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1. Introduction. Let K be a field and let G be a finitely generated
subgroup of the multiplicative group K∗. Equations of the form

(1.1) a1x1 + · · ·+ anxn = 1,

to be solved with unknowns x1, . . . , xn in G, play a central role in number
theory and diophantine geometry. Here a1, . . . , an are considered constants
in K, and for convenience we take them in K∗. To avoid trivialities we can
clearly suppose n ≥ 2.

Much is known about (1.1). Here it is necessary to divide into two cases
depending on the characteristic of K.

Suppose that K has zero characteristic. Then it was proved indepen-
dently by Evertse [E] in 1984 and van der Poorten and Schlickewei [PS] in
1991 that there are at most finitely many solutions of (1.1) which satisfy the
subsum restriction

∑
i∈I aixi 6= 0 for every non-empty subset I of {1, . . . , n}.

This is a minor restriction because if it fails, then we may use induction to
reduce the number of variables. In particular for three-term equations it
shows that there are at most finitely many solutions, and for more terms it
leads easily to a complete structure.

Now suppose that K has positive characteristic p. The result of Evertse,
van der Poorten and Schlickewei then becomes false. The simplest coun-
terexample comes from the equation

(1.2) x+ y = 1

over the function field K = Fp(t) with G = 〈t, 1 − t〉 generated by t and
1− t. Namely if q = 1, p, p2, . . . then

(1.3) x = tq, y = 1− tq = (1− t)q

clearly supply infinitely many solutions unrestricted by subsums.
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The situation here was clarified in 1992 by Abramovich and Voloch [AV]
who showed (in a much more general context) that such counterexamples
can arise only when the equation (1.1) is essentially defined over a finite field;
of course (1.2) is literally defined over Fp. See also the work of Voloch [V]
for n = 2.

A less simple counterexample was observed in 2004 by Masser [M] for
the equation

(1.4) x+ y − z = 1

with the same K and G. Namely there is a doubly infinite family of solutions

(1.5) x = t(q−1)q
′
, y = (1− t)qq′ , z = t(q−1)q

′
(1− t)q′

with q, q′ ranging independently over 1, p, p2, . . . .
A full structure theorem was found at about the same time by Moosa

and Scanlon [MS2], [MS2] (also in the more general context). Independently
Derksen and Masser [DM] have given an alternative proof in the present
context which is completely effective in the logical sense. As is well-known,
this is not yet possible in zero characteristic. But of course there are many
effective counting results; for brevity we mention here just [ESS] of Evertse,
Schlickewei and Schmidt on (1.1) and (thanks to the referee) the paper
[HP] of Hrushovski and Pillay for transcendental points in the more general
context.

In the present paper we find all solutions of (1.2) and (1.4) for the above
K and G. But first we state one of the main results of [DM] for general K
and G, for simplicity in affine rather than projective form. Some preliminary
definitions are needed.

We define a G-automorphism ψ of Kn by an equation

(1.6) ψ(x1, . . . , xn) = (g1x1, . . . , gnxn)

with g1, . . . , gn in G.
For a power q of the characteristic p we denote by ϕ = ϕq the Frobe-

nius with ϕ(x) = xq. Let ψ1, . . . , ψh be G-automorphisms. Then we imitate
commutator brackets by defining the operator

(1.7)

[ψ1, . . . , ψh] = [ψ1, . . . , ψh]q =

∞⋃
e1=0

· · ·
∞⋃

eh=0

(ψ−11 ϕe1ψ1) · · · (ψ−1h ϕehψh),

with of course the identity interpretation if h = 0.
For example with q = p, h = 1 and ψ1 = ψ as the identity automorphism,

we have, for a point Π,

[ψ]pΠ =

∞⋃
e=0

ϕeΠ = {Π,Πp, Πp2 , . . .}
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as in (1.3) with Π = (t, 1 − t). Or with q = p, h = 2 and again ψ1 as the
identity automorphism, [ψ1, ψ2]pΠ is the union over q = pe2 and q′ = pe1 of

the (ψ−12 (ψ2Π)q)q
′
. For suitable ψ2, Π (see (1.8) below) this reduces to (1.5).

We will need the radical
√
G = K

√
G. For us this remains in K; thus it

is the group of γ in K for which there exists a positive integer s such that
γs lies in G.

We generalize (1.1) by treating linear varieties V defined by the vanishing
of linear polynomials of degree at most 1 in x1, . . . , xn. Thus our object of
study is V ∩ Gn, which we abbreviate to V (G). A special role is played by
the case when all the equations have the form xi = a or xi = axj ; these we
call linear cosets or just cosets for brevity. A point is of course a coset.

Theorem (Derksen–Masser). Let K be a field of positive characteris-
tic p, let V be a linear variety defined over K, and suppose that K

√
G is

finitely generated. Then there is a power q of p such that V (G) is an effec-
tively computable finite union of sets [ψ1, . . . , ψh]qT (G) with

√
G-automor-

phisms ψ1, . . . , ψh (0 ≤ h ≤ n− 1) and with cosets T contained in V.

Here are our main results for (1.2) and (1.4), in which ψ0 denotes the
identity automorphism. First (1.2), whose statement (and proof) is relatively
simple.

Theorem 1. Suppose that K = Fp(t), G = 〈t, 1 − t〉 and the line L is
defined by x+ y = 1. Then L(G) is [ψ0]pΠ

+ ∪ [ψ0]pΠ
− for the points

Π+ = (t, 1− t), Π− = (1− t, t)
provided p ≥ 3, and is

[ψ0]pΠ
+ ∪ [ψ0]pΠ

− ∪ [ψ0]pΠ
+
1 ∪ [ψ0]pΠ

−
1 ∪ [ψ0]pΠ

+
2 ∪ [ψ0]pΠ

−
2

for the additional points

Π+
1 =

(
1

t
,
1− t
t

)
, Π−1 =

(
1− t
t

,
1

t

)
,

Π+
2 =

(
1

1− t
,

t

1− t

)
, Π−2 =

(
t

1− t
,

1

1− t

)
when p = 2.

Thus for p ≥ 3 we get not only (1.3) corresponding to Π+ but also the
extra solutions x = (1 − t)q, y = tq corresponding to Π−. The reason is of
course the symmetry of the equation in x, y. For p = 2 we get even more
solutions, but these can be considered as coming from more symmetry which
arises by writing the equation in homogeneous form as X + Y + Z = 0.

