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1. Introduction. Given a matrix

Θ =


θ11 · · · θ1m
...

. . .
...

θn1 · · · θnm

 , θij ∈ R, n+m ≥ 3,

consider the system of linear equations

(1.1) Θx = y

with variables x ∈ Rm, y ∈ Rn. The classical measure of how well the space
of solutions to this system can be approximated by integer points is defined
as follows. Let | · | denote the sup-norm in the corresponding space.

Definition 1.1. The supremum of the real numbers γ such that there
are arbitrarily large values of t for which (resp. such that for every t large
enough) the system of inequalities

(1.2) |x| ≤ t, |Θx− y| ≤ t−γ

has a nonzero solution in (x,y) ∈ Zm ⊕ Zn, is called the regular (resp.
uniform) Diophantine exponent of Θ and is denoted by β1 (resp. α1).

This paper is the result of an attempt to generalize this concept to the
case of approximating the space of solutions to (1.1) by p-dimensional ratio-
nal subspaces of Rm+n. Much work in this direction was done by W. Schmidt
in [Sch1]. Later, in [L1], [BL], a corresponding definition was given by
M. Laurent and Y. Bugeaud in the case when m = 1. Their definition
enabled them to split the classical Khintchine transference principle into
a chain of inequalities for intermediate exponents. However, the way we de-
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fined α1 and β1 naturally suggests a generalization, which appears to be
different from Laurent’s:

Definition 1.2. The supremum of the real numbers γ such that there
are arbitrarily large values of t for which (resp. such that for every t large
enough) the system of inequalities

(1.3) |x| ≤ t, |Θx− y| ≤ t−γ

has p solutions zi = (xi,yi) ∈ Zm ⊕ Zn, i = 1, . . . , p, linearly independent
over Z, is called the pth regular (resp. uniform) Diophantine exponent of the
first type of Θ and is denoted by βp (resp. αp).

In Section 2 we propose a definition of intermediate exponents of the
second type, which is consistent with Laurent’s. In Sections 3, 4 we for-
mulate our main results on these quantities. Sections 5, 6 are devoted to
the exponents naturally emerging in parametric geometry of numbers de-
veloped by W. Schmidt and L. Summerer in [SchS]. Those exponents are
closely connected to the Diophantine exponents, and in Sections 7, 8 we
describe this connection. It allows reformulating our main results in terms
of Schmidt–Summerer’s exponents, which is accomplished in Section 9. Fi-
nally, in Section 10, we use this point of view to prove the theorems given
in Section 4.

It should be noticed that all our “splitting” results are obtained for the
exponents of the second type. It is an interesting question whether anything
of this kind can be done with the exponents of the first type.

2. Laurent’s exponents and their generalization. Set d = m+ n.
Denote by `̀̀1, . . . , `̀̀d the columns of the matrix(

Em −Θᵀ

Θ En

)
,

where Em and En are the corresponding unit matrices and Θᵀ is the trans-
pose of Θ. Clearly, L = spanR(`̀̀1, . . . , `̀̀m) is the space of solutions to the
system (1.1), and L⊥ = spanR(`̀̀m+1, . . . , `̀̀d). Denote also by e1, . . . , ed the
columns of the d× d unit matrix Ed.

The following definition is a slight modification of Laurent’s.

Definition 2.1. Let m = 1. The supremum of the real numbers γ such
that there are arbitrarily large values of t for which (resp. such that for every
t large enough) the system of inequalities

(2.1) |Z| ≤ t, |̀`̀1 ∧ Z| ≤ t−γ

has a nonzero solution in Z ∈
∧p(Zd) is called the pth regular (resp. uniform)

Diophantine exponent of the second type of Θ and is denoted by bp (resp. ap).
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Here Z ∈
∧p(Rd), `̀̀1 ∧Z ∈

∧p+1(Rd) and for each q we consider
∧q(Rd)

as a
(
d
q

)
-dimensional Euclidean space with the orthonormal basis consisting

of the multivectors

ei1 ∧ · · · ∧ eiq , 1 ≤ i1 < · · · < iq ≤ d,
and denote by | · | the sup-norm with respect to this basis.

Laurent denoted the exponents bp, ap as ωp−1, ω̂p−1, respectively, and
showed that for p = 1 they coincide with β1, α1. He also noticed that one
does not have to require Z to be decomposable in Definition 2.1, which
essentially simplifies working in

∧p(Rd).
In order to generalize Definition 2.1 let us set for each σ = {i1, . . . , ik},

1 ≤ i1 < · · · < ik ≤ d,

(2.2) Lσ = `̀̀i1 ∧ · · · ∧ `̀̀ik ,
denote by Jk the set of all k-element subsets of {1, . . . ,m}, k = 0, . . . ,m,
and set L∅ = 1.

Let us also set k0 = max(0,m− p).
Definition 2.2. The supremum of the real numbers γ such that there

are arbitrarily large values of t for which (resp. such that for every t large
enough) the system of inequalities

(2.3) max
σ∈Jk

|Lσ ∧ Z| ≤ t1−(k−k0)(1+γ), k = 0, . . . ,m,

has a nonzero solution in Z ∈
∧p(Zd) is called the pth regular (resp. uniform)

Diophantine exponent of the second type of Θ and is denoted by bp (resp. ap).

We have intended to make Definition 2.2 look as simple as possible.
However, it will be more convenient to work with in the multilinear algebra
setting after it is slightly reformulated. To give the desired reformulation let
us set for each σ = {i1, . . . , ik}, 1 ≤ i1 < · · · < ik ≤ d,

(2.4) Eσ = ei1 ∧ · · · ∧ eik ,

denote by J ′k the set of all k-element subsets of {m+1, . . . , d}, k = 0, . . . , n,
and set E∅ = 1.

Set also k1 = min(m, d− p).
Proposition 2.3. The inequalities (2.3) can be replaced by

(2.5) max
σ∈Jk

σ′∈J ′d−p−k

|Lσ ∧Eσ′ ∧ Z| ≤ t1−(k−k0)(1+γ), k = k0, . . . , k1.

Proof. The inequality (2.3) is trivial for k > k1. Suppose that k ≤ k1
and set q = k+p. Consider a d×q matrix M with columns m1, . . . ,mq ∈ Rd
and set M = m1 ∧ · · · ∧mq. If σ′ = {i1, . . . , id−q} ∈ J ′d−q, then

|M ∧Eσ′ | = |det(m1, . . . ,mq, ei1 , . . . , eid−q)|
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is up to sign the (q×q)-determinant involving the jth rows of M with j /∈ σ′.
The components of M are up to sign exactly these determinants, so

(2.6) |M| = max
σ′∈J ′d−q

|M ∧Eσ′ |.

