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1. Introduction. Egyptian fractions or unit fractions have been exten-
sively studied (see [1], [8], [14, D11], [17]). Some studies concern the question
which fractions can be written as a sum of k unit fractions, others restrict
the denominators, still others count the number of solutions. In particular,
solutions of the diophantine equation 1 =

∑k
i=1 1/xi have been extensively

studied. Sierpiński [22] noted that there is a solution with distinct odd in-
tegers, and Breusch [24] and Stewart [25] independently proved that each
fraction a/b with odd denominator can be written as a finite sum of distinct
unit fractions with odd denominators. More recently Shiu [20] and Bur-
shtein [5] proved that the equation

∑9
i=1 1/xi = 1 has only five solutions

in distinct odd numbers that can be easily found with a computer. Moti-
vated by this, let To(k) denote the number of solutions of

∑k
i=1 1/xi = 1

in odd numbers 1 < x1 < · · · < xk. It is easy to see that To(k) = 0 for all
even values of k. One natural problem is: how large can To(k) be for odd k?
In this paper we present a lower bound for To(k) which grows faster than
exponentially.

The literature contains many results either stating that there are solu-
tions of

∑k
i=1 1/xi = 1 of a special type, which is an indication that the

equation has many solutions, or stating that certain types of solutions can-
not exist, or bounding the number of solutions. For example, Martin [17]

showed that
∑k

i=1 1/xi = 1 has solutions in which a dense set of possible de-
nominators occur. Croot [8] showed that for any r-colouring of the positive

integers there is a monochromatic solution of
∑k

i=1 1/xi = 1. This is some
measure of saying the equation has many solutions, and these are closely
interlinked, as otherwise one could construct a bad colouring.
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In 2007 Z. W. Sun [26] conjectured the following strengthening of this:
If A ⊂ N is a set of positive upper asymptotic density, then there is a finite
subset {x1, . . . , xk} of A such that

∑k
i=1 1/xi = 1.

In this paper we examine for which set of primes there is a solution of
the diophantine equation

∑k
i=1 1/xi = 1 for which all denominators have

the given prime factors only, and we give upper and lower bounds on the
number of these solutions. We introduce the following notation. Let N0 be
the set of all nonnegative integers. For distinct primes p1, . . . , pt, let

S(p1, . . . , pt) = {pα1
1 · · · p

αt
t | αi ∈ N0, i = 1, 2, . . . , t}

and let Tk(p1, . . . , pt) be the number of solutions of
∑k

i=1 1/xi = 1 with
1 < x1 < · · · < xk and xi ∈ S(p1, . . . , pt) (1 ≤ i ≤ k).

As a very special case Burshtein [6] proved that the equation
∑11

i=1 1/xi
= 1 with 1 < x1 < · · · < x11 and xi ∈ {3α5β7γ : α, β, γ ∈ N0} (1 ≤ i ≤ 11)
has exactly 17 solutions, in other words T11(3, 5, 7) = 17.

In this paper we establish a necessary and sufficient condition on the
set {p1, . . . , pt} of primes for a solution to exist, and give upper and lower
bounds of exponential type on Tk(p1, . . . , pt). The upper bounds are stronger
than those that would follow from Evertse’s result [11] on S-unit equations.
(For details see the next section.)

There is a closely related problem, where not all denominators are nec-
essarily distinct. Let us review some known results on counting such solu-
tions. Let U(k) denote the number of solutions of

∑k
i=1 1/xi = 1 in integers

1 ≤ x1 ≤ · · · ≤ xk. Erdős, Graham and Straus (unpublished but see [10,
p. 32]) proved that

ek
2−ε

< U(k) < c2
k

0 ,

where c0 = 1.264085 . . . . Sándor [19] improved this to

eck
3/log k ≤ U(k) ≤ c(1+ε)2

k−1

0 , k ≥ k0.
The upper bound was recently improved by Browning and Elsholtz [4] to