It is precisely this sort of symmetry which is responsible for the much
more complicated situation in (1.4). Define the coset Tx by the equations
x = 1, y = z, and similarly Ty, Tz.
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Theorem 2. Suppose that K = Fp(t), G = 〈t, 1− t〉 and the plane P is
defined by x+ y − z = 1. Then P (G) is

Tx(G) ∪ Ty(G) ∪
⋃
Π∈T

[ψ0, ψΠ ]pΠ

for a set T of 40 points Π in G3 with G-automorphisms ψΠ provided p ≥ 5;
it is

Tx(G) ∪ Ty(G) ∪
⋃
Π∈T ′

[ψ0]pΠ ∪
⋃
Π∈T

[ψ0, ψΠ ]pΠ

for a set T of 40 points Π in G3 with G-automorphisms ψΠ and a set T ′
of eight points Π in G3 when p = 3; it is

Tx(G) ∪ Ty(G) ∪ Tz(G) ∪
⋃
Π∈T ′

[ψ0]pΠ ∪
⋃
Π∈T

[ψ0, ψΠ ]pΠ

for a set T of 216 points Π in G3 with G-automorphisms ψΠ and a set T ′
of 24 points Π in G3 when p = 2.

For example T (for every p) includes the point Π = (1, 1− t, 1− t), with

(1.8) ψΠ(x, y, z) =

(
tx, y,

t

1− t
z

)
,

and then [ψ0, ψΠ ]pΠ is exactly the set (1.5). But there are in all 40 such
classes of solutions when p ≥ 3, and even 216 when p = 2.

As hinted above, the large numbers here arise essentially from the sym-
metry of the special equation x + y − z = 1, which in homogeneous form
X + Y = Z + W has a natural dihedral D4-action. When p = 2 this is
even an S4-action. But in addition the nature of the special group 〈t, 1− t〉
can be exploited through field automorphisms, which yield an independent
S2-action and for p = 2 even an S3-action.

In view of the effectivity of [DM] our own results may not seem too
significant, and things are naturally simpler for the special equation. Also
the work of [DM] includes explicit estimates for everything appearing, and
so at first sight it may seem that only a computer is needed. But in fact the
matter is more complicated, for two main reasons.

First, the estimates in [DM] are not very small. For example equa-
tion (12.1) there involves an upper bound which in our situation is

B = (144.310(270.515)7)43p86 > 104185p86.

It follows, for example, that each of the gi in (1.6) is a quotient of polynomials
in t of degree at most B. Thus even for p = 2 a very large computer would
be needed.

Second, there is no uniformity in the characteristic p; the coefficients in
the polynomials above lie in Fp and we get no algorithm for treating all p,
even if the bound above were independent of p.
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Our own results are essentially uniform in p. This is in tune with an
existing vague philosophy that the solution set should not depend too much
on p. Indeed Hrushovski [H, p. 669], who substantially generalized the work
of [AV], has expressed the expectation that “quantifier elimination and elim-
ination of imaginaries hold already in the differential language, without the
distinguished basis, and in this language the proof should become entirely
uniform with respect to the characteristic.” As far as we know, our work is
the first confirmation of this uniformity, albeit at an elementary level.

Actually our result for p = 2 can also be found in the recent article
[ABB] of Arenas-Carmona, Berend and Bergelson. Thus our Theorem 1 for
p = 2 is essentially their Lemma 5.6 (p. 348); our S3-symmetry has been
factored out. And our Theorem 2 for p = 2 is essentially their Proposition 4.1
(p. 345). Here the S4-symmetry with 24 elements has reduced our set T
with 216 points to nine quadrangles Q2, . . . , Q10 (compare our (F1), . . . ,(F9)
in Sections 4, 5, 6) and our T ′ to Q1 (compare our Π0 in Proposition 3).

Let us now say a few words about the proof. We follow broadly the
strategy of [DM], which in general uses differential operators to replace the
study of V (G) by that of W (G) for finitely many proper subvarieties W
of V . Here we need only d/dt. For Theorem 1 about a line, we get at once
points. But for Theorem 2 about a plane we have to cope with lines. Now
there is no reason to suppose that these lines will be defined over finite fields,
and so one might expect to encounter equations ax + by = 1 more general
than (1.2). These might easily cause problems. But by carefully estimating
we are in fact able to reduce to (1.2) itself.

The paper is arranged as follows. We prove Theorem 1 in Section 2. Then
in Section 3 we record some preliminary observations; in particular the proof
of Lemma 3.1 contains the crucial uniformity argument and Lemma 3.4
enables us to reduce to (1.2). In Section 4 we prove Theorem 2 for p ≥ 5.
A critical role is played by the field C = Fp(tp), which is used to define for
each solution (x, y, z) a quantity

d = d(x, y, z) = dimC(Cx+ Cy + Cz).

Thus Propositions 1 and 2 treat the cases d = 3 and d = 2 respectively.
Then in a short Section 5 we prove Theorem 2 for p = 3.
Finally in Section 6 we do p = 2, which seems to cause quite a lot of

complications, even though now the case d = 3 cannot occur. We study
the case d = 2 in Proposition 3. Here it is very reassuring that we are in
agreement with [ABB].

2. Proof of Theorem 1. Actually we determine the set L(
√
G) with

L as above and G = 〈t, 1 − t〉 as above in K = Fp(t); from now on we

abbreviate K
√
G to

√
G.
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Lemma 2.1. The set
√
G is generated by G together with the elements

of F∗p.

Proof. For u in
√
G we have s in N such that us is in G. Let A be any

irreducible polynomial of Fp[t], which is not a constant multiple of t, 1 − t.
Then the corresponding order function satisfies ordA u

s = 0, which implies
ordA u = 0. Since this holds for all such A, we see that u must lie in the set
generated by G and F∗p. Conversely, we have G ⊂

√
G and further ap−1 = 1

for a in F∗p shows that F∗p ⊂
√
G, which completes the proof.

We will need to differentiate with respect to t, and we note that the field
of differential constants here is C = Fp(tp) (cf. [L1, pp. 185–186]).

Proposition. The set L(
√
G) is

[ψ0]pΠ
+ ∪ [ψ0]pΠ

− ∪ [ψ0]pΠ̃
+
1 ∪ [ψ0]pΠ̃

−
1 ∪ [ψ0]pΠ̃

+
2 ∪ [ψ0]pΠ̃

−
2 ∪

p−1⋃
a=2

Π(a)

for the points

Π+ = (t, 1− t), Π− = (1− t, t), Π(a) = (a, 1− a)

and

Π̃+
1 =

(
1

t
,−1− t

t

)
, Π̃−1 =

(
−1− t

t
,
1

t

)
,

Π̃+
2 =

(
1

1− t
,− t

1− t

)
, Π̃−2 =

(
− t

1− t
,

1

1− t

)
,

where for p = 2 the union over a must be omitted.

Proof. We must investigate x and y in
√
G with x+ y = 1.

Assume first that the C-vector space Cx+Cy has dimension 2. Using a
dot to indicate the derivative with respect to t, we deduce ẏ/y 6= ẋ/x, else
y/x would be in C. From x+ y = 1 and its derivative (ẋ/x)x+ (ẏ/y)y = 0
we get in the usual way the identities

(2.1) x =
ẏ/y

ẏ/y − ẋ/x
, y =

−ẋ/x
ẏ/y − ẋ/x

.