By linearity, (2.6) remains valid if M is replaced by any element of
∧q(Rd),

in particular, by Lσ ∧ Z. Therefore,

|Lσ ∧ Z| = max
σ′∈J ′d−p−k

|Lσ ∧ Z ∧Eσ′ |,

which implies the desired statement.

For p = 1 Definition 2.2 coincides with Definition 1.1, i.e. β1 = b1 and
α1 = a1. This is seen from the following

Proposition 2.4. The quantity β1 (resp. α1) equals the supremum of
the real numbers γ such that there are arbitrarily large values of t for which
(resp. such that for every t large enough) the system of inequalities

(2.7) |z| ≤ t, |L ∧ z| ≤ t−γ ,
where L = `̀̀1 ∧ · · · ∧ `̀̀m, has a nonzero solution in z ∈ Zd.

Proof. The parallelepiped in Rd defined by (1.2) can be written as

Mγ(t) =
{
z ∈ Rd

∣∣∣ max
1≤j≤m

|〈ej , z〉| ≤ t, max
1≤i≤n

|〈`̀̀m+i, z〉| ≤ t−γ
}
,

where 〈 ·, · 〉 denotes the inner product in Rd.
The vectors `̀̀m+1, . . . , `̀̀d form a basis of the orthogonal complement of L.

Therefore, since the Euclidean norm of L∧z equals the (m+1)-dimensional
volume of the parallelepiped spanned by `̀̀1, . . . , `̀̀m, z, we have

|L ∧ z| � max
1≤i≤n

|〈`̀̀m+i, z〉|,

with the implied constant depending only on Θ. Moreover,

|z| � max
(

max
1≤j≤m

|〈ej , z〉|, max
1≤i≤n

|〈`̀̀m+i, z〉|
)

where the implied constant again depends only on Θ.
Hence there is a positive constant c, depending only on Θ, such that the

set M ′γ(t) defined by (2.7) satisfies

c−1Mγ(t) ⊆M ′γ(t) ⊆ cMγ(t),

at least for t ≥ 1, γ ≥ 0, which immediately implies the desired result.

3. Known transference inequalities. The transference principle con-
nects the problem of approximating the space of solutions to (1.1) to the
analogous problem for the system

(3.1) Θᵀy = x.
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Let us denote by β∗p , α∗p, b∗p, a∗p the intermediate Diophantine exponents
corresponding to Θᵀ.

The classical transference inequalities estimating b1 in terms of b∗1, and
a1 in terms of a∗1, belong to A. Ya. Khintchine, V. Jarńık, F. Dyson, and
A. Apfelbeck. We recall that β1 = b1, α1 = a1, β

∗
1 = b∗1, α

∗
1 = a∗1, as shown

at the end of the previous section.

3.1. Regular exponents. In [Kh] A. Ya. Khintchine proved for m = 1
his famous transference inequalities

(3.2) b∗1 ≥ nb1 + n− 1, b1 ≥
b∗1

(n− 1)b∗1 + n
,

which were generalized later by F. Dyson [D], who proved that for arbitra-
ry n, m,

(3.3) b∗1 ≥
nb1 + n− 1

(m− 1)b1 +m
.

While (3.2) cannot be improved (see [J1], [J2]) if only b1 and b∗1 are consid-
ered, stronger inequalities can be obtained if a1 and a∗1 are also taken into
account. The corresponding result for m = 1 belongs to M. Laurent and
Y. Bugeaud (see [L2], [BL]). They proved that if the system (1.1) has no
non-zero integer solutions, then

(3.4)
(a∗1 − 1)b∗1

((n− 2)a∗1 + 1)b∗1 + (n− 1)a∗1
≤ b1 ≤

(1− a1)b
∗
1 − n+ 2− a1
n− 1

.

The above inequalities were generalized by the author in [G], where it was
proved for arbitrary n, m that if the space of integer solutions of (1.1) is
not a one-dimensional lattice, then along with (3.3) we have

b∗1 ≥
(n− 1)(1 + b1)− (1− a1)

(m− 1)(1 + b1) + (1− a1)
,(3.5)

b∗1 ≥
(n− 1)(1 + b−11 )− (a−11 − 1)

(m− 1)(1 + b−11 ) + (a−11 − 1)
,(3.6)

with (3.5) stronger than (3.6) if and only if a1 < 1.

3.2. Uniform exponents. V. Jarńık and A. Apfelbeck proved literal
analogues of (3.2) and (3.3) for the uniform exponents, i.e. with b1, b∗1
replaced by a1, a∗1, respectively (see [J3], [A]). They also obtained some
stronger inequalities of a more cumbersome appearance. Among them, lonely
in its elegance, stands the equality

(3.7) a−11 + a∗1 = 1
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proved by Jarńık for n = 1, m = 2. The results of Jarńık and Apfelbeck
were improved by the author in [G], where it was shown that for arbitrary
n, m we have

(3.8) a∗1 ≥


n− 1

m− a1
if a1 ≤ 1,

n− a
−1
1

m− 1
if a1 ≥ 1.

3.3. Khintchine’s inequalities split. Laurent and Bugeaud used the
exponents bp to split (3.2) into a chain of inequalities relating bp to bp+1.
Namely, they proved that for m = 1 we have b∗1 = bn and

(3.9) bp+1 ≥
(n− p+ 1)bp + 1

n− p
, bp ≥

pbp+1

bp+1 + p+ 1
, p = 1, . . . , n− 1.

Moreover, they proved for m = 1 that if the system (1.1) has no non-zero
integer solutions, then a∗1 = an and

(3.10) b2 ≥
b1 + a1
1− a1

, bn−1 ≥
1− a−1n

b−1n + a−1n
,

which, combined with (3.9), gives (3.4).