U(k) ≤ c(5/48+ε)2
k

0 , k ≥ k0.
Finally, let us remark that the problem of representing 1 as a sum of unit

fractions with restricted prime factors in the denominators is closely related
to so called “pseudoperfect” numbers. A number is called pseudoperfect if it
is the sum of some of its divisors. For example, Sierpiński [23] observed that

945 = 315 + 189 + 135 + 105 + 63 + 45 + 35 + 27 + 15 + 9 + 7,

which is equivalent to a decomposition already stated by Sierpiński in [22],

1 =
1

3
+

1

5
+

1

7
+

1

9
+

1

15
+

1

21
+

1

27
+

1

35
+

1

63
+

1

105
+

1

135
.

Observe that the denominators have the prime factors 3, 5 and 7 only.
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2. Statement of results. In this paper we prove the following results.

Theorem 2.1. For k ≥ 4 we have

To(2k + 1) ≥ (
√

2)(k+1)(k−4).

Let p1, . . . , pt be distinct primes. Define

K(p1, . . . , pt) = {k : Tk(p1, . . . , pt) ≥ 1}.
By Lemma 4.1, if k, l ∈ K(p1, . . . , pt), then k+l−1 ∈ K(p1, . . . , pt). Observe
that for l ∈ K(p1, . . . , pt), the infinite arithmetic progression a(l − 1) + 1 is
contained in K(p1, . . . , pt).

Theorem 2.2. Let p1, . . . , pt be distinct primes. Then

(a) K(p1, . . . , pt) is a union of finitely many arithmetic progressions;
(b) there are two constants k0 =k0(p1, . . . , pt) and c1 =c1(p1, . . . , pt)>1

such that for all k > k0 with k ∈ K(p1, . . . , pt) we have

ck1 ≤ Tk(p1, . . . , pt) ≤
√

2
tk2(1+ok(1))

.

It should be remarked that Evertse’s [11] important work on S-unit
equations treats a related but more general question. The general bound
provided by Evertse would only give a weaker upper bound of (235k2)k

3t.

If t = 1, there are no solutions, as
∑k

i=1 1/pi < 1. On the other hand, if
the xi are not assumed to be distinct, then very precise asymptotic results
are known: see for example Boyd [3], Elsholtz, Heuberger and Prodinger [9].

Now let t ≥ 2 and let

A = S(p1, . . . , pt) \ {1} = {a1 < a2 < · · · }.
Then

∞∑
i=1

1

ai
=

(
1 +

1

p1
+

1

p21
+ · · ·

)
· · ·
(

1 +
1

pt
+

1

p2t
+ · · ·

)
− 1

=
p1

p1 − 1
· · · pt

pt − 1
− 1.

As we are studying finite sums of unit fractions, and as the denominator 1
is discarded from consideration, a necessary condition for K(p1, . . . , pt) to
be nonempty is

(2.1)
p1

p1 − 1
· · · pt

pt − 1
> 2.

It is interesting that this necessary condition (2.1) is also sufficient:

Theorem 2.3. Let p1, . . . , pt be distinct primes. Then K(p1, . . . , pt) is

nonempty (that is, a solution to
∑k

i=1 1/xi = 1 of any length exists with
1 < x1 < · · · < xk and all xi in S(p1, . . . , pt)) if and only if the inverse sum
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of the elements in S(p1, ..., pt) is more than 2, that is,

p1
p1 − 1

· · · pt
pt − 1

> 2.

For a set B of numbers, let

P (B) =
{∑
a∈I

a
∣∣∣ I ⊆ B, 0 < |I| <∞

}
denote the set of finite subset sums. For a set B of nonzero numbers, let

B−1 = {b−1 | b ∈ B}.

In order to prove Theorem 2.3, we make use of well known results of
Graham [13, Theorem 5] and Birch [2], and observe that 1, or more generally
a/b, can be decomposed into a finite sum of distinct reciprocals for a more
general type of integer sequences. Graham’s original hypotheses are different,
we adapt his work to our applications. We prove the following theorem.