Now if h = atr(1− t)s is a typical element of
√
G, then

(2.2)
ḣ

h
=
r

t
− s

1− t
=
r − (s+ r)t

t(1− t)
takes just p2 values, which are also the values of −ḣ/h. Since ẏ/y − ẋ/x

in (2.1) is ḣ/h for h = y/x, it follows that x and y are non-zero quotients of
these. But with the help of Lemma 2.1 it is easily seen that such a quotient

x = r′−(s′+r′)t
r−(s+r)t lies in

√
G if and only if ax belongs to the list

(2.3) 1, t, 1− t, 1

t
, −1− t

t
,

1

1− t
, − t

1− t
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for some a in F∗p. The first in this list is ruled out because Cx+Cy = C+Cx

has dimension 2. And then the fact that y = 1− x also lies in
√
G restricts

a = 1. This leads respectively to

(2.4) (x, y) = Π+, Π−, Π̃+
1 , Π̃

−
1 , Π̃

+
2 , Π̃

−
2 .

What if Cx+ Cy = C + Cx = C + Cy has dimension 1?

Then x and y lie in C. If they are both in F∗p, then p ≥ 3 and we get

(x, y) = Π(a).

Otherwise by considering degrees we see that there is a greatest power
q of p with x = x′q and y = y′q for x′ and y′ in K not both in C. Now
x′ + y′ = 1 with x′ and y′ still in

√
G, and Cx′ + Cy′ has dimension 2. It

follows from the above discussion that (x′, y′) is one of (2.4). So taking the
union over all q gives the Proposition.

Now Theorem 1 follows at once because L(G) = L(
√
G)∩G2. Namely if

p ≥ 3 then because of the minus signs only Π+, Π− in (2.4) lie in G2 and a
similar assertion holds for the qth powers implicit in the [ψ0]p; similarly we
can omit the Π(a). However if p = 2 then nothing in (2.4) can be omitted.

3. Preliminaries. Let S be the set of polynomials

(3.1) tr(1− t)s (r ≥ 0, s ≥ 0, r + s ≤ 3)

in Fp[t]. For A in Fp[t] let r(A) be the number of (X,Y ) in S2 with A =
X + Y . The following is the basic reason for our uniformity in p.

Lemma 3.1. Suppose p ≥ 5. Then r(A) = 0, 1, 2 apart from r(A) = 4 for
the following:

A = 1− t+ t2 = t2 + (1− t) = (1− t)2 + t,

A = t(1− t+ t2) = t3 + t(1− t) = t(1− t)2 + t2,

A = (1− t)(1− t+ t2) = t2(1− t) + (1− t)2 = (1− t)3 + t(1− t).

Proof. The analogous assertion for the corresponding set S̃ defined
by (3.1) in Z[t] is readily checked by machine. This means that an equa-

tion Ã = X̃ + Ỹ = Z̃ + W̃ with X̃, Ỹ , Z̃, W̃ in S̃ implies Z̃ = X̃ or Z̃ = Ỹ
except as indicated when Ã is the canonical pullback of one of the three A
shown above.

But now suppose A = X + Y = Z + W in with X,Y, Z,W in S. Each
term tr(1 − t)s has a canonical pullback tr(1 − t)s to S̃ with coefficients of
absolute values at most 3. Then the polynomial P = X̃ + Ỹ − Z̃ − W̃ lies in
pZ[t] and its coefficients have absolute values at most 12. So if p ≥ 13 this
forces P = 0. Now the conclusion for S̃ immediately implies the conclusion
for S.
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One can cover p = 11 by noting that the only element of S̃ with a
coefficient of absolute value 3 is (1− t)3. So if P has a coefficient of absolute
value greater than 10 then at least three of X̃, Ỹ , Z̃, W̃ must be (1 − t)3;
and this forces r(A) ≤ 2.

The cases p = 5, 7 can be checked by hand.

We note that this equation

(3.2) X + Y = Z +W

is invariant under the action of the dihedral group D4 with eight elements
acting on the square with vertices X,Z, Y,W in an anti-clockwise direction.
This group therefore acts on the solutions of (3.2). Let N be the set of
solutions (X,Y, Z,W ) in G4 with

(3.3) {X,Y } 6= {Z,W}, dimC(CX + CY + CZ + CW ) 6= 1,

also stable under this action.

Define an equivalence relation on K∗ by two elements having their quo-
tient in C.

Lemma 3.2. Suppose p ≥ 3. Then every D4-orbit in N contains a point
where the equivalence classes in {X,Y, Z,W} are described by one of

(1) {X,Y }, {Z}, {W},
(2) {X}, {Y }, {Z}, {W},
(3) {Y,W}, {X}, {Z}.

Proof. Take any (X,Y, Z,W ) in N , and let h be the number of classes
in {X,Y, Z,W}. Then h 6= 1 because of the second condition in (3.3).

If h = 4 then we are in case (2) at once.

If h = 3 then there must be two singletons and one pair. Under D4 we
can assume that the pair is either {X,Y } (opposite points of the square) or
{Y,W} (adjacent points), leading to cases (1) and (3).

It remains to exclude h = 2. This could arise from one singleton and one
triplet; but then the equation (3.2) would destroy the singleton. Or we could
have two pairs. Under D4 these could be taken as either {X,Y }, {Z,W}
(opposite points equivalent) or {X,Z}, {Y,W} (adjacent points). The first
means X = αY , Z = βW for α, β in C, but then (1 + α)Y = (1 + β)W ,
forcing α = X/Y = −1 and β = Z/W = −1, which however are not in
G as p ≥ 3. The second means similarly X = αZ, Y = βW but then
(1− α)Z + (1− β)W = 0, forcing α = β = 1 and X = Z, Y = W , contrary
to the first condition in (3.3). This completes the proof.

Lemma 3.3. Suppose that q is a power of p, and u is in K with uq in G.
Then u is in G.
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Proof. By definition u lies in
√
G, so that as we have seen in Lemma 2.1

u = ag for a in F∗p and g in G. But then a = aq = uq/gq lies in G, so a = 1.

Lemma 3.4. Suppose that u, u1 are in K with u1 6= 0 of degree at most 1
and up/u1 in

√
G. Then there is a 6= 0 in Fp such that au1 is one of (2.3).

Further if 1− u1 lies in
√
G then a = 1.

Proof. Let A be any irreducible polynomial of Fp[t] which is not a con-
stant multiple of t, 1− t. Then the corresponding order function satisfies

0 = ordA
up

u1
= p ordA u− ordA u1;

but as |ordA u1| ≤ 1 this implies ordA u1 = 0. Since this holds for all such A
we see that u1 must lie in

√
G, and because it has degree at most 1 we get

the list (2.3) as before.

If further 1−u1 lies in
√
G then a = 1 as we saw during the proof of the

Proposition.

