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1. Introduction. Let us consider the quadratic fields K = Q(
√
d) with

class group Cl(d) of order h(d). In this paper we solve the class number
one problem for a subset of the fields K = Q(

√
d) where d = (an)2 + 4a

is square-free and a and n are positive odd integers. It is known that there
are only a finite number of such fields by Siegel’s theorem but as the latter
is ineffective it is not applicable to finding specific fields. For this reason
we apply the methods developed by Biró in [B1] and in his joint work with
Granville [BG].

We remark that the class number one problem that we consider was
suggested by Biró in [B3] as a possible generalization of his work. The
discriminant under study is of Richaud–Degert type (d = (an)2 + ka for
±k ∈ {1, 2, 4}) with k = 4. The class number one problem for special cases
of Richaud–Degert type is solved in [B1], [B2], [BY1] and [L] where a = 1.
However we cover a subset of Richaud–Degert type that is of positive density
and our problem depends on two parameters. What is more, we believe that
in the future we can solve the class number one problem for all the remain-
ing discriminants of Richaud–Degert type in a similar way using complex
characters and computer check as in [B1], [B2].

Under the assumption of the Generalized Riemann Hypothesis there is
a list of principal quadratic fields of Richaud–Degert type (see [M]). Here,
however, our main result is unconditional:

Theorem 1.1. If d = (an)2+4a is square-free with a and n odd positive
integers such that 43 · 181 · 353 |n, then h(d) > 1.

In [BG] Biró and Granville give a finite formula for a partial zeta function
at 0 in the case of a general real quadratic field and a general odd Dirichlet
character. Basically we follow their method in a much simpler situation
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where the field has a specific form as in Theorem 1.1, the character is real
and its conductor divides n. As could be expected, to deduce a formula in
this special case is much simpler than in the general case.

The idea of the proof of Theorem 1.1 is roughly speaking the following.
By computing a partial zeta function at 0 at the principal integral ideals for
our specific discriminant, taking a real character modulo q and applying the
condition h(d) = 1, we arrive at the identity

(1.1) qh(−q)h(−qd) = n

(
a+

(
a

q

))
1

6

∏
p|q

(p2 − 1)

whenever q ≡ 3 (mod 4) is square-free, (q, a) = 1 and q |n. Using an ana-
logue of Fact B of [B1] to determine the value of

(
a
q

)
and considering the

factorization of q, we can deduce the exact power of 2 which divides the
right-hand side of (1.1). Now we explain the limitation 43 · 181 · 353 |n. In
the analysis of (1.1) we can get a contradiction if we choose q in such a way
that the class number h(−q) is divisible by a large power of 2. We choose
q = 43 · 181 · 353 and use the fact that h(−43 · 181 · 353) = 29 · 3 (e.g. in
[BU] not only the order but also the group structure of Cl(−43 · 181 · 353)
is given). Then we show that different powers of 2 divide the two sides of
(1.1), concluding the proof.

2. Notation and structure of the paper. Let χ be a Dirichlet char-
acter of conductor q. Consider a fractional ideal I and the zeta function
corresponding to the ideal class of I,

(2.1) ζI(s, χ) :=
∑
a

χ(Na)

(Na)s
,

where the summation is over all integral ideals a equivalent to I in the ideal
class group Cl(d).

Let f(x, y) ∈ Z[x, y] be a quadratic form f(x, y) = Ax2 + Bxy + Cy2

with discriminant D = B2 − 4AC.
Denote by B`(x) the Bernoulli polynomial defined by

TeTx

eT − 1
=
∑
n≥0

Bn(x)
Tn

n!

and introduce the generalized Gauss sum

(2.2) g(χ, f,B`) :=
∑

0≤u,v≤q−1
χ(f(u, v))B`

(
v

q

)
.

The symbol χq always denotes the real primitive Dirichlet character with
conductor q, i.e. χq(m) =

(
m
q

)
. Thus we are interested in square-free q. The

notation dxe signifies the least integer not smaller than x, and (x)q the
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least nonnegative residue of x (mod q). We denote by (a, b) the greatest
common divisor of the integers a and b. For m ∈ Z and (m, q) = 1 we
use the notation m for the multiplicative inverse of m modulo q. The same
overlining will denote the agebraic conjugate α of α ∈ K; the meaning
should be clear from context. As usual ϕ(x) and µ(x) are the Euler function
and the Möbius function. Further, let pα ‖ l denote the fact that pα | l but
pα+1 - l. We also recall that B` := B`(0).

OK represents the ring of integers of the quadratic field K; P (K) the
set of all nonzero principal ideals of OK ; and PF (K) the set of all nonzero
principal fractional ideals of K. Let IF (K) be the set of nonzero fractional
ideals of K. The norm of an integral ideal a in OK is the index [OK : a].
The trace of α ∈ K is Tr(α) = α+α. For α, β ∈ K we write α ≡ β (mod q)
when (α − β)/q ∈ OK . When I1, I2 ∈ IF (K) are represented as ratios of
two integral ideals, a1b

−1
1 and a2b

−1
2 , we say that the ideals I1 and I2 are

relatively prime and write (I1, I2) = 1 when (a1b1, a2b2) = 1. An element
β ∈ K is called totally positive, written β � 0, if β > 0 and β > 0.