4. Main results for intermediate Diophantine exponents. In this
paper we generalize (3.9) and its analogue for the uniform exponents to the
case of arbitrary n, m. We show (see Proposition 8.6 in Section 8) that

(4.1) b∗p = bd−p, a∗p = ad−p, p = 1, . . . , d− 1,

and prove

Theorem 4.1. For each p = 1, . . . , d− 2 the following statements hold:

If p ≥ m, then

(d− p− 1)(1 + bp+1) ≥ (d− p)(1 + bp),(4.2)

(d− p− 1)(1 + ap+1) ≥ (d− p)(1 + ap).(4.3)

If p ≤ m− 1, then

(d− p− 1)(1 + bp)
−1 ≥ (d− p)(1 + bp+1)

−1 − n,(4.4)

(d− p− 1)(1 + ap)
−1 ≥ (d− p)(1 + ap+1)

−1 − n.(4.5)

The second result of the current paper generalizes (3.10). We prove

Theorem 4.2. Suppose that the space of integer solutions of (1.1) is
not a one-dimensional lattice. Then for m = 1 we have

(4.6) b2 ≥
b1 + a1
1− a1

,
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and for m ≥ 2 we have

(4.7) b2 ≥


a1 − 1

2 + b1 − a1
if a1 6=∞,

1− a−11

b−11 + a−11

.

The inequality (4.6) is exactly the first inequality of (3.10). The second
inequality of (4.7), in view of (4.1), gives the second inequality of (3.10).

It follows from Theorem 4.1 that for m ≥ 2,

(4.8) (d− 2)(1 + bd−1)
−1 ≤ (1 + b2)

−1 +m− 2.

Combining this inequality with (4.7) we get (3.5) and (3.6) in case m ≥ 2.
The third result of this paper splits the inequalities (3.8):

Theorem 4.3. For m = 1 we have

(4.9) a2 ≥ (1− a1)
−1 − n− 2

n− 1
.

For m ≥ 2 we have

(4.10) a2 ≥


n− 1

−n− (d− 2)(1− a1)−1
if a1 ≤ 1,

m− 1

n+ (d− 2)(a1 − 1)−1
if a1 ≥ 1.

Let us show that Theorem 4.3 splits (3.8) the very same way Theorem
4.2 splits (3.5) and (3.6). It follows from Theorem 4.1 that for m = 1,

(4.11) 1 + an ≥ (n− 1)(1 + a2),

and for m ≥ 2,

(4.12) (d− 2)(1 + ad−1)
−1 ≤ (1 + a2)

−1 +m− 2.

Combining (4.12) with (4.10), we get (3.8) for m ≥ 2. As for m = 1, we
always have a1 ≤ 1 in this case, so (4.9) and (4.11) indeed give (3.8) with
m = 1.

5. Schmidt–Summerer’s exponents. Let Λ be a unimodular d-di-
mensional lattice in Rd. Denote by Bd∞ the unit ball in sup-norm, i.e. the cube
with vertices at the points (±1, . . . ,±1). For each d-tuple τττ = (τ1, . . . , τd)
∈ Rd denote by Dτττ the diagonal d× d matrix with eτ1 , . . . , eτd on the main
diagonal. Let also λp(M) denote the pth successive minimum of a compact
symmetric convex body M ⊂ Rd (centered at the origin) with respect to the
lattice Λ.

Suppose we have a path T in Rd defined as τττ = τττ(s), s ∈ R+, such that

(5.1) τ1(s) + · · ·+ τd(s) = 0 for all s.
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In our further applications to Diophantine approximation we shall confine
ourselves to a path that is a ray with endpoint at the origin and all the
functions τ1(s), . . . , τd(s) being linear. However, in this section, as well as in
the next one, all the definitions and statements are given for arbitrary paths
and lattices.

Set B(s) = Dτττ(s)Bd∞. For each p = 1, . . . , d consider the functions

ψp(Λ,T, s) =
ln(λp(B(s)))

s
, Ψp(Λ,T, s) =

p∑
i=1

ψi(Λ,T, s).

Definition 5.1. We call the quantities

ψp(Λ,T) = lim inf
s→+∞

ψp(Λ,T, s), ψp(Λ,T) = lim sup
s→+∞

ψp(Λ,T, s)

the pth lower and upper Schmidt–Summerer exponents of the first type, re-
spectively.

Definition 5.2. We call the quantities

Ψp(Λ,T) = lim inf
s→+∞

Ψp(Λ,T, s), Ψp(Λ,T) = lim sup
s→+∞

Ψp(Λ,T, s)

the pth lower and upper Schmidt–Summerer exponents of the second type,
respectively.

Sometimes, when it is clear from the context which lattice and which
path are under consideration, we shall write simply ψp(s), Ψp(s), ψp, ψp,

Ψp, and Ψp.
The following proposition and its corollaries generalize some of the ob-

servations made in [SchS] and [BL].

Proposition 5.3. For any Λ and T we have

(5.2) 0 ≤ −Ψd(s) = O(s−1).

In particular,

(5.3) Ψd = Ψd = 0.

Proof. Due to (5.1) the volumes of all the parallelepipeds B(s) are 2d,
so by Minkowski’s second theorem we have

1

d!
≤

d∏
i=1

λi(B(s)) ≤ 1.

Hence

− ln(d!)

s
≤

d∑
i=1

ψi(s) ≤ 0,

which immediately implies (5.2).
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Corollary 5.4. For every p with 1 ≤ p ≤ d − 2 and every s > 0 we
have

(5.4)
p+ 1

p
Ψp(s) ≤ Ψp+1(s) ≤

d− p− 1

d− p
Ψp(s).

Proof. In view of (5.2), it follows from the inequalities ψi(s) ≤ ψi+1(s),
i = 1, . . . , d− 1, that

1

p

p∑
i=1

ψi(s) ≤ ψp+1(s) ≤
−1

d− p

p∑
i=1

ψi(s),

which immediately implies (5.4).

Taking the lim inf and the lim sup of all terms in (5.4), we get

Corollary 5.5. For any Λ and T and any p with 1 ≤ p ≤ d − 2 we
have

(5.5)
p+ 1

p
Ψp ≤ Ψp+1 ≤

d− p− 1

d− p
Ψp and

p+ 1

p
Ψp ≤ Ψp+1 ≤

d− p− 1

d− p
Ψp.

Next, applying (5.5) we get

Corollary 5.6. For any Λ and T we have

(5.6) (d− 1)Ψ1 ≤ Ψd−1 ≤
Ψ1

d− 1
and (d− 1)Ψ1 ≤ Ψd−1 ≤

Ψ1

d− 1
.

Another simple corollary to Proposition 5.3 is the following statement:

Corollary 5.7. For any Λ and T we have

(5.7) Ψd−1 = −ψd and Ψd−1 = −ψd.

As we shall see later, the first inequalities of (5.6) generalize Khintchine’s
and Dyson’s transference inequalities.