4. Proof of Theorem 2 for p ≥ 5. Now we must investigate x, y and
z in G with x + y − z = 1. This time there are three possibilities for the
dimension d = d(x, y, z) of Cx+ Cy + Cz and we take these in turn.

We have to exploit the symmetry, which becomes clearer by writing
formally

(4.1) x =
X

W
, y =

Y

W
, z =

Z

W

so that the equation x + y − z = 1 is now just (3.2). There is therefore a
D4-action on P (G).

Proposition 1. Suppose p ≥ 5. Then the set P ∗(G) of solutions of the
equation x+ y − z = 1 with d = 3 is D4(Π) with

Π =

(
t,

1− t
t

,
(1− t)2

t

)
.

Proof. We write down x+y−z = 1 and its derivative (ẋ/x)x+(ẏ/y)y−
(ż/z)z = 0 as well as the second derivative (ẍ/x)x + (ÿ/y)y − (z̈/z)z = 0.
There is an associated determinant

∆ =

∣∣∣∣∣∣∣
1 1 −1

ẋ/x ẏ/y −ż/z
ẍ/x ÿ/y −z̈/z

∣∣∣∣∣∣∣ ,
and by multiplying by −xyz we get the Wronskian of x, y, z. Since the latter
are linearly independent over our field C of differential constants, we deduce
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that ∆ 6= 0 (cf. [L2, pp. 174–175]). It follows that

x =
∆x

∆
, y =

∆y

∆
, z =

∆z

∆
for

∆x =

∣∣∣∣∣∣∣
1 1 −1

0 ẏ/y −ż/z
0 ÿ/y −z̈/z

∣∣∣∣∣∣∣ , ∆y =

∣∣∣∣∣∣∣
1 1 −1

ẋ/x 0 −ż/z
ẍ/x 0 −z̈/z

∣∣∣∣∣∣∣ , ∆z =

∣∣∣∣∣∣∣
1 1 1

ẋ/x ẏ/y 0

ẍ/x ÿ/y 0

∣∣∣∣∣∣∣ .
Now using (2.2) for k = ḣ/h and also ḧ/h = k̇ + k2 we see that each of

∆,∆x, ∆y, ∆z has the form

a0 + a1t+ a2t
2 + a3t

3

t3(1− t)3

for a0, a1, a2, a3 in Fp. Therefore each of x, y, z is a rational function of t of
degree at most 3.

In Section 2 it was easy to see when a rational function of degree at
most 1 lies in G. To deal with higher degree we note that tr(1 − t)s has
degree max{|r|, |s|, |r + s|}. This leads to 37 possibilities for (r, s) in Z2.
So all we have to do is check the 373 = 50653 possibilities for (x, y, z) in
x+ y − z = 1 (not forgetting d = 3).

To reduce this work we use again (4.1), now with X,Y, Z,W in Fp[t]
having no common factor. Each can be chosen to have the form tr(1 − t)s
with r ≥ 0, s ≥ 0, r + s ≤ 3. Now there are only ten possibilities for
(r, s), so 104 = 10000 < 50653 in all. However Lemma 3.1 implies Z = X
or Z = Y or A = X + Y is one of the list of three. But Z = X means
z = x contradicting d = 3, and similarly Z 6= Y . Thus X,Y, Z,W are as
in the list. This actually reduces to a single projective (X,Y, Z,W ) under
the action of D4, which can be taken as (t2, 1 − t, (1 − t)2, t). So dividing
by W = t we get our (x, y, z) = Π; and for this d(x, y, z) = 3 is quickly
checked.

Now to the next case d(x, y, z) = 2. Here we need a small modification
of our notation. Our coset Tx is the set of (1, y, y) in K3; we define T ∗x as
the subset with y not in C. Similarly for T ∗y . Further we define

[ψ]∗p =
∞⋃
e=1

ψ−1ϕeψ

as in (1.7) for h = 1 but omitting e = 0.

Proposition 2. Suppose p ≥ 3. Then the set P ∗∗(G) of solutions of the
equation x+ y − z = 1 with d = 2 is

T ∗x (G) ∪ T ∗y (G) ∪
⋃
Π

D4([ψΠ ]∗pΠ)
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with the following five pairs of points and automorphisms:

Π =

(
1,

1− t
t

,
1− t
t

)
, ψΠ(x, y, z) =

(
tx, ty,

t

1− t
z

)
,

Π =

(
1,

1

t
,
1

t

)
, ψΠ(x, y, z) =

(
1− t
t

x, y, (1− t)z
)
,

Π =

(
t2

(1− t)2
,

1

1− t
,

t

(1− t)2

)
, ψΠ(x, y, z) =

(
1− t
t

x, y, (1− t)z
)
,

Π =

(
1,

1

1− t
,

1

1− t

)
, ψΠ(x, y, z) =

(
t

1− t
x, y, tz

)
,

Π =

(
(1− t)2

t2
,
1

t
,
1− t
t2

)
, ψΠ(x, y, z) =

(
t

1− t
x, y, tz

)
.

Proof. Let (x, y, z) be in P ∗∗(G), and use (4.1) with X,Y, Z,W also in G.
The dimension in (3.3) is also dimC(Cx + Cy + Cz + C) = d = 2, so this
part of the condition holds. And {X,Y } = {Z,W} would mean we are not
just in Tx(G) ∪ Ty(G) but even in T ∗x (G) ∪ T ∗y (G) because d 6= 1. Thus we
can assume all of (3.3).

So after adjusting by D4 we can assume by Lemma 3.2 that we are in
one of the cases (1), (2), (3). We take each of these in turn.

In case (1) we have x = αy for some α in C. It follows that

(4.2) (1 + α)y − z = 1.

Further α is in G so α 6= −1. Since 1 + α is a differential constant we can
easily differentiate, and since z/y = Z/Y is not in C, the arguments of the
proof of the Proposition yield

(1 + α)y =
ż/z

ż/z − ẏ/y
, −z =

−ẏ/y
ż/z − ẏ/y

as in (2.1). In particular from (2.2), u1 = (1 + α)y has degree at most 1.
This gives only finitely many possibilities for z = u1 − 1, thus reducing to
finitely many lines M on the plane P . In the context of a general variety V ,
these are the W mentioned at the end of Section 1. However their number
may depend on the characteristic p.

To cut down this dependence we note that there is u inK with up = 1+α,
and then up/u1 = 1/y lies in G. So by Lemma 3.4 there is a 6= 0 in Fp such
that au1 lies in (2.3). The first element in this list is ruled out because in
our case (1), y = Y/W is not in C. And then the fact that −z = 1−u1 also

lies in
√
G restricts a = 1. But actually u1 − 1 = z lies in G, which reduces

the choice to

(4.3) u1 =
1

t
or u1 =

1

1− t
.
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Take first u1 = 1/t. Now temporarily with general coordinates x, y, z,
the line M is defined by the equations x + y − z = 1 and z = (1− t)/t, or
equivalently

x+ y =
1

t
, z =

1− t
t

.