The structure of the paper is the following. In §3 we compute (2.2) for
the real character χq. We need it because in §4 we formulate and prove
Claim 4.2 for the value of ζP (K)(0, χ) in terms of (2.2). The main result
there is Corollary 4.4 giving the value of ζP (K)(0, χq). In §5 we establish a
lemma leading to Claim 5.1, the analogue of Fact B in [B1], and at the end
of §6 we prove the main Theorem 1.1. In the Appendix, for completeness we
recall the proof of Corollary 4.2 from [BG] which we use in §4.

3. On a generalized Gauss sum. The main statement in this section is

Claim 3.1. For (2A, q) = (D, q) = 1 and even ` ≥ 2 we have

g(χq, f, B`) = χq(A)qB`
∏
p|q

(1− p−`).

Remark 3.2. When ` is odd we have B` = 0 for every ` ≥ 3. Since
Bn(1 − x) = (−1)nBn(x) one can easily see that g(χ, f,B`) is divisible
by B`, and thus equals zero unless ` = 1 and χ = χq.

Proof of Claim 3.1. By (2.2),

g(χq, f, B`) =

q−1∑
v=0

B`

(
v

q

) q−1∑
u=0

χq(f(u, v)).

Introduce r := 2Au + Bv. Since (2A, q) = 1 the values of r cover a full
residue system modulo q when u does. Also r2 = 4A(f(u, v) + Dv2/4A)
so we get χq(f(u, v)) = χq(4A)χq(r

2 − Dv2). As χq is of order 2, we have

χq = χq and χq(4A) = χq(A). Therefore χq(f(u, v)) = χq(A)χq(r
2 −Dv2).
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Thus

g(χq, f, B`) = χq(A)

q−1∑
v=0

B`

(
v

q

) q−1∑
r=0

χq(r
2 −Dv2)(3.1)

= χq(A)

q−1∑
v=0

B`

(
v

q

)
R,

where R :=
∑

0≤r≤q−1 χq(r
2 −Dv2). We will show that for g = (v, q),

(3.2) R = ϕ(g)µ(q/g).

Let q =
∏
i pi. Here no square of a prime divides q because χq is a primitive

character modulo q of second order and
(
.
p2

)
= 1. By the Chinese Remainder

Theorem, for any polynomial F (x, y) ∈ Z[x, y] we have

q−1∑
u=0

χq(F (u, v)) =
∏
i

pi−1∑
ui=0

χpi(F (ui, v)).

Therefore it is enough to consider the sum in the definition of R for every
p | q. Let Rp =

∑
0≤r≤p−1 χp(r

2 −Dv2). Then R =
∏
p|q Rp.

If p | q/g, i.e. (p, v) = 1, we have(
r2 −Dv2

p

)
=

(
Dv2

p

)(
Dv2 r2 − 1

p

)
=

(
D

p

)(
Dv2 r2 − 1

p

)
because (D, p) = 1, and so

(3.3) Rp =

p−1∑
r=0

χp(r
2 −Dv2) =

(
D

p

) p−1∑
r=0

χp(D r2 − 1).

If
(
ν
p

)
= −1, then {νr2 − 1 : 0 ≤ r ≤ p − 1} ∪ {r2 − 1 : 0 ≤ r ≤ p − 1}

gives us two copies of the full residue system modulo p. Thus∑
0≤r≤p−1

χp(νr
2 − 1) +

∑
0≤r≤p−1

χp(r
2 − 1) = 2

∑
0≤r≤p−1

χp(r) = 0

and therefore
p−1∑
r=0

χp(νr
2 − 1) = −

p−1∑
r=0

χp(r
2 − 1) =

(
ν

p

) p−1∑
r=0

χp(r
2 − 1).

Clearly when
(
ν
p

)
= 1 we have {νr2− 1 (mod p) : 0 ≤ r ≤ p− 1} ≡ {r2− 1

(mod p) : 0 ≤ r ≤ p− 1}. We conclude that

p−1∑
r=0

χp(νr
2 − 1) =

(
ν

p

) p−1∑
r=0

χp(r
2 − 1)
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and for the sum on the right-hand side of (3.3) we can assume D = 1. So

Rp =

(
D

p

)(
D

p

) p−1∑
r=0

χp(r
2 − 1) =

p−1∑
r=0

χp(r − 1)χp(r + 1)

=

p−1∑
r=0
r 6=1

χp(r − 1)χp(r + 1) =

p−1∑
r=0
r 6=1

χp

(
r + 1

r − 1

)

=

p−1∑
r=0
r 6=1

χp

(
1 +

2

r − 1

)
=

p−1∑
r=1

χp(1 + 2r) = −1.

On the other hand, if p | g, i.e. p | v, we have Rp =
∑

0≤r≤p−1 χp(r
2) =

p−1 = ϕ(p) because χp is of second order. Combining Rp = −1 when p | q/g
and Rp = ϕ(p) when p | g we get R = Rq = µ(q/g)ϕ(g), which is (3.2).

When we substitute the value of R in (3.1) we get

(3.4) g(χq, f, B`) = χq(A)

q−1∑
v=0

µ(q/g)ϕ(g)B`

(
v

q

)
=: χq(A)Σ1.

Further, if V := v/g and Q := q/g,

Σ1 =
∑
g|q

µ(q/g)ϕ(g)

q−1∑
v=0

g=(v,q)

B`

(
v

q

)
=
∑
g|q

µ(q/g)ϕ(g)

Q−1∑
V=0

(V,Q)=1

B`

(
V

Q

)

=:
∑
g|q

µ(q/g)ϕ(g)Σ2.