Theorem 2.4. Let A = {a1 < a2 < · · · } be a sequence of positive
integers such that

(a) A is complete, i.e. all sufficiently large integers are contained in
P (A);

(b) A is multiplicative, i.e. for all i, j with ai, aj ∈ A, also aiaj ∈ A;
(c)

∑∞
j=i+1 1/aj ≥ 1/ai for all i ≥ 1.

Then p/q ∈ P (A−1), where (p, q) = 1, if and only if

(d) p/q <
∑∞

i=1 1/ai;
(e) q divides some term of A.

This implies the following corollary:

Corollary 2.5. Let A = {a1 < a2 < · · · } be a sequence of integers
with a1 > 1 such that

(a) A is complete;
(b) A is multiplicative;
(c)

∑∞
i=1 1/ai > 1.

Then 1 ∈ P (A−1).

We pose the following problem for future research.

Problem 2.6. Let p1, . . . , pt be distinct primes. Is there a constant V
depending only on p1, . . . , pt such that

Tk(p1, . . . , pt) ≤ V k?
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Finally, we give two special results.

Theorem 2.7.

(a) Tk(3, 5, 7) ≥ c1
√

62
k

for a computable constant c1 > 0 and any odd
number k ≥ 11;

(b) Tk(2, 3, 5) ≥ c2
√

368
k

for a computable constant c2 > 0 and any
integer k ≥ 3.

3. Proof of Theorem 2.1. In order to prove Theorem 2.1, we establish
a relation between To(2k−1) and To(2k+1), which inductively gives a bound
for an arbitrary odd number of fractions. For this purpose we first establish
the following lemma.

Lemma 3.1. If n is odd, then the number of solutions of

1

n
=

1

u
+

1

v
+

1

w
, n < u < v < w, 2 - uvw, d(w) ≥ 2d(n) + 1,

is at least 1
2d(n) − 1. (Here d(n) denotes the number of positive divisors

of n.)

Proof. Recall that the number of ways to write an integer n as a sum
of two squares is r2(n) = 4(d1(n) − d3(n)), where di(n) is the number of
positive divisors d of n with d ≡ i (mod 4) (i = 1, 3) (see [15, Theorem 278
and (16.9.2)] or [18, Theorem 14.3]): As r2(n) is a nonnegative integer it
follows that d1(n) ≥ d3(n) and d1(n) ≥ 1

2d(n).

Let k > 1 be a positive divisor of n of the form 4l + 1. Let

u = n+ 2, v =
1

2k
n(n+ 2)(k + 1), w =

1

2
n(n+ 2)(k + 1).

Then
1

n
=

1

u
+

1

v
+

1

w
, n < u < v < w, 2 - uvw.

Since (k + 1)/2 > 1 is an integer and (n, n+ 2) = 1, we have

d(w) = d(n(n+ 2)(k + 1)/2) ≥ d(n(n+ 2)) + 1 = d(n)d(n+ 2) + 1

≥ 2d(n) + 1.

Proof of Theorem 2.1. Let T ′o(2k+ 1) denote the number of solutions of∑2k+1
i=1 1/xi = 1 in odd numbers 1 < x1 < · · · < x2k+1 with d(x2k+1) > 2k.

Suppose that 1 < x1 < · · · < x2k−1 (k ≥ 5) is a solution of
∑2k−1

i=1 1/xi = 1 in
odd numbers with d(x2k−1) > 2k−1. By Lemma 3.1 the number of solutions
of

1

x2k−1
=

1

u
+

1

v
+

1

w
, x2k−1 < u < v < w, 2 - uvw, d(w) ≥ 2d(x2k−1) + 1,
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is at least 1
2d(x2k−1)− 1. Since

d(w) ≥ 2d(x2k−1) + 1 > 2k,
1

2
d(x2k−1)− 1 ≥ 1

2
(2k−1 + 1)− 1 = 2k−2 − 1

2
,

the number of solutions of
1

x2k−1
=

1

u
+

1

v
+

1

w
, x2k−1 < u < v < w, 2 - uvw, d(w) > 2k

is at least 2k−2. Hence

T ′o(2k + 1) ≥ 2k−2T ′o(2k − 1).