So M ′ = ψ(M) is defined over Fp, where

ψ(x, y, z) =

(
tx, ty,

t

1− t
z

)
is as in the first pair in the list of Proposition 2; in fact if we call this
(x′, y′, z′) then the equations become

(4.4) x′ + y′ = 1, z′ = 1.

Here we see a copy of the line L, and so M ′ has the points (x′, y′, z′) =
(t, 1− t, 1), (1− t, t, 1). These give rise via ψ−1 to points

Π =

(
1,

1− t
t

,
1− t
t

)
,

(
1− t
t

, 1,
1− t
t

)
on ψ−1(M ′) = M , so on P ; note that the first Π here is also as in the first
pair in the list of Proposition 2.

Now we return to our point (x, y, z) of P ∗∗(G), here in M(G). Then
ψ(x, y, z) is in M ′(G) and from (4.4) and Theorem 1 we see that this is one
of

(4.5) (tq, (1− t)q, 1), ((1− t)q, tq, 1) (q = pe, e = 0, 1, 2, . . .).

The first of these is, in the notation of Section 1, just ϕeψ(Π) with the first
ψ above. So we get the family

(F1) (x, y, z) = ψ−1ϕeψ(Π) =

(
tq−1,

(1− t)q

t
,
1− t
t

)
.

Taking the union over all e gives precisely [ψ]p(Π). But in fact x/y = α lies
in C, so q = 1 is excluded and we end up in [ψ]∗p(Π) as in Proposition 2.
The D4-action (which may however take us out of case (1) of Lemma 3.2)
then provides us with the whole D4([ψ]∗p(Π)).

But what if ψ(x, y, z) is the second of (4.5)? Then it is easily seen, in
fact through the interchange of x and y, that we get something in the same
D4-orbit.

We can deal with u1 = 1/(1− t) in (4.3) by noting that K = Fp(t)
has an automorphism ω taking t to 1 − t which preserves P and G and
therefore acts on P (G). It also preserves C and so acts on P ∗∗(G). Now if
u1 = z+1 = 1/(1− t) then ω(z)+1 = 1/t and so for ω(x, y, z) we are in the
case just considered. Therefore ω(x, y, z) lies in D = D4([ψ]∗p(Π)); and by

applying ω−1 = ω we see that (x, y, z) lies in ω(D). However ω(D) = D; for
example we get from (F1) the point ((1− t)q−1, tq/(1− t), t/(1− t)). But in
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terms of (3.2) already (F1) says

tq + (1− t)q = (1− t) + t

and so dividing this by 1− t gives again the same orbit.

Thus case (1) of Lemma 3.2 leads to only the first pair in the list of
Proposition 2.

We next treat the cases (2) and (3). Now x, y are linearly independent
over C and because d = 2 there are α, β in C with

z = αx+ βy. (4.6)

We note that α 6= 0 because z/y = Z/Y is not in C; similarly β 6= 0. Then
for xz = x/z, yz = y/z we get

(4.7) αxz + βyz = 1.

We argue as we did for (4.2). Here yz/xz = y/x is not in C and so we get

(4.8) αxz =
ẏz/yz

ẏz/yz − ẋz/xz
, βyz =

−ẋz/xz
ẏz/yz − ẋz/xz

as in (2.1). In particular x1 = αxz 6= 0, y1 = βyz 6= 0 have degree at most 1.
Note however that α = 1 or β = 1 are not yet excluded (see below).

Substituting (4.6) into x+ y − z = 1 gives

(4.9) (1− α)x+ (1− β)y = 1,

and the same arguments give

(4.10) (1− α)x =
ẏ/y

ẏ/y − ẋ/x
, (1− β)y =

−ẋ/x
ẏ/y − ẋ/x

with u1 = (1− α)x, v1 = (1− β)y of degree at most 1.

Now we have

(4.11) u1 = x− x1z, v1 = y − y1z
(adding up to our original 1 = x + y − z), which again reduces to finitely
many lines in P . Again we must cut down the dependence on p.

Using Lemma 3.4 for α/x1, β/y1 shows that there are a 6= 0, b 6= 0 in Fp
such that ax1, by1 are in the list (2.3). The first element in this list is ruled
out because in our cases (2), (3), x1 = αX/Z, y1 = βY/Z are not in C. And
then the fact that y1 = 1−x1, x1 = 1− y1 also lie in

√
G due to Lemma 2.1

restricts a = 1, b = 1. Thus x1, y1 lie in the sublist

(4.12) t, 1− t, 1

t
, −1− t

t
,

1

1− t
, − t

1− t
of (2.3).

So far we could do both cases (2), (3) of Lemma 3.2 at once. But now
we restrict to (2).
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Then (4.9) yields α 6= 1 and β 6= 1 because y = Y/W and x = X/W are
not in C. So Lemma 3.4 applied to (1− α)/u1, (1− β)/v1 shows that there
are e 6= 0, f 6= 0 in Fp such that eu1, fv1 are in the list (2.3). Again we can
eliminate the first element in the list and restrict to e = 1, f = 1.

In particular u1, v1, as well as x1, y1, lie in the sublist (4.12). This elimi-
nates completely the dependence on p in the equations (4.11). Still, the lines
do not look like L.

But when we write these equations as

(4.13)
x

u1
+

(
−x1z
u1

)
= 1,

y

v1
+

(
−y1z
v1

)
= 1,

then we do after all observe two points on L(
√
G). It follows from the Propo-

sition that there are powers qx, qy of p and points Πx = (ξ, ζx), Πy = (η, ζy)
there such that

(4.14) x = u1ξ
qx , z = −u1

x1
ζqxx , y = v1η

qy , z = −v1
y1
ζ
qy
y .

In particular comparing the z-values gives

(4.15)
ζqxx

ζ
qy
y

=
x1v1
u1y1

.

The right-hand side w here certainly has degree at most 4; but in fact (4.8)
and (4.10) show that

w =

ẋ
x

( ẏ
y −

ż
z

)
ẏ
y

(
ẋ
x −

ż
z

) .
So w has degree at most 2. Furthermore it cannot be constant, because
a quick scribble shows that when two products x1v1, u1y1 of two elements
from (4.12) have constant quotient, they are equal. But w = 1 leads at once
to (ż/z)(ẋ/x− ẏ/y) = 0, which is ruled out in our current case (2).

Now (4.15) implies that at least one of qx, qy must be 1. Otherwise the
left-hand side would be non-constant in C and so have degree at least p > 2.