Then

Σ2 =

Q−1∑
V=0

B`

(
V

Q

) ∑
d|(V,Q)

µ(d) =
∑
d|Q

µ(d)

Q−1∑
V=0
d|V

B`

(
V

Q

)

=
∑
d|Q

µ(d)

Q/d−1∑
V/d=0

B`

(
V/d

Q/d

)
.

We make use of the following property of the Bernoulli polynomials [W,
§4.1]:

(3.5)
k−1∑
N=0

B`

(
t+

N

k

)
= k−(`−1)B`(kt).



286 K. Lapkova

Thus
Q/d−1∑
V/d=0

B`

(
V/d

Q/d

)
= (Q/d)−(`−1)B`(0) = Q−(`−1)B`d

`−1

and hence

Σ2 = Q−(`−1)B`
∑
d|Q

µ(d)dl−1 = Q−(`−1)B`
∏
p|Q

(1− p`−1).

Now

Σ1 =
∑
g|q

µ(q/g)ϕ(g)B`Q
−(`−1)

∏
p|Q

(1− p`−1)

= B`q
−(`−1)

∑
g|q

ϕ(g)g`−1µ(q/g)
∏

p|(q/g)

(1− p`−1)

= B`q
−(`−1)

∏
p|q

(ϕ(p)p`−1 − (1− p`−1)) = B`q
−(`−1)

∏
p|q

(p` − 1)

= B`q
∏
p|q

(1− p−`).

Substituting this in (3.4) proves the claim.

4. Computation of a partial zeta function. The main tool used in
this section will be the following (Corollary 4.2 from [BG]):

Lemma 4.1. Let (e, f) be a Z-basis of I ∈ IF (K) for any real quadratic
field K, t be a positive integer, e∗ = e + tf , and assume that e, e∗ � 0.
Furthermore, let ω = Ce + Df with some rational integers 0 ≤ C,D < q,
and write c = C/q, d = D/q, δ = (D − tC)q/q. Let

ZI,ω,q(s) = Z(s) :=
∑
β∈H

(ββ)−s

with H = {β ∈ I : β ≡ ω (mod q), β = Xe+Y e∗ with (X,Y ) ∈ Q2, X > 0,
Y ≥ 0}. Then

Z(0) = A(1− c)+
t

2

(
c2− c− 1

6

)
+
d− δ

2
+Tr

(
−f
4e∗

)
B2(δ)+Tr

(
f

4e

)
B2(d),

where A = dtc− de.
For completeness we give the proof in the Appendix.
Since d≡ 1 (mod 4), we haveOK =Z[1, (

√
d+1)/2]. Let α := (

√
d−an)/2

be the positive root of

(4.1) x2 + (an)x− a = 0.

Then α+ α = −an and αα = −a.
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We will also come across the quadratic forms

f1(x, y) = x2 + anxy − ay2,(4.2)

f2(x, y) = ax2 + anxy − y2,(4.3)

both with discriminant d = (an)2 + 4a.
Recall that P (K) is the set of all nonzero principal ideals in OK and

define the zeta function

ζP (K)(s, χ) =
∑

a∈P (K)

χ(Na)

(Na)s
.

Claim 4.2. Let d = (an)2 + 4a be square-free with a, n odd positive
integers with a > 1, and K = Q(

√
d). If q is a positive integer such that q |n

and (q, 2a) = 1, then for any odd Dirichlet character χ modulo q we have

ζP (K)(0, χ) = ang(χ, f1, B2) + ng(χ, f2, B2).

Proof. We know that for a > 1 the fundamental unit of K is εd =
1− nα > 1 (see [BK]). Thus εd = ε+ = 1− nα satisfies 0 < ε+ < 1.

Choose I ∈ IF (K) with (I, q) = 1 and consider the zeta function

ζ+I (s, χ) = ζ+Cl(I)(s, χ) :=
∑
a

χ(Na)

(Na)s

where the sum is over all integral ideals of K which are equivalent to I in
the sense that a = (β)I for some β � 0. We have Nεd = 1 and so

ζI(s, χ) = ζ+I (s, χ) + ζ+(α)I(s, χ).

It is also clear that ζ+Cl(I)(s, χ) = ζ+
Cl(I−1)

(s, χ) and

ζ+
I−1(s, χ) =

∑
b∈PI

χ(N(bI−1))

(N(bI−1))s
= (NI−1)−s

∑
b∈PI

χ

(
Nb

NI

)
(Nb)−s

where PI = {b ∈ PF (K) : b = (β) for some β ∈ I, β � 0}. We also intro-
duce V = {ν (mod q) : ν ∈ I and (ν, q) = 1} and PI,ν,q = {b ∈ PF (K) :
b = (β) for some β ∈ I, β ≡ ν (mod q) and β � 0}. Since q |n we get
εd = 1− nα ≡ 1 (mod q) and ε+ = 1− nα ≡ 1 (mod q). Thus every b ∈ PI
given by b = (β) = (βεj+) belongs to exactly one residue class ν ∈ V . Hence

ζ+I (s, χ) = (NI−1)−s
∑
ν∈V

∑
b∈PI,ν,q

χ

(
Nb

NI

)
(Nb)−s.