6. Schmidt–Summerer’s exponents of the second type from the
point of view of multilinear algebra. As before, let us consider

∧p(Rd)
as the

(
d
p

)
-dimensional Euclidean space with the orthonormal basis consist-

ing of the multivectors

ei1 ∧ · · · ∧ eip , 1 ≤ i1 < · · · < ip ≤ d.
Let us order the set of p-element subsets of {1, . . . , d} lexicographically and
denote the jth subset by σj . To each d-tuple τττ = (τ1, . . . , τd) let us associate
the r-tuple

(6.1) τ̂ττ = (τ̂1, . . . , τ̂r), τ̂j =
∑
i∈σj

τi, r =

(
d

p

)
.
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Thus, a path T : s → τττ(s) leads (6.1) to the path T̂ : s → τ̂ττ(s) satisfying
the condition

τ̂1(s) + . . .+ τ̂r(s) = 0 for all s.

Finally, to a given lattice Λ ⊂ Rd, we associate the lattice Λ̂ =
∧p(Λ)

consisting of all linear combinations with integer coefficients of multivectors
v1 ∧ · · · ∧ vp such that v1, . . . ,vp ∈ Λ.

Proposition 6.1. For any Λ and T we have

Ψp(Λ,T) = Ψ1(Λ̂, T̂) = ψ1(Λ̂, T̂) and Ψp(Λ,T) = Ψ1(Λ̂, T̂) = ψ1(Λ̂, T̂).

Proof. Let us denote by λi(M) the ith successive minimum of a body

M with respect to Λ if M ⊂ Rd and with respect to Λ̂ if M ⊂
∧p(Rd).

The matrix Dτ̂ττ is the pth compound of Dτττ :

Dτ̂ττ = D
(p)
τττ .

This means that Dτ̂ττBr∞ is comparable to Mahler’s pth compound convex
body of DτττBd∞ (see [M]), i.e. there is a positive constant c, depending only
on d, such that

(6.2) c−1Dτ̂ττBr∞ ⊂ [DτττBd∞](p) ⊂ cDτ̂ττBr∞.

In [Sch2] the set Dτ̂ττBr∞ is called the pth pseudo-compound parallelepiped for
DτττBd∞.

It follows from Mahler’s theory of compound bodies that

(6.3) λ1([DτττBd∞](p)) �
p∏
i=1

λi(DτττBd∞)

with the implied constants depending only on d. Combining (6.2) and (6.3)
we get

ln(λ1(Dτ̂ττ(s)Br∞)) =

p∑
i=1

ln(λi(Dτττ(s)Bd∞)) +O(1),

whence

ψ1(Λ̂, T̂, s) =

p∑
i=1

ψi(Λ,T, s) + o(1).

It remains to take the lim inf and the lim sup of both sides as s→∞.

7. Diophantine exponents in terms of Schmidt–Summerer’s ex-
ponents. Let `̀̀1, . . . , `̀̀d, e1, . . . , ed be as in Section 2. Set

T =

(
Em 0

Θ En

)
.
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Then

(T−1)
ᵀ

=

(
Em −Θᵀ

0 En

)
,

so the bases `̀̀1, . . . , `̀̀m, em+1, . . . , ed and e1, . . . , em, `̀̀m+1, . . . , `̀̀d are dual to
each other.

Let us specify a lattice Λ and a path T as follows. Set

(7.1)

Λ = T−1Zd = {(〈e1, z〉, . . . , 〈em, z〉, 〈`̀̀m+1, z〉, . . . , 〈`̀̀d, z〉
)ᵀ
∈ Rd | z ∈ Zd}

and define T : s 7→ τττ(s) by

(7.2) τ1(s) = · · · = τm(s) = s, τm+1(s) = · · · = τd(s) = −ms/n.
Schmidt–Summerer’s exponents ψp, ψp corresponding to such Λ and T and
the exponents βp, αp are but two different points of view at the same phe-
nomenon. The same can be said about Ψp, Ψp and bp, ap. This manifests
itself in the following two propositions.

Proposition 7.1. We have

(7.3) (1 + βp)(1 + ψp) = (1 + αp)(1 + ψp) = d/n.

Proof. The parallelepiped in Rd defined by (1.2) can be written as

Mγ(t) =
{
z ∈ Rd

∣∣∣ max
1≤j≤m

|〈ej , z〉| ≤ t, max
1≤i≤n

|〈`̀̀m+i, z〉| ≤ t−γ
}
,

where 〈 · , · 〉 is the inner product in Rd.
Therefore, βp (resp. αp) equals the supremum of the real numbers γ such

that there are arbitrarily large values of t for which (resp. such that for every
t large enough) the parallelepiped Mγ(t) contains p linearly independent
integer points.

Hence, considering the parallelepipeds

(7.4)

Pγ(t) = T−1Mγ(t) =
{
z ∈ Rd

∣∣∣ max
1≤j≤m

|〈ej , z〉| ≤ t, max
1≤i≤n

|〈em+i, z〉| ≤ t−γ
}
,

we see that

(7.5)
βp = lim sup

t→+∞
{γ ∈ R | λp(Pγ(t)) = 1}, αp = lim inf

t→+∞
{γ ∈ R | λp(Pγ(t)) = 1},

where λp(Pγ(t)) is the pth minimum of Pγ(t) with respect to Λ.
But Pm/n(t) = Dτττ(ln t)Bd∞, so

(7.6)

ψp(Λ,T) = lim inf
t→+∞

ln(λp(Pm/n(t)))

ln t
, ψp(Λ,T) = lim sup

t→+∞

ln(λp(Pm/n(t)))

ln t
.
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A simple calculation shows that

Pγ(t) = t
m−nγ
d Pm/n(t

n+nγ
d ),

i.e.

λp(Pγ(t)) = (t′)
−m+nγ
n+nγ λp(Pm/n(t′))

with t′ = t(n+nγ)/d. Therefore, the equality

λp(Pγ(t)) = 1

holds if and only if

1− d

n+ nγ
+

ln(λp(Pm/n(t′)))

ln t′
= 0.

Hence, in view of (7.5), (7.6), we get

βp = lim sup
t→+∞

{
d

n

(
1 +

ln(λp(Pm/n(t)))

ln t

)−1
− 1

}
=
d

n
(1 + ψp)

−1 − 1,

αp = lim inf
t→+∞

{
d

n

(
1 +

ln(λp(Pm/n(t)))

ln t

)−1
− 1

}
=
d

n
(1 + ψp)

−1 − 1,

which immediately implies (7.3).

Proposition 7.2. Set κp = min
(
p, mn (d− p)

)
. Then

(7.7) (1 + bp)(κp + Ψp) = (1 + ap)(κp + Ψp) = d/n.