By [20], [21] (see also [5]) there exist nine odd numbers 1 < x1 < · · · < x9
with x9 = 10395 and

9∑
i=1

1

xi
= 1.

Since d(10395) = 32, we have T ′o(9) ≥ 1. Thus

T ′o(2k + 1) ≥ 2k−2T ′o(2k − 1) ≥ · · · ≥ 2(k−2)+(k−3)+···+(5−2)T ′o(9)

≥ 2
1
2
(k+1)(k−4).

Hence To(2k + 1) ≥ (
√

2)(k+1)(k−4).

4. Proof of Theorem 2.2. For distinct primes p1, . . . , pt, we define
Tk(p1, . . . , pt) to be the set of all solutions (x1, . . . , xk) of

k∑
i=1

1

xi
= 1, 1 < x1 < · · · < xk, xi ∈ S(p1, . . . , pt).

Define

(x1, . . . , xk) ∗ (y1, . . . , yl) = (x1, . . . , xk−1, xky1, . . . , xkyl)

and
(a1, . . . , ak)

i = (a1, . . . , ak)
i−1 ∗ (a1, . . . , ak), i ≥ 2.

It is clear that if (x1, . . . , xk)∈Tk(p1, . . . , pt) and (y1, . . . , yl)∈Tl(p1, . . . , pt),
then

(4.1) (x1, . . . , xk) ∗ (y1, . . . , yl) ∈ Tk+l−1(p1, . . . , pt).
The following lemma gives a recursive lower bound:

Lemma 4.1. Let p1, . . . , pt be distinct primes. Then, for any two positive
integers k and l, we have

Tk+l−1(p1, . . . , pt) ≥ Tk(p1, . . . , pt)Tl(p1, . . . , pt).
Proof. We define a map

f : Tk(p1, . . . , pt)× Tl(p1, . . . , pt)→ Tk+l−1(p1, . . . , pt)
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as follows:

(x1, . . . , xk)× (y1, . . . , yl) 7→ (x1, . . . , xk) ∗ (y1, . . . , yl).

It is clear that f is injective. Now Lemma 4.1 follows immediately.

Lemma 4.2. Let p1, . . . , pt be distinct primes. If we have (x1, . . . , xk) ∈
Tk(p1, . . . , pt) and (y1, . . . , yl) ∈ Tl(p1, . . . , pt) with xl−1k 6= yk−1l , then

T(k−1)(l−1)+1(p1, . . . , pt) ≥ 2.

Proof. By (4.1) we have

(x1, . . . , xk)
l−1, (y1, . . . , yl)

k−1 ∈ T(k−1)(l−1)+1(p1, . . . , pt).

Since xl−1k , yk−1l are the largest elements of (x1, . . . , xk)
l−1, (y1, . . . , yl)

k−1

respectively, by xl−1k 6= yk−1l we have

(x1, . . . , xk)
l−1 6= (y1, . . . , yl)

k−1.

Hence T(k−1)(l−1)+1(p1, . . . , pt) ≥ 2.

The following lemma is an extension of a well known theorem of Birch [2].
The possibility for this extension was already mentioned by Davenport and
Birch (see [2] and [16]). Hegyvári [16] gave an explicit value on C(p, q). The
upper bound on C(p, q) was recently improved by Fang [12] and further
improved by Chen and Fang [7].

Lemma 4.3 (Hegyvári [16]). For any integers p, q with p, q > 1 and
(p, q) = 1, there exists C = C(p, q) such that the set

YC = {pαqβ | α, β ∈ N0, 0 ≤ β ≤ C}

is complete. That is, every sufficiently large integer is the sum of distinct
terms taken from YC .

Lemma 4.4. Let p1, . . . , pt be distinct primes. If Tk(p1, . . . , pt) ≥ 1 for
some k, then Tl(p1, . . . , pt) ≥ 2 for some l.