If we take into account that (I, q) = 1 and therefore (NI, q) = 1, and also
Nb = ββ, we get

ζ+I (s, χ) = (NI−1)−s
∑
ν∈V

χ

(
νν

NI

) ∑
b∈PI,ν,q

(ββ)−s.
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Now assume that the Z-basis of the fractional ideal I is of the form (e, f)
where e > 0 is a rational integer and e∗ = eε+ = e+ tf � 0. Then for every
principal ideal b ∈ PI,ν,q there is a unique β such that b = (β) = (βεj+) for

any j ∈ Z, and ε2+ < β/β ≤ 1. As ε+ is irrational, for every β ∈ K there is
a unique pair (X,Y ) ∈ Q2 such that β = Xe+ Y eε+ = e(X + Y ε+). Then
from βε2+ < β ≤ β we get

(X + Y εd)ε
2
+ < X + Y ε+ ≤ X + Y εd.

It follows easily that X > 0 and Y ≥ 0. Thus any b ∈ PI,ν,q can be uniquely
represented as b = (β) with β = e(X + Y ε+) where X,Y are nonnegative
rationals with X > 0.

Note also that for 0 ≤ C,D ≤ q − 1 the elements ν = Ce+Df ∈ I give
a complete system of residues ν (mod q). Thus

ζ+I (0, χ) =

q−1∑
C,D=0

χ

(
(Ce+Df) (Ce+Df)

NI

)
ZI,ν,q(0)

where ZI,ν,q(s) is defined in Lemma 4.1.

Observe that ζP (K)(s, χ) = ζOK (s, χ) and take I = OK = Z[1,−α].
Clearly (OK , q) = 1. Apply Lemma 4.1 with e∗ = ε+ = 1 + n(−α) so t = n.
Also NOK = 1 and νν = (C −Dα)(C −Dα) = C2 − (α+ α)CD + ααD =
C2+anCD−aD2 = f1(C,D). Since q | t we have δ = (D−tC)q/q = D/q = d
and dtc− de = tC/q = tc. Here Tr(α/4ε+) = Tr(−α/4) = an/4. Hence

ZOK ,ν,q(0) = nc(1− c) +
n

2

(
c2 − c− 1

6

)
+
an

2
B2(d)

= −n
2
c2 +

n

2
c− n

2

1

6
+
an

2
B2(d)

= −n
2

(
c2 − c+

1

6

)
+
an

2
B2(d) = −n

2
B2(c) +

an

2
B2(d)

and

ζ+I (0, χ) =

q−1∑
C,D=0

χ(C2 − aD2)

(
−n

2
B2(c) +

an

2
B2(d)

)

= −n
2

q−1∑
C,D=0

χ(C2 − aD2)B2(c) +
an

2

q−1∑
C,D=0

χ(C2 − aD2)B2(d).

Now in the first sum make the change of notation C ↔ D and take into
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account that χ(−1) = −1. Then

ζ+I (0,χ) =
n

2

q−1∑
C,D=0

χ(−D2 +aC2)B2(d)+
an

2

q−1∑
C,D=0

χ(C2−aD2)B2(d)(4.4)

=
n

2

q−1∑
C,D=0

χ(f2(C,D))B2

(
D

q

)
+
an

2

q−1∑
C,D=0

χ(f1(C,D))B2

(
D

q

)
=
an

2
g(χ, f1, B2) +

n

2
g(χ, f2, B2).

Next we find ζ+(α)I(0, χ) and we apply Lemma 4.1 once more for (α)I.

Here again ((α)OK , q) = 1, which follows from αα = a ∈ (α)OK and (a, q) =
1. We can take OK = Z[−α,−1]. Then (α)OK = Z[−αα,−α] = Z[a,−α].
In this case

νν = (Ca+D(−α))(Ca+D(−α)) = αα(Cα+D)(Cα+D)

= −a(−aC2 − anCD +D2) = af2(C,D).

HereN((α)OK) = |αα|= a and χ(νν/N((α)I)) =χ(f2(C,D)) =χ(aC2−D2).
Also e∗ = aε+ = a + an(−α) = a(1 − nα) so t = an. Note that again q | t.
Here Tr(α/4aε+) = Tr(−α/4a) = n/4 and therefore

Z(α)OK ,ν,q(0) = anc(1− c) +
an

2

(
c2 − c− 1

6

)
+
n

2
B2(d)

= −an
2
c2 +

an

2
c− an

2

1

6
+
n

2
B2(d)

= −an
2

(
c2 − c+

1

6

)
+
n

2
B2(d) = −an

2
B2(c) +

n

2
B2(d).

Thus we get

ζ+(α)I(0, χ) = −an
2

q−1∑
C,D=0

χ(aC2−D2)B2(c)+
n

2

q−1∑
C,D=0

χ(aC2−D2)B2(d)(4.5)

=
n

2
g(χ, f2, B2) +

an

2
(−1)

q−1∑
C,D=0

χ(aD2 − C2)B2(d)

=
n

2
g(χ, f2, B2) +

an

2
g(χ, f1, B2).

Note that we got the equality ζ+I (0, χ) = ζ+(α)I(0, χ), an equation that

holds true in general real quadratic fields with Nε = 1 and χ an odd char-
acter. When we sum up the two zeta functions (4.4) and (4.5) we obtain the
statement of the claim.

Remark 4.3. Here the result on the zeta function at the class of a
principal integral ideal is for any odd Dirichlet character modulo q. If a = 1
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we have Nε = −1. In this case ζI(s, χ) = ζ+I (s, χ) because for any principal
ideal there is a totally positive generator.