Proof. Let Lσ, Eσ, Jk, J ′k be as in Section 2.
Since T−1`̀̀i = ei and T−1ej = ej for 1 ≤ i ≤ m and m+ 1 ≤ j ≤ d, we

have

(7.8) (T−1)(k+k
′)(Lσ ∧Eσ′) = Eσ ∧Eσ′ for each σ ∈ Jk, σ′ ∈ J ′k′ ,

where (T−1)(k+k
′) is the (k + k′)th compound of T−1. Furthermore, since

Λ = T−1Zd, we have

(7.9) Λ̂ =
∧p(Λ) = (T−1)(p)(

∧p(Zd)).
Hence for each Z ∈

∧p(Zd) and each σ ∈ Jk, σ′ ∈ J ′d−p−k (with k0 ≤ k ≤ k1)
we get

(7.10) |Lσ∧Eσ′ ∧Z| = |(T−1)(d−p)(Lσ∧Eσ′)∧ (T−1)(p)Z| = |Eσ∧Eσ′ ∧Z′|,

where Z′ ∈ Λ̂. Here, besides (7.8), (7.9), we have made use of the fact that

for every V ∈
∧p(Rd), W ∈

∧d−p(Rd) the wedge product V ∧W is a real
number and

|V ∧W| = |T (p)V ∧ T (d−p)W|,
provided detT = 1.

We conclude from (7.10) and Proposition 2.3 that bp (resp. ap) equals
the supremum of the real numbers γ such that there are arbitrarily large
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values of t for which (resp. such that for every t large enough) the system
of inequalities

(7.11) max
σ∈Jk

σ′∈J ′d−p−k

|Eσ ∧Eσ′ ∧ Z| ≤ t1−(k−k0)(1+γ), k = k0, . . . , k1,

has a non-zero solution in Z ∈ Λ̂.

The inequalities (7.11) define the parallelepiped

(7.12) P̂γ(t) =
{
Z ∈

∧p(Rd)
∣∣∣ max

σ∈Jm−k
σ′∈J ′p−m+k

|〈Eσ ∧Eσ′ ,Z〉| ≤ t1−(k−k0)(1+γ),

k = k0, . . . , k1

}
,

where 〈 · , · 〉 is the inner product in
∧p(Rd). By analogy with (7.5) we can

write

(7.13)

bp = lim sup
t→+∞

{γ ∈ R | λ1(P̂γ(t)) = 1},

ap = lim inf
t→+∞

{γ ∈ R | λ1(P̂γ(t)) = 1},

where λ1
(
P̂γ(t)

)
is the first minimum of P̂γ(t) with respect to Λ̂.

Consider the path T̂ defined by (6.1) for T. Then

τ̂j(s) =
∑
i∈σj

τi(s),

and if σj ∩ {1, . . . ,m} ∈ Jm−k, we have

τ̂j(s) = (m− k)s− (p− (m− k))m

n
s =

(
d

n
(k0 − k) + κp

)
s

= (1− (k − k0)(1 + γ0)) ln t,

where

t = eκps, γ0 =
d

nκp
− 1.

Hence

(7.14) P̂γ0(t) = Dτ̂ττ(s)Br∞,

where, as before, r =
(
d
p

)
.

Thus, similar to (7.6), we get

(7.15)

ψ1(Λ̂, T̂) = lim inf
t→+∞

κp ln(λ1(P̂γ0(t)))

ln t
,

ψ1(Λ̂, T̂) = lim sup
t→+∞

κp ln(λ1(P̂γ0(t)))

ln t
.
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The rest of the argument is very much the same as the corresponding
part of the proof of Proposition 7.1. Let us observe that

P̂γ(t) = t
1− 1+γ

1+γ0 P̂γ0(t
1+γ
1+γ0 ).

This implies that

λ1(P̂γ(t)) = (t′)
1− 1+γ0

1+γ λ1(P̂γ0(t′))

with t′ = t
1+γ
1+γ0 . Therefore, the equality

λ1(P̂γ(t)) = 1

holds if and only if

1− 1 + γ0
1 + γ

+
ln(λ1(P̂γ0(t′)))

ln t′
= 0.

Hence, in view of (7.13), (7.15), we get

bp = lim sup
t→+∞

{
(1 + γ0)

(
1 +

ln(λ1(P̂γ0(t)))

ln t

)−1
− 1

}
= (1 + γ0)(1 + κ−1p ψ1(Λ̂, T̂))−1 − 1

and

ap = lim inf
t→+∞

{
(1 + γ0)

(
1 +

ln(λ1(P̂γ0(t)))

ln t

)−1
− 1

}
= (1 + γ0)(1 + κ−1p ψ1(Λ̂, T̂))−1 − 1.

Thus,

(1 + bp)(κp + ψ1(Λ̂, T̂)) = (1 + ap)(κp + ψ1(Λ̂, T̂)) = d/n.

It remains to apply Proposition 6.1.

Remark 7.3. It follows from (7.14) that the volume of P̂γ0(t) is equal

to 2r. Hence, by Minkowski’s convex body theorem, P̂γ0(t) contains a non-

zero point of Λ̂. Thus, taking into account (7.13), we get

bp ≥ ap ≥ γ0 =
d

nκp
− 1,

or in terms of Schmidt–Summerer’s exponents,

−κp ≤ Ψp ≤ Ψp ≤ 0.

8. Transposed system. The subspace spanned by `̀̀m+1, . . . , `̀̀d is the
space of solutions to the system

−Θᵀy = x.
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As we noticed in Section 2, it coincides with the orthogonal complement L⊥.
Denote by β∗p , α∗p, b

∗
p, a

∗
p the corresponding pth regular and uniform Dio-

phantine exponents of the first and of the second types for Θᵀ. Obviously,
they coincide with the ones corresponding to −Θᵀ. The lattice constructed
for −Θᵀ the very same way Λ was constructed for Θ, would be(

En 0

Θᵀ Em

)
Zd.

But transposing the first n and the last m coordinates turns this lattice into(
Em Θᵀ

0 En

)
Zd = T ᵀZd = Λ∗,

which is the lattice dual for Λ. For this reason with Θᵀ we shall associate Λ∗.
Now, the most natural way to specify the path determining Schmidt–Sum-
merer’s exponents associated to Θᵀ is to take into account the coordinate
permutation just mentioned and consider the path T∗ : s → τττ∗(s) defined
by

(8.1) τ∗1 (s) = · · · = τ∗m(s) = −ns/m, τ∗m+1(s) = · · · = τ∗d (s) = s.