Suppose for example qx = 1. Then (4.14) shows that ζx/ξ = −α is in C.
Now inspection of the Π in the Proposition shows that this is so only if
Πx = Π(a) = (a, 1−a) (a = 2, . . . , p−1) . But then au1 = x lies in G, which
by inspection of (4.12) forces a = p − 1 and u1 = −(1− t)/t,−t/(1− t)
and x = −u1. Then x1/2 = x1/(1− a) = −u1/z also lies in G, which by
the same inspection forces p = 3 and x1 = −(1− t)/t,−t/(1− t). But as
z = Z/W is not in C and is now u1/x1, we must have x1 = 1/u1 and so

z = u21. Finally this means y = 1− x+ z = 1 + u1 + u21. If u1 = −(1− t)/t
then y = 1/t2 does indeed lie in G; but the resulting point

(x, y, z) =

(
1− t
t

,
1

t2
,
(1− t)2

t2

)
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has d = 3 (see Section 5). Similarly for u1 = −t/(1− t) using for example ω.
And all this means that we find no points of P ∗∗(G) in this case (2).

We finally turn to case (3), which we left halfway through the discussion
above and which implies that y = Y/W is in C. So by (4.10) we have α = 1,
u1 = 0, v1 = 1. Strangely enough it is this somewhat degenerate-looking
case which provides most of the points of P ∗∗(G).

From (4.11) we see now that x1 = x/z lies in G. Inspection of (4.12)
shows that x1 must be in the sublist

(4.16) t, 1− t, 1

t
,

1

1− t
of (4.12). We look at each of these in turn.

Suppose first that x1 = t, so that y1 = 1 − t. Thus from (4.11) we are
now on the line M defined by the equations

(4.17) x = tz, y − (1− t)z = 1.

So M ′ = ψ(M) is defined over Fp, where

(4.18) ψ(x, y, z) =

(
1− t
t

x, y, (1− t)z
)

is as in the second and third pairs in the list of Proposition 2; in fact also
with (x′, y′, z′) the equations become

(4.19) x′ = z′, y′ − z′ = 1.

Here we do not see exactly the line L. However Π̃+
1 and Π̃+

2 lead to the
following solutions over G:

(x′, y′, z′) =

(
1− t
t

,
1

t
,
1− t
t

)
,

(
t

1− t
,

1

1− t
,

t

1− t

)
.

These give rise via ψ−1 to points

Π =

(
1,

1

t
,
1

t

)
,

(
t2

(1− t)2
,

1

1− t
,

t

(1− t)2

)
on ψ−1(M ′) = M , so on P ; note that these are also as in the second and
third pairs in the list of Proposition 2.

Now we return to our point (x, y, z) of P ∗∗(G). Then ψ(x, y, z) is on
M ′(G) and from (4.19) and the Proposition we see that this is one of(

(1− t)q

tq
,

1

tq
,
(1− t)q

tq

)
,

(
tq

(1− t)q
,

1

(1− t)q
,

tq

(1− t)q

)
(q = pe, e = 0, 1, 2, . . .).

Again these are just ϕeψ(Π). The first gives

(F2) (x, y, z) = ψ−1ϕeψ(Π) =

(
(1− t)q−1

tq−1
,

1

tq
,
(1− t)q−1

tq

)
,
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and the second gives

(F3) (x, y, z) = ψ−1ϕeψ(Π) =

(
tq+1

(1− t)q+1
,

1

(1− t)q
,

tq

(1− t)q+1

)
.

Taking the union over all e gives again the [ψ]p(Π). But this time y lies
in C, so q 6= 1 and we end up with the [ψΠ ]∗p(Π) as in Proposition 2. The
D4-action (which as before may take us out of case (3) of Lemma 3.2) then
provides us with the whole D4([ψΠ ]∗p(Π)).

Suppose next that x1 = 1/t in (4.16), so that y1 = −(1− t)/t. Thus from
(4.11) we are now on the line M defined by the equations

x =
1

t
z, y +

1− t
t

z = 1.

So M ′ = ψ(M) is defined over Fp, where

ψ(x, y, z) =

(
(1− t)x, y, 1− t

t
z

)
now is not in the list of Proposition 2; anyway with (x′, y′, z′) the equations
become

x′ = z′, y′ + z′ = 1.

Now we return to our point (x, y, z) of P ∗∗(G). Then ψ(x, y, z) is on
M ′(G) and from the equations immediately above and Theorem 1 we see
that this is one of

(x′, y′, z′) = (tq, (1− t)q, tq), ((1− t)q, tq, (1− t)q) (q = pe, e = 0, 1, 2, . . .).

And via ψ−1 they give(
tq

1− t
, (1− t)q, t

q+1

1− t

)
, ((1− t)q−1, tq, t(1− t)q−1),

again with q = 1 excluded because y is in C.
However these result in the same D4-orbits as the second and third re-

spectively above, which is easily seen by considering (F2) and (F3) respec-
tively in terms of (3.2), namely

t(1− t)q−1 + 1 = (1− t)q−1 + tq,

tq+1 + (1− t) = tq + (1− t)q+1.

Finally we deal with the remaining x1 = 1− t, 1/(1− t) in (4.16) simply
by applying our automorphism ω, which yields on (F2), (F3)

(x, y, z) =

(
tq−1

(1− t)q−1
,

1

(1− t)q
,

tq−1

(1− t)q

)
,(F4)

(x, y, z) =

(
(1− t)q+1

tq+1
,

1

tq
,
(1− t)q

tq+1

)
.(F5)
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corresponding to the fourth and fifth pairs in Proposition 2. This is thereby
proved.

We now prove Theorem 2 for p ≥ 5. Take a point (x, y, z) in P (G), with
as above d = d(x, y, z) = dimC(Cx+Cy+Cz). We already treated the cases
d = 3 and d = 2. The case d = 1 is treated as at the end of the proof of the
Proposition in Section 2. For then x, y, z lie in C. If they are all in F∗p, then
also in F∗p ∩ G, so x = y = z = 1 and we are certainly in Tx(G) ∪ Ty(G).
Otherwise by considering degrees we see that there is a largest power q′ of
p with x = x′q

′
, y = y′q

′
, z = z′q

′
for x′, y′, z′ in K not all in C; and by

Lemma 3.3, x′, y′, z′ are still in G. Now x′ + y′ − z′ = 1 and d(x′, y′, z′) ≥ 2.
It follows from the above discussion that (x′, y′, z′) is as in Proposition 1 or
Proposition 2.

Now in Proposition 2 we see T ∗x , T
∗
y , which on raising to power q′ (q′ =

1, p, p2, . . .) end up in Tx, Ty as in Theorem 2.

We also see various δ([ψΠ ]∗pΠ) for δ in D4. But by going back to pro-
jective X,Y, Z,W it is not difficult to see that this is [ψΠ,δ]

∗
pΠδ for some

ψΠ,δ and Πδ = δ(Π). This is [ψΠ,δ]pΠδ with just Πδ removed. And the set
of q′th powers of elements of [ψΠ,δ]pΠδ is nothing else than [ψ0, ψΠ,δ]pΠδ.
So we get all the [ψ0, ψΠ ]pΠ in Theorem 2 except that it seems that the
q′th powers of the Πδ are missing. However these are supplied by Propo-
sition 1, because the Π there has the same D4-orbit as the third and fifth
Π in Proposition 2.