From q odd square-free with q |n and (q, a) = 1 it follows that (q, d) = 1.
Combining Claims 3.1 and 4.2 with B2 = 1/6 we arrive at

Corollary 4.4. Let d = (an)2 + 4a be a square-free discriminant with
a, n odd positive integers with a > 1, and K = Q(

√
d). If q ≡ 3 (mod 4) is

a square-free positive integer such that q |n and (q, 2a) = 1, then

ζP (K)(0, χq) =
q

6
n(a+ χq(a))

∏
p|q

(1− p−2).

5. Small primes are inert when h(d) = 1. In this section we will
prove the following result generalizing Fact B in [B1]:

Claim 5.1. If h(d) = 1 for the square-free discriminant d = (an)2 + 4a,
then a and an2 +4 are primes. What is more, for any prime r 6= a such that
2 < r < an/2 we then have (

d

r

)
= −1.

We defined α as the positive root of (4.1). Let α = −(an+
√
d)/2 be the

algebraic conjugate of α. We note that (1, α) form a Z-basis of OK with(
1

α

)
=

(
1 0

−an+1
2 −1

)(
1
√
d+1
2

)
.

For the fundamental unit εd > 1 the system (1, εd) was used in [B1] but it
forms a basis of the ring OK over Z only when n = 1. That is why we need
to use a different base system. Since(

εd

α

)
=

(
1 −n
0 1

)(
1

α

)

with the determinant of the transformation equal to 1, we can take (εd, α)
as a basis of the ring OK over Z.

We also have εdεd = 1 and

(5.1) εd + εd = 1− nα+ 1− nα = 2− n(α+ α) = 2 + an2.

Now we will demonstrate the splitting behaviour of some of the primes
in the field K.

Lemma 5.2. If β is an algebraic integer in K such that |ββ| < an/2,
then |ββ| is either divisible by a square of a rational integer greater than 1,
or equals 1, or equals a.
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Proof. It is enough to prove the conclusion for

(5.2) 1 < |β| < εd.

Indeed, if |β| = 1 or |β| = εd we have |ββ| = 1 and the conclusion is true. If
0 < |β| < 1 or |β| > εd there is an integer k such that εk−1d ≤ |β| < εkd, with

k < 0 in the first case and k > 0 in the second. Then γ := ε1−kd β is in the

interval [1, εd) and still |γγ| = |ββ|.
So we further assume (5.2). Then we can write β = eεd + fα. If e = 0

then β = fα, |ββ| = f2a and the conclusion is true.

Assume that e > 0, the negative case being analogous. If f = 0 then
β = eεd, |ββ| = e2 and this satisfies the conclusion of the lemma. If we
assume that f < 0, from α < 0 we get β = eεd + fα > eεd ≥ εd, contrary to
assumption. Therefore f > 0.

Also notice that

ββ = (eεd + fα)(eεd + fα) = e2 + ef(αεd + α εd)− af2.

We see that αεd+α εd = α(1−nα)+α(1−nα) = α+α−2nαα = −an+2an
= an. Therefore

(5.3) ββ = Q(e, f) := e2 + (an)ef − af2,

and Q(e, f) = f2(e, f) (see (4.2)).

We look at the quadratic form Q(x, y). By (5.3) we have

(5.4) Q′x = 2x+ any, Q′y = anx− 2ay,

and this shows that the local extremum of the form is at x = −any/2 and
−(an)2y/2 = 2ay. This happens only for y = 0, out of the range x, y ≥ 1 we
consider. Hence for any bounded region of interest in R2 the extrema would
be at its borders. Also Q′x > 0 and therefore for fixed y the function Q(x, y)
is increasing.

On the other hand Q′′y = −2a < 0. Thus for fixed x the function Q(x, y)
has its maximum at y = nx/2. Here and hereafter, by writing x, y we mean
that the underlined variable is fixed. We will investigate the sign of the form
Q(x, y). We show that it depends on the size of f . For example if f = en,
then Q(e, f) = e2 + anfe − af2 = e2 + af2 − af2 = e2 and the conclusion
holds. Further we consider

Case I: f < ne. Here Q(e, f) = e2 + anfe − af2 = e2 + af(ne − f) >
e2 > 0. On the other hand from α < 0 it follows that fα > neα and

β = eεd + fα > eεd + neα = e(1− nα) + enα = e ≥ 1,

and β = |β| < εd yields

1 ≤ e < β < εd < 2 + an2.
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The last estimate follows from (5.1) and 0 < εd < 1. Thus in this case we
are in the region

(5.5) R1 := {(e, f) : 1 ≤ e ≤ 1 + an2, 1 ≤ f ≤ ne− 1}
First assume that n ≥ 3. We explained earlier that the maximum of

Q(x, y) for fixed x is on the line y = nx/2. Thus 1 < n/2 < n − 1 and
minR1 Q(x, y) could be on the lines l1 : y = 1 or l2 : y = nx − 1. We
are interested in the behaviour of the quadratic form on these lines. Since
Q(x, y) is increasing for fixed positive y, we have minl1 Q(x, y) = Q(1, 1).
On the other hand, on l2 we have

(5.6) Q(x, nx− 1) = x2 + anx(nx− 1)− a(nx− 1)2

= x2 + a(nx)2 − anx− a(nx)2 + 2anx− a = x2 + anx− a.
A local extremum of this function is achieved when Q′x(x, nx − 1) =

2x + an = 0 and Q′′x(x, nx − 1) = 2 > 0 so it is a minimum at x = −an/2.
This means that for positive x the function Q(x, nx − 1) is increasing and
thus by (5.6), minl2 Q(x, y) = Q(1, n− 1) = 1 + an− a = Q(1, 1). Therefore
minR1 Q(x, y) = 1 + an − a. By assumption, an/2 > |ββ| = |Q(e, f)| =
Q(e, f). This is true for the smallest value of the quadratic form in the region
under study as well, i.e. an/2 > 1 + an − a. Then we need a − 1 > an/2.
But for n ≥ 3 this gives a− 1 > an/2 > a, a contradiction.