Denoting

ψ∗p = ψp(Λ
∗,T∗), ψ

∗
p = ψp(Λ

∗,T∗),

Ψ∗p = Ψp(Λ
∗,T∗), Ψ

∗
p = Ψp(Λ

∗,T∗),

we see that any statement proved for an arbitrary Θ concerning the quan-
tities βp, αp, bp, ap, ψp, ψp, Ψp, Ψp remains valid if Θ is replaced by Θᵀ,

and the quantities n, m, βp, αp, bp, ap, ψp, ψp, Ψp, Ψp are replaced by m,

n, β∗p , α∗p, b
∗
p, a

∗
p, ψ

∗
p, ψ

∗
p, Ψ

∗
p, Ψ

∗
p, respectively. In particular, the analogues

of Propositions 7.1, 7.2 hold:

Proposition 8.1. We have

(8.2) (1 + β∗p)(1 + ψ∗p) = (1 + α∗p)(1 + ψ
∗
p) = d/m.

Proposition 8.2. Set κ∗p = min
(
p, nm(d− p)

)
. Then

(8.3) (1 + b∗p)(κ∗p + Ψ∗p) = (1 + a∗p)(κ∗p + Ψ
∗
p) = d/m.

Further, same as (7.6), we get

(8.4)

ψ∗p = lim inf
t→+∞

ln(λ∗p(Pm/n(t−n/m)))

ln t
, ψ

∗
p = lim sup

t→+∞

ln(λ∗p(Pm/n(t−n/m)))

ln t
,

where λ∗p denotes the pth minimum with respect to Λ∗.

Let us show that ψ∗p, ψ
∗
p are closely connected with ψd−p, ψd−p (which,

as before, are related to Λ and the path T defined by (7.2)). It follows from
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the definition of Pγ(t) that there is a positive constant c, depending only
on Θ, such that

c−1Pγ(t−1) ⊆ Pγ(t)∗ ⊆ cPγ(t−1),

where Pγ(t)∗ is the polar reciprocal body for Pγ(t). Furthermore, it follows
from Mahler’s theory that

λ∗p(Pγ(t)∗)λd+1−p(Pγ(t)) � 1

with the implied constants depending only on d. Hence

(8.5) λ∗p(Pγ(t−1))λd+1−p(Pγ(t)) � 1.

Combining (8.4), (8.5) and (7.6) with p replaced by d+ 1− p we get

Proposition 8.3. We have

ψ∗p = − n
m
ψd+1−p and ψ

∗
p = − n

m
ψd+1−p.

Corollary 8.4. We have

(1 + β∗p)(m− nψd+1−p) = (1 + α∗p)(m− nψd+1−p) = d.

Proof. Follows from Propositions 8.1 and 8.3.

Corollary 8.5. We have

αd+1−pβ
∗
p = 1 and α∗d+1−pβp = 1.

Proof. Follows from Proposition 7.1 and Corollary 8.4.

In order to obtain the corresponding relations between the exponents of
the second type, let us go in the opposite direction and prove

Proposition 8.6. We have

bp = b∗d−p and ap = a∗d−p.

Proof. Let Lσ, Eσ, Jk, J ′k be as in Section 2.
We recall that the bases `̀̀1, . . . , `̀̀m, em+1, . . . , ed and e1, . . . , em, `̀̀m+1,

. . . , `̀̀d are dual to each other. So, if σ ∈ Jk, σ′ ∈ J ′k′ , then

∗(Lσ ∧Eσ′) = ±Eσ ∧ Lσ′ ,

where ∗ denotes the Hodge star operator,

σ = {1, . . . ,m} \ σ, σ′ = {m+ 1, . . . , d} \ σ′,
and the sign depends on the parity of the corresponding permutation. Hence
for any σ ∈ Jk, σ′ ∈ J ′d−p−k, and any Z ∈

∧p(Zd) we have

|Lσ ∧Eσ′ ∧ Z| = |Eσ ∧ Lσ′ ∧ ∗Z|.
Thus,

(8.6) max
σ∈Jk

σ′∈J ′d−p−k

|Lσ ∧Eσ′ ∧ Z| = max
σ′∈J ′p−m+k

σ∈Jm−k

|Lσ′ ∧Eσ ∧ ∗Z|

for each Z ∈
∧p(Zd).
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Set k∗0 = max(0, n − (d − p)), k∗1 = min(n, p). Then k∗0 = k0 + p − m,
k∗1 = k1 + p −m, and the inequalities k0 ≤ k ≤ k1 are equivalent to k∗0 ≤
p−m+ k ≤ k∗1. Therefore, it follows from (8.6) that (2.5) is equivalent to

(8.7) max
σ′∈J ′k
σ∈Jp−k

|Lσ′ ∧Eσ ∧ ∗Z| ≤ t1−(k−k
∗
0)(1+γ), k = k∗0, . . . , k

∗
1.

It remains to apply Proposition 2.3 and the fact that ∗(
∧p(Zd)) =∧d−p(Zd).

Corollary 8.7. Set κ∗∗p = min
(
d− p, mn p

)
= m

n κ
∗
p. Then

(1 + b∗p)(κ∗∗p + Ψd−p) = (1 + a∗p)(κ∗∗p + Ψd−p) = d/n.

Proof. Follows from Propositions 7.2 and 8.6.

Corollary 8.8. We have

Ψ∗p =
n

m
Ψd−p and Ψ

∗
p =

n

m
Ψd−p.

Proof. Follows from Proposition 8.2 and Corollary 8.7.

9. Main results in terms of Schmidt–Summerer’s exponents. It
is interesting to rewrite (3.3) in terms of Schmidt–Summerer’s exponents.
By Propositions 8.6 and 7.2 it becomes simply

(9.1) Ψd−1 ≤
Ψ1

d− 1
,

which is one of the statements of Corollary 5.6. But we already have an
intermediate variant of this inequality! It is

(9.2)
Ψp+1

d− p− 1
≤ Ψp
d− p

,

one of the statements of Corollary 5.5. Rewriting the corresponding state-
ments of Corollary 5.5 with Λ and T defined by (7.1), (7.2) in terms of the
intermediate Diophantine exponents gives Theorem 4.1.

As we see, describing the splitting of Dyson’s and Apfelbeck’s inequal-
ities in terms of Schmidt–Summerer’s exponents given by Corollary 5.5 is
much more elegant than in terms of Diophantine exponents. Another at-
traction is its universality for all values of n, m whose sum is equal to d.
Moreover, Corollary 5.5 holds actually for arbitrary lattices and paths, while
Theorem 4.1 is bound to the specific choice of those.

