thus for any k ≥ K, we can apply the previous three inequalities guaranteed
by our original choice of K to the above identity to conclude that

(`(αn+2)− ε)(1− Pk,n) < `(αn) + ε− (`(αn+1)− ε)Pk,n + ε,

which, as 0 < Pk,n < 1, implies that

`(αn+2)(1− Pk,n) < `(αn)(1− Pk,n)− (`(αn+1)− `(αn))Pk,n + 4ε,

or equivalently,

`(αn+2) < `(αn)− (`(αn+1)− `(αn))
Pk,n

1− Pk,n
+

4ε

1− Pk,n
.

We now claim that Pk,n is bounded away from both 0 and 1 by a fixed,
positive constant. Assuming the validity of this claim for the moment, we
observe that as ε→ 0, the previous inequality reveals that

`(αn+2) < `(αn)− (`(αn+1)− `(αn))C

for some positive constant C. Therefore our hypothesis that `(αn) < `(αn+1)
implies that

`(αn+2) < `(αn),

which is the desired inequality asserted in the lemma.

Therefore, to complete the proof, we need only establish our claim that
Pk,n is bounded away from both 0 and 1 by a fixed, positive constant. We
begin by recalling that because the partial quotients of α are bounded, there
exists an integer A so that an ≤ A for all n. By the second identity of Lemma
4.4, we have

∂k−1(αn+1) = an+2∂k−2(αn+2) + ∂k−3(αn+3) > ∂k−2(αn+2),

and hence another application of Lemma 4.4 reveals

∂n(αk) = an+1∂k−1(αn+1) + ∂k−2(αn+2)

< (an+1 + 1)∂k−1(αn+1) ≤ (A+ 1)∂k−1(αn+1).
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Consequently, we are able to bound Pk,n away from 0 by observing that

Pk,n =
an+1∂k−1(αn+1)

∂k(αn)
≥ an+1(A+ 1)−1∂k(αn)

∂k(αn)
≥ 1

A+ 1
> 0,

and similarly, we are able to bound Pk,n away from 1 by noting that

1− Pk,n =
∂k−2(αn+2)

∂k(αn)
≥ (A+ 1)−2∂k(αn)

∂k(αn)
=

1

(A+ 1)2
> 0.

These two inequalities establish our claim and therefore prove the first as-
sertion of the lemma, namely, if `(αn) < `(αn+1), then `(αn+2) < `(αn).
The proof of the second assertion, stating that if `(αn+1) < `(αn), then
`(αn) < `(αn+2), follows from a symmetric argument and hence we sup-
press the details.

Proof of Proposition 4.3. We proceed by contradiction and assume that
there exists an integer n such that `(αn) 6= `(αn+1); and without loss of
generality we now assume that `(αn) < `(αn+1). By Lemma 4.5 we have
`(αn) > `(αn+2), which implies `(αn+1) > `(αn+2). Thus we are able to
apply Lemma 4.5 again. Continuing inductively, we find that

· · · < `(αn+4) < `(αn+2) < `(αn) < `(αn+1) < `(αn+3) < `(αn+5) < · · · ,
in particular, we see that `(αn+i) 6= `(αn+j) for all positive integers i and
j, i 6= j. However, given that the length of the pre-period of the contin-
ued fraction expansion of α is t and its period length is T , it follows that
αn+t = αn+t+T and thus plainly we have `(αn+t) = `(αn+t+T ), which is a
contradiction. Therefore `(αn) = `(αn+1) for all integers n ≥ 0, and thus, in
particular, `(α) = `(αt), as desired.

Assembling all our work allows us to prove our main result in just a few
lines.

Proof of Theorem 1.3. By Proposition 4.1, we know that the asymptotic
average of the number of terms in the Ostrowski α-decomposition exists
and equals the limit given in Proposition 3.1. Proposition 4.3 asserts that
this limit is equal to the corresponding limit associated with α∗, a reduced
quadratic equivalent to α. Another application of Proposition 4.1 implies
that this limit is equal to the one given in Proposition 2.1, which completes
our proof.
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