From the definition of the discriminant d we know that n is odd, so n 6= 2.
Now assume that n = 1. We cannot have e = 1, as otherwise 1 ≤ f < en = 1.
Thus e ≥ 2 and we take up the region R1 with this additional condition.
Then 1 ≤ nx/2 ≤ nx− 1 since 1 ≤ x/2 ≤ x− 1 for x ≥ 2. Hence again the
minimum is at the leftmost points of l1 and l2, i.e. minR1 Q(x, y) = Q(2, 1).
This by (5.6) equals 4 + 2a− a = 4 + a. Clearly a > a/2 > 4 + a again gives
a contradiction. We conclude that Case I is impossible.

Case II: f > ne, in other words ne− f ≤ −1. Suppose that Q(e, f) > 0.
Then 0 < Q(e, f) = e2 + anef − af2 = e2 + af(ne − f) ≤ e2 − af . Conse-
quently, e2 > af > ane and e > an. On the other hand, using α > 0, we get
β = eεd + fα > e(1− nα) + enα = e ≥ 1. So by (5.2),

(5.7) an > an/2 > |ββ| = |β| · |β| ≥ |β| = β > e.

We got an > e > an, a contradiction. Therefore always when f > ne the
form Q(x, y) is negative and e < an/2 ≤ an − 1. The last inequality does
not hold only when an = 1. But in this case an/2 = 1/2 > |Q(e, f)| = |ββ|
implies that β = 0 because β is an algebraic integer and its norm is an
integer. Therefore an > 2 and we can consider the region

(5.8) R2 := {(e, f) : 1 ≤ e ≤ an− 1, ne+ 1 ≤ f}.
Clearly |Q(x, y)| = −Q(x, y) = −x2 − anxy + ay2 > 0 and by (5.4) it has
extrema off R2. Notice that for fixed x we have −Q′y(x, y) = −anx + 2ay
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and −Q′′y(x, y) = 2a > 0, so at y = nx/2 < nx + 1 we have a minimum of
−Q(x, y). Therefore −Q(x, y) is increasing on the lines x = const and we
search for the minimum of −Q(x, y) on the line l3 : y = xn+ 1.

On l3 we have

(5.9) −Q(x, nx+ 1) = −x2 − anx(nx+ 1) + a(nx+ 1)2

= −x2 − a(nx)2 − anx+ a(nx)2 + 2anx+ a = −x2 + anx+ a

and at x = an/2 we have a maximum. So

min
R2

|Q(x, y)| = min(−Q(1, n+ 1),−Q(an− 1, n(an− 1) + 1)).

From (5.9) we see that−Q(1, n+1) =−1+an+a and−Q(an−1, n(an−1)+1)
= −(an−1)2+an(an−1)+a = an−1+a, so minR2 |Q(x, y)| = −1+a+an.
Hence by assumption an > −1 + a+ an, so a < 1, which is impossible.

Remark 5.3. If β is an algebraic integer in K such that |ββ| < n
√
a

then |ββ| is either divisible by a square of a rational integer, or equals 1, or
equals a.

This follows easily if we notice that the finer estimate an/2 > |ββ| needed
for R1 with n ≥ 3 can be replaced by

n
√
a > |ββ| > 1 + an− a.

Indeed, n
√
a > 1 + an − a ⇔ a − 1 > n

√
a(
√
a − 1) ⇔ (

√
a − 1)(

√
a+ 1)

> n
√
a(
√
a−1). If a = 1 then 1 ·n > 1+1 ·n−1 is not true. So a > 1 and by

dividing by
√
a− 1 > 0 we get

√
a+ 1 > n

√
a. This yields 2 > 1 + 1/

√
a >

n ≥ 3.

For the other cases we showed that the stronger an > minQ(e, f) is
impossible, so if we assume the statement of the remark with n

√
a > Q(e, f)

it would yield an > minQ(e, f), again a contradiction.

Proof of Claim 5.1. By Gauss genus theory (e.g. [H]) it follows that
h(d) = 1 only if the discriminant d is prime or a product of two primes.
This yields the first statement of the claim.

Now let r be prime such that 2 < r < an/2 and r 6= a. Assume
(
d
r

)
= 0.

This means that the prime r ramifies in K and there is a prime ideal p ⊂ OK
for which rOK = p2. But as the class number is 1, OK is a PID and there
is β ∈ OK such that p = (β). Then |ββ| = N(p) = r < an/2. By Lemma 3
there is a square of an integer dividing the prime r unless |ββ| = 1, but then
β is a unit and p = OK , a contradiction.