Let us now translate Theorems 4.2, 4.3 into the language of Schmidt–
Summerer’s exponents. We recall that, as noticed in Remark 7.3,

−1 ≤ Ψ1 ≤ Ψ1 ≤ 0.
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Theorem 4.2 turns into

Theorem 9.1. Suppose that the space of integer solutions of (1.1) is
not a one-dimensional lattice. Then

(9.3) Ψ2 ≤


2Ψ1 + d

Ψ1 − Ψ1

n+ nΨ1

if Ψ1 6= −1,

2Ψ1 + d
Ψ1 − Ψ1

m− nΨ1

.

Similarly, Theorem 4.3 turns into

Theorem 9.2. We have

(9.4) Ψ2 ≤


(d− 2)Ψ1

(n− 1) + nΨ1

if Ψ1 ≥
m− n

2n
,

(d− 2)Ψ1

(m− 1)− nΨ1

if Ψ1 ≤
m− n

2n
.

As we see, this point of view relieves us of singling out the case m = 1.
In the next section we prove Theorems 9.1 and 9.2.

10. Proofs of Theorems 9.1 and 9.2. Let Λ and T be as in (7.1) and
(7.2). The following observation is crucial to proving Theorems 9.1 and 9.2.

Lemma 10.1. Suppose that s, s′ ∈ R+ satisfy the conditions

λ1(B(s))B(s) ⊆ λ1(B(s′))B(s′),(10.1)

λ1(B(s′)) = λ2(B(s′)).(10.2)

Then

(10.3) ψ2(s) ≤


ψ1(s) + d · ψ1(s

′)− ψ1(s)

n+ nψ1(s′)
if s′ ≤ s and ψ1(s

′) 6= −1,

ψ1(s) + d · ψ1(s
′)− ψ1(s)

m− nψ1(s′)
if s′ ≥ s.

Proof. If s = s′, then by (10.2) we have ψ1(s) = ψ2(s), which implies
(10.3). So, we may suppose that s 6= s′.

We recall that

B(s) =
{
z = (z1, . . . , zd)

ᵀ ∈ Rd
∣∣∣ max
1≤j≤m

|zj | ≤ es, max
1≤i≤n

|zi| ≤ e−ms/n
}
.

Thus, (10.1) means that

(10.4) λ1(B(s))es ≤ λ1(B(s′))es
′
, λ1(B(s))e−ms/n ≤ λ1(B(s′))e−ms

′/n.

Applying the first inequality of (10.4) for s′ < s and the second for s′ > s,
we get in each case
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(10.5) λ1(B(s)) < λ1(B(s′)).

The inequalities (10.4) cannot both be strict, for this would conflict with
the definition of the first minimum. Thus, in view of (10.5), it follows from
(10.4) that for s′ < s we have

(10.6) λ1(B(s))es = λ1(B(s′))es
′
, λ1(B(s))e−ms/n < λ1(B(s′))e−ms

′/n,

and for s′ > s we have

(10.7) λ1(B(s))es < λ1(B(s′))es
′
, λ1(B(s))e−ms/n = λ1(B(s′))e−ms

′/n.

There are some non-zero lattice points on the boundaries of both λ1(B(s))B(s)
and λ1(B(s′))B(s′), while there are no such points in their interiors. But the
first m components of each point of Λ are integers (see (7.1)), so both sides
of the equality in (10.6) should be equal to a positive integer. As for the
equality in (10.7), its sides should both be less than 1, since λ1(B(s)) ≤ 1
by Minkowski’s convex body theorem. Thus,

λ1(B(s))es = λ1(B(s′))es
′ ≥ 1 if s′ < s,

λ1(B(s))e−ms/n = λ1(B(s′))e−ms
′/n < 1 if s′ > s,

or equivalently,

(10.8)
s(1 + ψ1(s)) = s′(1 + ψ1(s

′)) ≥ 0 if s′ < s,

s(ψ1(s)−m/n) = s′(ψ1(s
′)−m/n) < 0 if s′ > s.

Furthermore, it is clear that

B(s′) ⊂
{
e−m(s′−s)/nB(s) if s′ < s,

es
′−sB(s) if s′ > s.

Hence, in view of (10.2), it follows that

λ2(B(s))e−ms/n ≤ λ2(B(s′))e−ms
′/n = λ1(B(s′))e−ms

′/n if s′ < s,

λ2(B(s))es ≤ λ2(B(s′))es
′

= λ1(B(s′))es
′

if s′ > s,

or in other words,

(10.9)
s(ψ2(s)−m/n) ≤ s′(ψ1(s

′)−m/n) if s′ < s,

s(1 + ψ2(s)) ≤ s′(1 + ψ1(s
′)) if s′ > s.

Now, dividing the corresponding inequality in (10.9) by the corresponding
equality in (10.8) (naturally excluding the case ψ1(s

′) = −1), we get (10.3).

For each z = (z1, . . . , zd)
ᵀ ∈ Rd and each s > 0 let us set

µs(z) = e−s max
1≤i≤m

|zi| and νs(z) = ems/n max
m<i≤d

|zi|.

Then

B(s) = {z ∈ Rd | µs(z) ≤ 1, νs(z) ≤ 1}.
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The parallelepiped λ1(B(s))B(s) contains no non-zero points of Λ in its
interior and contains at least one pair of such points on its boundary. Choose
any of these points and denote it by vs. Obviously, the maximum of the
quantities µs(vs), νs(vs) equals λ1(B(s)).

Corollary 10.2. For each s > 0 such that

(10.10) µs(vs) = νs(vs) = λ1(B(s)),

there are s′, s′′ > 0 such that

s(1 + ψ1(s)) ≤ s′ ≤ s ≤ s′′ ≤ s(1− (n/m)ψ1(s))

and

(10.11) Ψ2(s) ≤


2ψ1(s) + d

ψ1(s
′)− ψ1(s)

n+ nψ1(s′)
if ψ1(s

′) 6= −1,

2ψ1(s) + d
ψ1(s

′′)− ψ1(s)

m− nψ1(s′′)
.