Proof. Let (x1, . . . , xk) ∈ Tk(p1, . . . , pt). It is clear that xk is not a prime
power. Therefore, there exist two distinct primes p, q ∈ {p1, . . . , pt} with
pq |xk. Let C be as in Lemma 4.3. Take a large v > C such that qv is the
sum of distinct terms taken from YC . Assume that

qv =
t∑
i=1

pαiqβi , pα1qβ1 < · · · < pαtqβt ,

where αi, βi ∈ N0 and 0 ≤ βi ≤ C. Since v > C, we have t ≥ 2 and v > βi
(1 ≤ i ≤ t). Let u = max{v, α1, . . . , αt}. Write

(x1, . . . , xk)
u = (y1, . . . , yu(k−1)+1).



116 Y. G. Chen et al.

Then yu(k−1)+1 = xuk . It is clear that

(y1, . . . , yu(k−1), yu(k−1)+1q
v−βtp−αt , . . . , yu(k−1)+1q

v−β1p−α1)

∈ Tu(k−1)+t(p1, . . . , pt).

In order to prove Lemma 4.4, it is enough by Lemma 4.2 to prove that

y
u(k−1)+t−1
u(k−1)+1 6= (yu(k−1)+1q

v−β1p−α1)u(k−1),

or equivalently

yt−1u(k−1)+1p
u(k−1)α1 6= qu(k−1)(v−β1).

This follows from t ≥ 2, u(k − 1)α1 ≥ 0 and pq | yt−1u(k−1)+1.

Proof of Theorem 2.2. If K(p1, . . . , pt) is empty, then Theorem 2.2 is
true trivially. So we assume that K(p1, . . . , pt) is not empty.

We first prove (a). By Lemma 4.4 there exists an m0 with Tm0(p1, . . . , pt)
≥ 2. For each integer 0 ≤ i < m0 − 1, let ki be the least positive integer k
(if any) such that k ≡ i (mod m0−1) and k ∈ K(p1, . . . , pt). By Lemma 4.1
we have

(4.2) T(m0−1)l+ki(p1, . . . , pt) ≥ (Tm0(p1, . . . , pt))
lTki(p1, . . . , pt) ≥ 2l.

Hence

(4.3) K(p1, . . . , pt) =

m0−2⋃
i=0, ki exists

{(m0 − 1)l + ki : l = 1, 2, . . .},

which proves part (a).

We now prove the lower bound of part (b). Let c1 = min 21/(m0−1+ki)

and t0 = max ki, where the minimum and maximum are taken over all i such
that ki exists. If k ∈ K(p1, . . . , pt) and k > t0, then, by (4.3), there exists an
i with 0 ≤ i < m0 − 1 and a positive integer l such that k = (m0 − 1)l+ ki.
By (4.2) we have

Tk(p1, . . . , pt) = T(m0−1)l+ki(p1, . . . , pt) ≥ 2l ≥ 2((m0−1)l+ki)/(m0−1+ki) ≥ ck1.

To prove the upper bound, let

k∑
i=1

1

xi
= 1, 1 < x1 < · · · < xk, xi ∈ S(p1, . . . , pt) (1 ≤ i ≤ k).

Define u1 = 1 and un+1 = un(un + 1) for n ≥ 1. Then un < 22
n

for
n ≥ 1. As in the proof of [19, p. 218] we have

xj ≤ (k − j + 1)uj < k22
j
, j = 1, . . . , k.
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Let xj = p
αj1
1 · · · pαjtt . Then αji ≤ 2 log k + 2j . Thus

Tk(p1, . . . , pt) ≤
∏

2j≤2 log k

(4 log k)t
∏

j≤k, 2j>2 log k

(2j+1)t =
√

2
tk2(1+o(1))

.