What about the first, second and fourth Π in Proposition 2? These be-
long anyway in Tx, which we have already taken into account. This completes
the proof.

5. Proof of Theorem 2 for p = 3. We can follow the arguments
of the preceding section, noting that Proposition 2 has been proved for
p = 3 as well. However Proposition 1 fails because Lemma 3.1 fails. Hand
computation yields exactly six further examples with r(A) = 4, which come
from

1 + t(1− t) = (1− t)2 + t2,

t+ t2(1− t) = t(1− t)2 + t3,

(1− t) + t(1− t)2 = (1− t)3 + t2(1− t),
1 + t2(1− t) = (1− t)3 + t2,

1 + t(1− t)2 = (1− t)2 + t3,

t+ (1− t) = (1− t)3 + t3.

Here the second and third equations give rise to the same projective points as
the first, so we may ignore them. Further the fourth, fifth and sixth equations
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do not have d = 3. The first equation produces the point (1/t2, (1− t)/t,
(1− t)2/t2), and its D4-orbit accounts for the extra set T ′ in Theorem 2.

6. Proof of Theorem 2 for p = 2. Now Lemma 3.1 fails quite badly,
and for example there are A with r(A) = 10. But we do not mind this,
because in fact there are no points with d = 3 for [K : C] = 2; so x, y, z
must be linearly dependent over C and we can forget about Proposition 1.

We need the following version of Lemma 3.2, which now involves the
action of the symmetric group S4 on four elements which arises by writing
(3.2) as

(6.1) X + Y + Z +W = 0.

This time let N be the set of solutions (X,Y, Z,W ) in G4 with X,Y, Z,W
all different and

(6.2) dimC(CX + CY + CZ + CW ) 6= 1,

also stable under this action. As before define an equivalence relation on K∗

by two elements having their quotient in C.

Lemma 6.1. Suppose p = 2. Then every S4-orbit in N contains a point
where the equivalence classes in {X,Y, Z,W} are described by one of

(2) {X}, {Y }, {Z}, {W},
(3) {Y,W}, {X}, {Z}.

Proof. Take any (X,Y, Z,W ) in N , and let h be the number of classes
in {X,Y, Z,W}. Then h 6= 1 because of (6.2).

If h = 4 then we are in case (2) at once.

If h = 3 then there must be two singletons and one pair. Under S4 we
can assume that the pair is {Y,W} leading to case (3).

It remains only to exclude h = 2. This could arise from one singleton and
one triplet; but then the equation (6.1) would destroy the singleton. Or we
could have two pairs. Under S4 these could be taken as {X,Z}, {Y,W}. This
means X = αZ, Y = βW for α, β in C, but then (1 + α)Z + (1 + β)W = 0
forcing α = β = 1 and X = Z, Y = W , contrary to the first condition on N .
This completes the proof.

Proposition 3. Suppose p = 2. Then the set P ∗∗(G) of solutions of the
equation x+ y − z = 1 with d = 2 is

T ∗x (G) ∪ T ∗y (G) ∪ T ∗z (G) ∪ S4(Π0) ∪
⋃
Π

S4([ψΠ ]pΠ)

with

Π0 = (t3, (1− t)3, t(1− t))



Linear equations over multiplicative groups 343

and the five Π as in Proposition 2 together with the following four pairs of
points and automorphisms:

Π =

(
t

(1− t)2
,

t

1− t
,

1

(1− t)2

)
, ψΠ(x, y, z) =

(
1− t
t

x, y, (1− t)z
)
,

Π =

(
1− t
t2

,
1− t
t

,
1

t2

)
, ψΠ(x, y, z) =

(
t

1− t
x, y, tz

)
,

Π = (t(1− t), 1− t, t2), ψΠ(x, y, z) =

(
1

1− t
x, y,

1

t
z

)
.

Π = (t(1− t), t, (1− t)2), ψΠ(x, y, z) =

(
1

t
x, y,

1

1− t
z

)
,

Proof. Notice that it is now the full [ψ] that appear, not the [ψ]∗ as
in Proposition 2 for p ≥ 3. But we will follow the proof of Proposition 2
to obtain a kind of Proposition 3∗ with [ψ]∗ instead of [ψ]. The apparent
discrepancy will be explained and eliminated at the end of the proof.

Let (x, y, z) be in P ∗∗(G), and use (4.1) withX,Y, Z,W also inG. The di-
mension in (6.2) is d = 2, so this part of the condition holds. And X,Y, Z,W
not all different would mean we are not just in Tx(G) ∪ Ty(G) ∪ Tz(G) but
even in T ∗x (G)∪T ∗y (G)∪T ∗z (G) because d 6= 1. Thus we can assume that we
are in N .

So after adjusting by S4 we can assume by Lemma 6.1 that we are in the
cases (2), (3). We can follow quite literally many of the previous arguments
of Section 4. Now x, y are linearly independent over C and because d = 2
there are α, β in C with (4.6). We note that α 6= 0 because z/y = Z/Y is
not in C; similarly β 6= 0. Then for xz = x/z, yz = y/z we get (4.7) and we
argue as we did there to get (4.8). Again x1 = αxz 6= 0, y1 = βyz 6= 0 have
degree at most 1.

Substituting (4.6) into x+y−z = 1 gives (4.9), and the same arguments
give (4.10) with u1 = (1− α)x, v1 = (1− β)y of degree at most 1.

Now we have (4.11), but of course no more dependence on p = 2 !

Using Lemma 3.4 on α/x1, β/y1 shows that x1, y1 are in the list (2.3)
since p = 2 and so immediately a = b = 1. The first element in this list
is ruled out because in our cases (2), (3), x1 = αX/Z, y1 = βY/Z are not
in C. Thus x1, y1 lie in the list (4.12).

So far, as in Section 4, we could do both cases (2), (3) at once. But now
we restrict to (2).

Then α 6= 1 and β 6= 1 because y = Y/W and x = X/W are not in C. As
above we find that u1, v1 are in the list (2.3) due to Lemma 3.4 and again
we can eliminate the first element in the list.

In particular u1, v1, as well as x1, y1, lie in (4.12).
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Again we have (4.13) leading to two points on L(
√
G). It follows from

the Proposition that there are powers qx, qy of p and points Πx = (ξ, ζx),
Πy = (η, ζy) there such that (4.14) holds. In particular comparing the z-
values gives (4.15). As in Section 4 the right-hand side w here has degree at
most 2. Furthermore it cannot be constant, because w = 1 leads at once to
(ż/z)(ẋ/x− ẏ/y) = 0, which is ruled out in our current case (2).