Proof. Let us show that the relation µs(vs) = λ1(B(s)) implies the
existence of an s′ ≤ s satisfying the conditions of Lemma 10.1. Denote
λ = λ1(B(s)). Let

Pν = {z ∈ Rd | µs(z) ≤ λ, νs(z) ≤ νλ}
be the minimal (with respect to inclusion) parallelepiped containing no non-
zero points of Λ in its interior. The existence of such a parallelepiped follows
from Minkowski’s convex body theorem. It also implies that 1 ≤ ν ≤ λ−d/n.
Then

λB(s) ⊆ Pν = λ′B(s′),

where λ′ = λνn/d, s′ = s− (n/d) ln ν. For λ′, s′ we have

λ′ ≥ λ, s+ lnλ ≤ s′ ≤ s.
On the other hand, Pν contains non-collinear points of Λ on its boundary,
so λ1(B(s′)) = λ2(B(s′)) = λ′. Thus, s, s′ satisfy (10.1) and (10.2).

Now let us consider the relation νs(vs) = λ1(B(s)). By Minkowski’s
convex body theorem there is a µ with 1 ≤ µ ≤ λ−d/m such that the
parallelepiped

Qµ = {z ∈ Rd | µs(z) ≤ µλ, νs(z) ≤ λ}
contains no non-zero points of Λ in its interior, but contains non-collinear
points of Λ on its boundary. Then

λB(s) ⊆ Qµ = λ′′B(s′′),

where λ′′ = λµm/d, s′′ = s+ (n/d) lnµ. For λ′′, s′′ we have

λ′′ ≥ λ, s ≤ s′′ ≤ s− (n/m) lnλ.

Moreover, s, s′′ also satisfy (10.1), (10.2), since λ1(B(s′′)) = λ2(B(s′′)) = λ′′.
It remains to apply Lemma 10.1.
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Having Corollary 10.2, it is now easy to prove Theorem 9.1.

First, let us notice that if the system (1.1) has a non-zero integer solution,
then it has two linearly independent integer solutions, so in this case Ψ1 =
Ψ1 = −1, Ψ2 = −2, which implies (9.3).

Next, suppose that the system (1.1) has no non-zero integer solutions.
Then there are infinitely many local minima of ψ1(s), each of them satisfies
(10.10), and the sequence of these local minima tends to ∞. Moreover, s′

and s′′ from Corollary 10.2 tend to ∞ as s tends to ∞. Indeed, since (1.1)
has no non-zero integer solutions, we have

es(1+ψ1(s)) = esλ1(B(s)) = λ1(e
−sB(s))→∞ as s→∞,

so

(10.12) s(1 + ψ1(s))→∞ as s→∞.
In particular, it follows from (10.12) that ψ1(s) is eventually greater than
−1 (it can actually be shown that ψ1(s) > −1 starting from the second local
minimum point of ψ1(s)). Therefore,

(10.13) Ψ2 ≤ lim inf Ψ2(s) ≤


2 lim inf ψ1(s) + d lim sup

ψ1(s
′)− ψ1(s)

n+ nψ1(s′)
,

2 lim inf ψ1(s) + d lim sup
ψ1(s

′′)− ψ1(s)

m− nψ1(s′′)
,

where the lim inf and the lim sup are taken over the set of local minima
of ψ1(s). Since ψ1(s) is never positive, both denominators in (10.13) are
eventually positive. Therefore, (10.13) implies (9.3).

Corollary 10.3. Suppose that the system (1.1) has no non-zero integer
solutions. Then for each s > 0 there is an s′ > 0 such that s(1 + ψ1(s)) ≤
s′ ≤ s(1− (n/m)ψ1(s)) and

(10.14) Ψ2(s) ≤


(d− 2)ψ1(s

′)

(n− 1) + nψ1(s′)
if ψ1(s

′) ≥ m− n
2n

,

(d− 2)ψ1(s
′)

(m− 1)− nψ1(s′)
if ψ1(s

′) ≤ m− n
2n

.

Proof. Assume that µs(vs) = λ1(B(s)). Then the same argument as in
the proof of Corollary 10.2 shows that there is an s′, such that s(1+ψ1(s)) ≤
s′ ≤ s and

(10.15) Ψ2(s) ≤ 2ψ1(s) + d
ψ1(s

′)− ψ1(s)

n+ nψ1(s′)

unless ψ1(s
′) = −1. By Corollary 5.4 we have

(10.16)
d− 1

d− 2
Ψ2(s) ≤ ψ1(s) ≤

1

2
Ψ2(s).
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If ψ1(s
′) = −1, then (10.16) implies (10.14). Suppose that ψ1(s

′) 6= −1.
Then, taking into account that

2− d

n+ nψ1(s′)
≥ 0 if and only if ψ1(s

′) ≥ m− n
2n

,

we conclude from (10.15) and (10.16) that

(10.17) Ψ2(s) ≤


2ψ1(s

′) if ψ1(s
′) ≥ m− n

2n
,

(d− 2)ψ1(s
′)

(m− 1)− nψ1(s′)
if ψ1(s

′) ≤ m− n
2n

.

Assume now that νs(vs) = λ1(B(s)). Then the same argument as in
the proof of Corollary 10.2 shows that there is an s′′ such that s ≤ s′′ ≤
s(1− (n/m)ψ1(s)) and

(10.18) Ψ2(s) ≤ 2ψ1(s) + d
ψ1(s

′′)− ψ1(s)

m− nψ1(s′′)
.

Taking into account that

2− d

m− nψ1(s′′)
≥ 0 if and only if ψ1(s

′′) ≤ m− n
2n

,

we conclude from (10.18) and (10.16) that

(10.19) Ψ2(s) ≤


(d− 2)ψ1(s

′′)

(n− 1) + nψ1(s′′)
if ψ1(s

′′) ≥ m− n
2n

,

2ψ1(s
′′) if ψ1(s

′′) ≤ m− n
2n

.

Since ψ1(s
′) and ψ1(s

′′) are negative, we have

2ψ1(s
′) ≤ (d− 2)ψ1(s

′)

(n− 1) + nψ1(s′)
if ψ1(s

′) ≥ m− n
2n

,

2ψ1(s
′′) ≤ (d− 2)ψ1(s

′′)

(m− 1)− nψ1(s′′)
if ψ1(s

′′) ≤ m− n
2n

.

Therefore, (10.17) and (10.19) imply the desired statement.

Deriving Theorem 9.2 from Corollary 10.3 is even easier than deriving
Theorem 9.1 from Corollary 10.2.

If the system (1.1) has a non-zero integer solution, then Ψ1 = −1 < m−n
2n ,

and (9.4) follows from (5.5). Suppose now that (1.1) has no non-zero integer
solutions. Then it follows from (10.12) that s′ from Corollary 10.3 tends
to ∞ as s tends to ∞. Hence, taking lim sup of both sides in (10.14), we
get (9.4).
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