5. Proofs of Theorems 2.3, 2.4 and Corollary 2.5. In order to
prove Theorem 2.4, we need a well known result of Graham.

For a sequence S = (s1, s2, . . .) of positive integers, M(S) is defined to
be the increasing sequence of all products

∏m
i=1 ski , where m = 1, 2, . . . and

k1 < · · · < km. Thus all the terms of M(S) are distinct.
For a sequence of real numbers, a real number α is said to be S-accessible

if, for any ε > 0, there exists β ∈ P (S) such that 0 ≤ β − α < ε.
S is said to be complete if all sufficiently large integers belong to P (S).

Theorem A ([13, Theorem 5]). Let S = (s1, s2, . . .) be a sequence of
positive integers such that

(1) M(S) is complete,
(2) sn+1/sn is bounded.

Then

p/q ∈ P ((M(S))−1)

(where (p, q) = 1) if and only if

(3) p/q is (M(S))−1-accessible,
(4) q divides some term of M(S).

With this preparation, we can prove our Theorem 2.4.

Proof of Theorem 2.4. By (b) we have M(A) = A. By (a) and M(A) = A
we know that condition (1) of Theorem A is true. By (b) we have a2an ∈ A.
As a2 > a1 ≥ 1 we have a2an > an. Thus an+1 ≤ a2an. So an+1/an ≤ a2.
Hence condition (2) of Theorem A holds.

If p/q ∈ P (A−1), where (p, q) = 1, then (d) is true and by Theorem A,
q divides some term of A, i.e. (e) holds.

Now we assume that (d) and (e) are true. From (e) we know that con-
dition (4) of Theorem A holds. In order to prove that p/q ∈ P (A−1), by
Theorem A, it is enough to prove that condition (3) of Theorem A holds,
i.e., p/q is A−1-accessible.

Suppose that p/q /∈ P (A−1) (this prevents equality in the following ar-
guments). We will show that p/q is A−1-accessible. Then by Theorem A we
have p/q ∈ P (A−1), a contradiction.

If
∞∑
i=1

1

ai
= +∞,
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let a0 = 0. Otherwise the infinite sum is convergent and we define the real
number a0 by

1

a0
=

∞∑
i=1

1

ai
.

Let i1 be the integer i such that

(5.1)
1

ai
<
p

q
<

1

ai−1
.

By (d) we have i1 ≥ 1. Moreover, by (c) and (d),

(5.2)

∞∑
i=i1

1

ai
≥ 1

ai1−1
>
p

q
.

Thus by (5.1) and (5.2) we obtain

0 <
p

q
− 1

ai1
<

1

ai1−1
− 1

ai1
≤

∞∑
i=i1+1

1

ai
.

Suppose that we have found a sequence {ik}nk=1 such that 1 ≤ i1 < · · · < in
and

0 <
p

q
−

k∑
l=1

1

ail
<

∞∑
i=ik+1

1

ai
, k = 1, . . . , n.

If
1

ain+1
<
p

q
−

n∑
l=1

1

ail
,

let in+1 = in + 1; then

0 <
p

q
−
n+1∑
l=1

1

ail
<

∞∑
i=in+1+1

1

ai
.

If
p

q
−

n∑
l=1

1

ail
<

1

ain+1
,

let in+1 be the integer i with

1

ai
<
p

q
−

n∑
l=1

1

ail
<

1

ai−1
;

then in+1 > in + 1 and

0 <
p

q
−
n+1∑
l=1

1

ail
<

1

ain+1−1
− 1

ain+1

≤
∞∑

i=in+1+1

1

ai
.
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Thus we can find a sequence {ik}∞k=1 such that 1 ≤ i1 < i2 < · · · and

0 <
p

q
−

k∑
l=1

1

ail
<

∞∑
i=ik+1

1

ai
, k = 1, 2, . . . .

Let jk be the least j with j ≥ ik + 1 such that

0 <
p

q
−

k∑
l=1

1

ail
<

j∑
i=ik+1

1

ai
.

Then

0 <

jk∑
i=ik+1

1

ai
−
(
p

q
−

k∑
l=1

1

ail

)
<

1

ajk
,

that is,

0 <
k∑
l=1

1

ail
+

jk∑
i=ik+1

1

ai
− p

q
<

1

ajk
.