Assume that
(
d
r

)
= 1. Then there are two prime ideals p1 6= p2 such that

(r) = p1p2 and N(p1) = N(p2) = r. But h(d) = 1 and p1 = (β) for some
nonzero β ∈ OK . Therefore N(p1) = |ββ| = r < an/2 and by Lemma 5.2
and r 6= a, r > 2, we infer that |ββ| is divisible by the square of an integer
z > 1. This contradicts r being prime.
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Remark 5.4. When a = 1 we have d = n2 + 4, and h(d) = 1 implies
that d is prime and for any prime 2 < r < n,(

n2 + 4

r

)
= −1.

What is more, n is also prime.
The first assertion can be seen by applying the same argument as in the

proof of Claim 5.1 but with Remark 5.3 instead of Lemma 5.2. Actually in
this fashion we get Fact B from [B1]. We see from Corollary 3.16 in [BK]
that n is prime if the class number is 1.

6. Proof of Theorem 1.1. Assume that K = Q(
√
d) with d = (an)2 +

4a where a, n are odd positive integers, 43 · 181 · 353 divides n and h(d) = 1.
Then all integral ideals are principal and for the Dedekind zeta function

ζK(s, χ) =
∑

a⊂OK

χ(Na)

(Na)s

we have ζK(s, χ) = ζP (K)(s, χ). We know from §4.3 of [W] that

ζK(s, χ) = L(s, χ)L(s, χχd).

By the class number formula for imaginary quadratic fields (Theorem 152
in [H]), again §4.3 of [W], and as χq(−1) = −1 because q ≡ 3 (mod 4), we
get

(6.1) − L(0, χq) =
∑

1≤x≤q−1

x

q

(
x

q

)
= h(−q).

For d ≡ 1 (mod 4) we have
(−1
d

)
= (−1)(d−1)/2 = 1 and thus χd is an

even character. Hence χqχd is an odd character and L(0, χqχd) = −h(−qd).
Therefore

(6.2) ζP (K)(0, χq) = L(0, χq)L(0, χqχd) = h(−q)h(−qd).

First think of a general parameter q 6= a that is a prime number, q |n and
2 < q < an/2. Then by Claim 5.1 we have

(
d
q

)
= −1. When q | n we get(

an2 + 4

q

)
=

(
4

q

)
= 1 and

(
d

q

)
=

(
a

q

)(
an2 + 4

q

)
=

(
a

q

)
= −1.

Thus the case a = 1 is impossible: clearly
(
1
q

)
=
(
a
q

)
=
(
d
q

)
= 1. So we have

a > 1.
Now, assume that 43 ·181 ·353 |n and 353 < an/2. Notice that above, the

prime a = q was not considered because of Claim 5.1. However
(

43
181

)
= 1,

thus a = 43 is impossible; as
(
181
43

)
= 1 and

(
353
43

)
= 1, the values a = 181

and a = 353 are also excluded. Hence, if 353 < an/2 and 43, 181, 353 |n, the
class number h(d) is 1 only if

(
a
43

)
=
(
a

181

)
=
(
a

353

)
= −1.
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Now we take q = 43·181·353. Again consider the real primitive character
χq(m) =

(
m
q

)
modulo q. As 43 ≡ 3 (mod 4), 181 ≡ 1 (mod 4) and 353 ≡ 1

(mod 4) we have q ≡ 3 (mod 4) and χq(−1) = −1. Also a > 1 and we can
apply (6.2) and Corollary 4.4 and multiply both sides of its equation by q.
This way we arrive at the promised equation (1.1):

qh(−q)h(−qd) = n

(
a+

(
a

q

))
1

6

∏
p|q

(p2 − 1).

In this case

B :=
1

6

∏
p|q

(p2 − 1) =
1

6
42 · 44 · 180 · 182 · 352 · 354 = 21133 . . .

and 211 ‖B.

As a > 1 we see that d = a(an2+4) is the product of two different primes.
Notice as well that a ≡ an2 + 4 (mod 4). By genus theory (e.g. Corollary in
[NW]) we know that if a ≡ an2 + 4 ≡ 1 (mod 4) for the real quadratic field
K = Q(

√
a(an2 + 4)), then the 2-rank of the class group is the same as the

2-rank of the narrow class group, i.e. 2 − 1 = 1. This contradicts h(d) = 1.
Therefore a ≡ 3 (mod 4). But in this case a +

(
a
q

)
= a − 1 and a − 1 ≡ 2

(mod 4) so 2 ‖
(
a+

(
a
q

))
. Here Claim 5.1 is of importance, and also q being

a product of three primes, for then
(
a
q

)
= −1. The parameter n is odd by

definition. It follows that for the right-hand side of (1.1) we have

(6.3) 212 ‖n
(
a+

(
a

q

))
B.

We now consider the left-hand side of (1.1). As pointed out in §1 we
have h(−43 · 181 · 353) = 29 · 3. Again by genus theory (Theorem 132 of [H])
the 2-class group of Cl(−qd) has rank 5 − 1 = 4 since qd has five distinct
prime divisors. Indeed, we showed that a 6∈ {43, 181, 353}, also an2 + 4 >
an/2 > 353 and clearly a 6= an2 + 4. Therefore 29+4 = 213 | qh(−q)h(−qd).
This contradicts (6.3).

We conclude that h(d) > 1 for an/2 > 353. But then for discriminants
d = (an)2 + 4a for a and n positive odd and 43 · 181 · 353 | n we cannot have
class number 1. This concludes the proof of Theorem 1.1.