Now (4.15) implies that at least one of qx, qy must be 1 or 2. Otherwise
the left-hand side would be non-constant in C and so have degree at least
4 > 2. Suppose first qx = 1. Then (4.14) shows that ζx/ξ = −α is in C. But
inspection of the Π in the Proposition shows that this is impossible. We get
a similar contradiction from qy = 1.

Next suppose qx = 2. Then (4.14) gives x = u1ξ
2, z = (−u1/x1)(1− ξ)2,

which are automatically in G; however we cannot say that y = 1 − x + z
is in G. There are at most six possibilities for each of u1, x1 in (4.12), and
also ξ lies in (4.12), giving at most 63 = 216 possibilities for y in all. This
number can be reduced by noting that for each ξ in (4.12) there is an
automorphism ωξ of K taking t to ξ; for example our earlier ω is ω1−t.
Further ωξ preserves G (we are in characteristic 2) as well as each of the
cases (2), (3). We get an automorphism group Σ3 isomorphic to S3.

Thus by applying ω−1ξ we can assume that ξ = t. Now a short calculation

shows that y is in G in the current case (2) only for u1 = t with x1 =
1−t,−t/(1− t) and for u1 = −(1− t)/t with x1 = 1/t and for u1 = 1/(1− t)
with x1 = −t/(1− t). However only one S4-orbit turns up here, namely that
of Π0.

And if qy = 2 then (4.14) gives y = v1η
2, z = −(v1/y1)(1 − η)2, which

are automatically in G; then a similar argument with x = 1 − y + z gives
again this same S4-orbit of Π0. And because we just used ω−1ξ we should
reverse this by noting that this orbit is even Σ3-invariant.

We finally turn to case (3) with y = Y/W in C. So by (4.10) we have
α = 1, u1 = 0, v1 = 1, x1 = x/z. It is this case which provides the remaining
points of P ∗∗(G).

Thanks to the Σ3-action we can assume that x1 = t, so that y1 = 1− t
and then (4.11) shows that we are now on the line M defined by (4.17). So
M ′ = ψ(M) is defined over Fp, with ψ as in (4.18), which is as in the first
list of Proposition 3, and (4.19) holds.

Since p = 2 we can use Theorem 1 and the points Π+
1 , Π

+
2 give rise

to the families (F2), (F3) as in Section 4. Further the points Π+, Π− lead
again to (F2) and (F3). But Π−2 , Π

−
1 lead to

(x′, y′, z′) =

(
1

1− t
,

t

1− t
,

1

1− t

)
,

(
1

t
,
1− t
t

,
1

t

)
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and via ψ−1 to points

Π =

(
t

(1− t)2
,

t

1− t
,

1

(1− t)2

)
,

(
1

1− t
,
1− t
t

,
1

t(1− t)

)
on ψ−1(M ′) = M , so on P ; note that the first of these is as in the first pair
in the list of Proposition 3.

Now our point (x, y, z) of P ∗∗(G) gives rise to

(F6) (x, y, z) =

(
t

(1− t)q+1
,

tq

(1− t)q
,

1

(1− t)q+1

)
and

(x, y, z) =

(
1

tq−1(1− t)
,
(1− t)q

tq
,

1

tq(1− t)

)
;

however these are in the same S4-orbit, which is easily seen by considering
both in terms of (6.1).

As q = p, p2, . . . still we get from (F6) the first of the sets [ψ]∗p(Π) in the
list in our modified Proposition 3∗. The S4-action then provides us with the
whole S4([ψ]∗p(Π)).

Thus we have ended up with the S4-orbits of (F2), (F3), (F6). But where
have (F1), (F4), (F5) gone, and where are the other three sets in the list of
Proposition 3? Again we have to reverse the Σ3-action. For convenience we
start with (F1).

We find that ω1−t and of course ωt take (F1) into a point in the same
S4-orbit, that ω1/t and ω(1−t)/t take (F1) into a point in the S4-orbit of (F4),
and that ω1/(1−t) and ωt/(1−t) take (F1) into a point in the S4-orbit of (F2).
Thus Σ3 takes the S4-orbit of (F2) also into the S4-orbits of (F1), (F2), (F4),
and similarly for the S4-orbit of (F4). This at least accounts for the missing
(F1) and (F4).

Next let us calculate the Σ3-action on (F3). It yields points in the
S4-orbit of (F5) and (F6) by applying ω1−t and ω1/t respectively. Further
ω1/(1−t) yields what we get by applying our original ω1−t to (F6), namely

(F7)

(
1− t
tq+1

,
(1− t)q

tq
,

1

tq+1

)
,

which corresponds to the second pair in Proposition 3∗. And applying ωt/(1−t)
to (F3) we find something in the S4-orbit of

(F8) (tq(1− t), (1− t)q, tq+1)

which corresponds to the third pair in Proposition 3∗. Finally ω(1−t)/t yields
what we get by applying ω1−t to (F8), which is

(F9) (t(1− t)q, tq, (1− t)q+1)

corresponding to the fourth pair in Proposition 3∗.
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Thus we find that the Σ3-action on the orbits of (F3), (F6) provides the
missing (F5), (F7), (F8), (F9). So indeed everything in Proposition 3∗ has
turned up.

But why is this the same as the original Proposition 3? The discrepancy
lies only in q = 1. We find that the points (F1), (F2), (F4) with q = 1 lie in
the coset Tx. We also find (up to the S4-action) that the points (F3), (F5)
with q = 1 reduce to the point (F1) with q = 2. And (F7), (F8) with q = 1
reduce to (F2) with q = 2. And finally (F6), (F9) with q = 1 reduce to (F4)
with q = 2, which completes the proof of Proposition 3.

We now prove Theorem 2 for p = 2. Take a point (x, y, z) in P (G), with
as above d = d(x, y, z) = dimC(Cx + Cy + Cz). As noted, d 6= 3; and we
already treated d = 2. The case d = 1 is treated as in Section 4. For then
x, y, z lie in C. If they are all in F∗p, then also in F∗p∩G, so x = y = z = 1 and
we are certainly in Tx(G)∪Ty(G)∪Tz(G). Otherwise by considering degrees

we see that there is a greatest power q′ of p with x = x′q
′
, y = y′q

′
, z = z′q

′

for x′, y′, z′ in K not all in C; and by Lemma 3.3, x′, y′, z′ are still in G. Now
x′ + y′ − z′ = 1 and d(x′, y′, z′) ≥ 2. It follows from the above discussion
that (x′, y′, z′) is as in Proposition 3.

Now in Proposition 3 we see T ∗x , T
∗
y , T

∗
z , which on raising to power q′ end

up in Tx, Ty, Tz as in Theorem 2. We also see various σ([ψΠ ]pΠ) for σ in S4.
But as before this is [ψΠ,σ]pΠσ for some ψΠ,σ and Πσ = σ(Π), so the proof
is complete.

Acknowledgments. I wish to thank my research supervisor David
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sentation of the material.
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