Since ajk →∞, it follows that p/q is A−1-accessible.

Proof of Corollary 2.5. By Theorem 2.4 it is enough to prove that
∞∑

j=i+1

1

aj
≥ 1

ai
for all i ≥ 1.

Since ai < aia1 < aia2 < · · · , we have
∑∞

j=i+1
1
aj
≥
∑∞

j=1
1

aiaj
> 1

ai
.

Proof of Theorem 2.3. Let

A = S(p1, . . . , pt) \ {1} = {a1 < a2 < · · · }.
The necessity of the condition was explained as motivation just before the
statement of Theorem 2.3. We only need to prove the sufficiency. Assume
that

p1
p1 − 1

· · · pt
pt − 1

> 2.

Then t ≥ 2 and

(5.3)

∞∑
i=1

1

ai
> 1.

Since t ≥ 2, by Lemma 4.3, A is complete. It is clear that (b) in Corollary
2.5 is true. By Corollary 2.5 we have 1 ∈ P (A−1).

6. Proof of Theorem 2.7. Let Ak(M) denote the set of solutions of∑k
i=1 1/xi = 1 in distinct integers 1 < x1 < · · · < xk with M |xk and

xi ∈ {2α3β5γ} (1 ≤ i ≤ k). Let Bk(M) denote the set of solutions of∑k
i=1 1/xi = 1 in distinct integers 1 < x1 < · · · < xk with M | xk and
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xi ∈ {3α5β7γ} (1 ≤ i ≤ k). It is clear that Tk(2, 3, 5) ≥ |Ak(M)| for any
M ∈ {2α3β5γ} and Tk(3, 5, 7) ≥ |Bk(M)| for any M ∈ {3α5β7γ}. In or-
der to obtain good lower bounds on Tk(2, 3, 5) and Tk(3, 5, 7), we choose
two suitable constants M1 and M2 such that |Ak(M1)| and |Bk(M2)| have
good lower bounds to start with. We will establish recursive relations be-
tween |Ak+2(M)| and |Ak(M)|, and between |Bk+2(M)| and |Bk(M)|, which
inductively prove the desired result. (Observe that B2k(M) = ∅.)

We start with the following lemma.

Lemma 6.1. Let mi, ai, bi, ci, di be nonzero integers with 0 < ai < bi <
ci, ai + bi + ci = di and (ai, bi, ci) = 1 (i = 1, 2). If

(6.1)

{
d1m1

a1
,
d1m1

b1
,
d1m1

c1

}
=

{
d2m2

a2
,
d2m2

b2
,
d2m2

c2

}
,

then a1 = a2, b1 = b2, c1 = c2 and m1 = m2.

Proof. Since 0 < ai < bi < ci (i = 1, 2), by (6.1) we have

d1m1

a1
=
d2m2

a2
,

d1m1

b1
=
d2m2

b2
,

d1m1

c1
=
d2m2

c2
.

Thus

(6.2) a2d1m1 = a1d2m2, b2d1m1 = b1d2m2, c2d1m1 = c1d2m2.

Hence

(a2d1m1, b2d1m1, c2d1m1) = (a1d2m2, b1d2m2, c1d2m2).

Since (ai, bi, ci) = 1 (i = 1, 2), we have d1m1 = d2m2. By (6.2) we have
a1 = a2, b1 = b2 and c1 = c2. Thus d1 = d2. By d1m1 = d2m2 we have
m1 = m2.

The two lemmas below establish recursive relations between |Ak+2(M)|
and |Ak(M)|, and between |Bk+2(M)| and |Bk(M)|.

Lemma 6.2. Let M2 = 320 × 520 × 720. Then

|Bk+2(M2)| ≥ 62|Bk(M2)|.