Remark 6.1. The main idea used in this paper, comparison of 2-parts
in (1.1), can be utilized toward other results of this type. For example, if
d = a(an2 + 4) with a and n odd positive integers where 5 · 359 · 541 |n,
then h(d) > 1. The exact divisors of n are chosen according to Table 12 in
[BU]: h(−5 · 359 · 541) = 29 and again we have a greater power of 2 on the
left-hand side of (1.1). Also 5 · 359 · 541 ≡ 3 (mod 4) so when we take a real
character we have formula (6.1). Also a ∈ {5, 359, 541} are not covered by
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Claim 5.1 for each prime in the set, but these a’s are excluded by a simple
check of Legendre symbols.

In a forthcoming paper we generalize the result of [BY2] to discriminants
with three prime divisors, thus extending our Theorem 1.1 for an infinite
family of n such that pqr |n.

7. Appendix. The proof here repeats word for word the proof of Corol-
lary 4.2 in [BG]. We give it in order to keep the paper self-contained.

Proof of Lemma 4.1. As first noted in [B1], the value of the function
ZI,ω,q(0) in Yokoi’s case a = 1 can be computed using a result of Shintani.
This is also true the general case of real quadratic fields K in Lemma 4.1.

For a matrix
(
a b
c d

)
with positive elements and x > 0, y ≥ 0 we define the

zeta function

ζ

(
s,

(
a b

c d

)
, (x, y)

)

:=
∞∑

n1,n2=0

(a(n1 + x) + b(n2 + y))−s(c(n1 + x) + d(n2 + y))−s.

Claim 7.1 (Shintani). For any a, b, c, d, x > 0 and y ≥ 0 the function
ζ
(
s,
(
a b
c d

)
, (x, y)

)
is absolutely convergent for <s > 1, extends meromorphi-

cally to the whole complex plane and

ζ

(
s,

(
a b

c d

)
, (x, y)

)

= B1(x)B1(y) +
1

4

(
B2(x)

(
c

d
+
a

b

)
+B2(y)

(
d

c
+
b

a

))
.

Note that A = d(tC −D)/qe = (tC −D + qδ)/q = tc− d+ δ and there-
fore 0 ≤ A ≤ t. Let β = Xe + Y e∗ for some rationals X > 0, Y ≥ 0. Write
X = qx + qn1 and Y = qy + qn2 for some nonnegative integers n1 and n2
and rational numbers 0 < x ≤ 1, 0 ≤ y < 1, which can be done in a unique
way. Then on the one hand,

ββ = q2(e(n1 + x) + e∗(n2 + y))(e(n1 + x) + e∗(n2 + y));

on the other hand we know that β ∈ I and β ≡ ω (mod q) hold if and only
if xe+ ye∗ − (ce+ df) ∈ I. Therefore

Z(s) =
1

q2s

∑
(x,y)∈R(C,D)

ζ

(
s,

(
e e∗

e e∗

)
, (x, y)

)
where

R(C,D) := {(x, y) ∈ Q2 : 0 < x ≤ 1, 0 ≤ y < 1, xe+ ye∗ − (ce+ df) ∈ I}.
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Therefore by Claim 7.1 we get

Z(0) =
∑

(x,y)∈R(C,D)

(
B1(x)B1(y) + Tr

(
e

4e∗

)
B2(x) + Tr

(
e∗

4e

)
B2(y)

)
.

We observe that for any m,n we have

mf + ne

q
=

(n− m
t )e+ m

t e
∗

q

and so it is easy to see that the possibilities for (m,n) having

(x, y) =

(
1

q

(
n− m

t

)
,
1

q

m

t

)
∈ R(C,D)

are

mj = D + jq, nj = C + q

[
1 +

j

t
− (tC −D)/q

t

]
with an integer 0 ≤ j ≤ t − 1. This is so because the possible values of m
are obviously these t values, and once m is fixed, n is unique. Now

0 < 1 +
j

t
− (tC −D)/q

t
< 2, so nj =

{
C if 0 ≤ j < A,

C + q if A ≤ j < t,

and therefore

Z(0) =

t−1∑
j=0

(
B1(xj)B1(yj) + Tr

(
e

4e∗

)
B2(xj) + Tr

(
e∗

4e

)
B2(yj)

)
where

yj =
d+ j

t
for 0 ≤ j < t and xj =

{
c− yj if 0 ≤ j < A,

c+ 1− yj if A ≤ j < t.

Now, by (3.5) we have

t−1∑
j=0

B2(yj) =

t−1∑
j=0

B2

(
d+ j

t

)
=

1

t
B2(d)

and

t−1∑
j=0

B2(xj) =
A−1∑
j=0

B2

(
A− j − δ

t

)
+

t−1∑
j=A

B2

(
t+A− j − δ

t

)

=

t∑
k=1

B2

(
k − δ
t

)
=

t−1∑
l=0

B2

(
δ + l

t

)
=

1

t
B2(δ).

Since B2(x) + B2(y) + 2B1(x)B1(y) = (x + y − 1)2 − 1/6 we easily deduce
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that
t−1∑
j=0

(B2(xj) +B2(yj) + 2B1(xj)B1(yj)) = A(c− 1)2 + (t−A)c2 − t

6
.

The result then follows from the last four displayed equations, along with

Tr

(
e

4te∗

)
− 1

2t
= Tr

(
−f
4e∗

)
and Tr

(
e∗

4te

)
− 1

2t
= Tr

(
f

4e

)
.
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