Proof. If |Bk(M2)| = 0, then the conclusion is clear. So we assume that
|Bk(M2)| > 0. By Lemma 6.1 we only need to find 62 four-tuples (a, b, c, d)
to each (x1, . . . , xk) ∈ Bk(M2) with a, b, c, d ∈ {3α5β7γ}, a + b + c = d,
a < b < c, (a, b, c) = 1, a | dxk, b | dxk, c | dxk and M2 | dxka . The reason is
that

1

xk
=

1

dxk/c
+

1

dxk/b
+

1

dxk/a

and

xk < dxk/c < dxk/b < dxk/a.



Egyptian fractions with restrictions 121

By a simple Mathematica program we find that there are 62 four-tuples
(a, b, c, d) with a, b, c, d ∈ {3α5β7γ : 0 ≤ α ≤ 14, 0 ≤ β, γ ≤ 8}, a+b+c = d,
a < b < c, (a, b, c) = 1 and a | d. Since M2 = 320× 520× 720 and M2 |xk, the
conclusion follows immediately.

Lemma 6.3. Let M1 = 220 × 320 × 520. Then

|Ak+2(M1)| ≥ 368|Ak(M1)|.
Proof. By a simple Mathematica program we find that there are 368

four-tuples (a, b, c, d) with a, b, c, d ∈ {2α3β5γ : 0 ≤ α ≤ 15, 0 ≤ β ≤ 10, 0 ≤
γ ≤ 8}, a + b + c = d, a < b < c, (a, b, c) = 1 and a | d. The proof is now
similar to the proof of Lemma 6.2.

Proof of Theorem 1. (a) By [22] (see also [6]) there exist 11 odd numbers
1 < x1 < · · · < x11 with x11 = 135, xi ∈ {3α5β7γ} such that

11∑
i=1

1

xi
= 1

(see the introduction). Since

1

x11
=

1

105x11/(32 × 7)
+

1

105x11/33
+

1

105x11/32
+

1

105x11/5
+

1

105x11
,

there exist 15 odd numbers 1 < y1 < · · · < y15 with y15 = 105x11, yi ∈
{3α5β7γ} such that

15∑
i=1

1

yi
= 1.

Continuing this procedure, there exists an odd number k0 such that
|Bk0(M2)| ≥ 1. By Lemma 6.2 we have

|Bk(M2)| ≥
√

62
k−k0 |Bk0(M2)| ≥

√
62
k−k0

, k ≥ k0, 2 - k.
So

Tk(3, 5, 7) ≥
√

62
k−k0

, k ≥ k0, 2 - k.
Since

1

x11
=

1

5x11/3
+

1

3x11
+

1

15x11
,

there exist 13 odd numbers 1 < z1 < · · · < z13 with z13 = 15x11, zi ∈
{3α5β7γ} such that

13∑
i=1

1

zi
= 1.

Continuing this procedure, we have Tk(3, 5, 7) ≥ 1 for all odd numbers
k ≥ 11. Hence there exists a positive constant c1 such that Tk(3, 5, 7)

≥ c1
√

62
k

for all odd numbers k ≥ 11.
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(b) Since

1

2
+

1

4
+

1

8
+

1

16
+

1

30
+

1

60
+

1

120
+

1

240
= 1,

1

a
=

1

30a/24
+

1

30a/3
+

1

30a/2
+

1

30a

and
1

a
=

1

3a/2
+

1

3a
,

there exists an integer k0 such that

|A2k0(M1)| ≥ 1, |A2k0+1(M1)| ≥ 1.

By Lemma 6.3 we have

|A2k(M1)| ≥
√

368
2k−2k0 |A2k0(M1)| ≥ 368k−k0 , k ≥ k0,

|A2k+1(M1)| ≥
√

368
2k−2k0 |A2k0+1(M1)| ≥ 368k−k0 , k ≥ k0.

Since
1

2
+

1

3
+

1

32
+ · · ·+ 1

3k
+

1

2× 3k
= 1,

we have Tk(2, 3, 5) ≥ 1 for all k ≥ 3. So there exists a positive constant c2

such that Tk(2, 3, 5) ≥ c2
√

368
k

for all integers k ≥ 3.
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