Egyptian fractions with restrictions

by
Yong-Gao Chen (Nanjing), Christian Elsholtz (Graz) and Li-Li Jiang (Nanjing)

1. Introduction. Egyptian fractions or unit fractions have been extensively studied (see [1], [8, [14, D11], [17). Some studies concern the question which fractions can be written as a sum of k unit fractions, others restrict the denominators, still others count the number of solutions. In particular, solutions of the diophantine equation $1=\sum_{i=1}^{k} 1 / x_{i}$ have been extensively studied. Sierpiński [22] noted that there is a solution with distinct odd integers, and Breusch [24] and Stewart [25] independently proved that each fraction a / b with odd denominator can be written as a finite sum of distinct unit fractions with odd denominators. More recently Shiu [20] and Burshtein [5] proved that the equation $\sum_{i=1}^{9} 1 / x_{i}=1$ has only five solutions in distinct odd numbers that can be easily found with a computer. Motivated by this, let $T_{o}(k)$ denote the number of solutions of $\sum_{i=1}^{k} 1 / x_{i}=1$ in odd numbers $1<x_{1}<\cdots<x_{k}$. It is easy to see that $T_{o}(k)=0$ for all even values of k. One natural problem is: how large can $T_{o}(k)$ be for odd k ? In this paper we present a lower bound for $T_{o}(k)$ which grows faster than exponentially.

The literature contains many results either stating that there are solutions of $\sum_{i=1}^{k} 1 / x_{i}=1$ of a special type, which is an indication that the equation has many solutions, or stating that certain types of solutions cannot exist, or bounding the number of solutions. For example, Martin [17] showed that $\sum_{i=1}^{k} 1 / x_{i}=1$ has solutions in which a dense set of possible denominators occur. Croot [8] showed that for any r-colouring of the positive integers there is a monochromatic solution of $\sum_{i=1}^{k} 1 / x_{i}=1$. This is some measure of saying the equation has many solutions, and these are closely interlinked, as otherwise one could construct a bad colouring.

Key words and phrases: Egyptian fractions, the number of solutions, Diophantine equations.

In 2007 Z. W. Sun [26] conjectured the following strengthening of this: If $A \subset \mathbb{N}$ is a set of positive upper asymptotic density, then there is a finite subset $\left\{x_{1}, \ldots, x_{k}\right\}$ of A such that $\sum_{i=1}^{k} 1 / x_{i}=1$.

In this paper we examine for which set of primes there is a solution of the diophantine equation $\sum_{i=1}^{k} 1 / x_{i}=1$ for which all denominators have the given prime factors only, and we give upper and lower bounds on the number of these solutions. We introduce the following notation. Let \mathbb{N}_{0} be the set of all nonnegative integers. For distinct primes p_{1}, \ldots, p_{t}, let

$$
S\left(p_{1}, \ldots, p_{t}\right)=\left\{p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}} \mid \alpha_{i} \in \mathbb{N}_{0}, i=1,2, \ldots, t\right\}
$$

and let $T_{k}\left(p_{1}, \ldots, p_{t}\right)$ be the number of solutions of $\sum_{i=1}^{k} 1 / x_{i}=1$ with $1<x_{1}<\cdots<x_{k}$ and $x_{i} \in S\left(p_{1}, \ldots, p_{t}\right)(1 \leq i \leq k)$.

As a very special case Burshtein [6] proved that the equation $\sum_{i=1}^{11} 1 / x_{i}$ $=1$ with $1<x_{1}<\cdots<x_{11}$ and $x_{i} \in\left\{3^{\alpha} 5^{\beta} 7^{\gamma}: \alpha, \beta, \gamma \in \mathbb{N}_{0}\right\}(1 \leq i \leq 11)$ has exactly 17 solutions, in other words $T_{11}(3,5,7)=17$.

In this paper we establish a necessary and sufficient condition on the set $\left\{p_{1}, \ldots, p_{t}\right\}$ of primes for a solution to exist, and give upper and lower bounds of exponential type on $T_{k}\left(p_{1}, \ldots, p_{t}\right)$. The upper bounds are stronger than those that would follow from Evertse's result [11] on S-unit equations. (For details see the next section.)

There is a closely related problem, where not all denominators are necessarily distinct. Let us review some known results on counting such solutions. Let $U(k)$ denote the number of solutions of $\sum_{i=1}^{k} 1 / x_{i}=1$ in integers $1 \leq x_{1} \leq \cdots \leq x_{k}$. Erdős, Graham and Straus (unpublished but see [10, p. 32]) proved that

$$
e^{k^{2-\varepsilon}}<U(k)<c_{0}^{2^{k}}
$$

where $c_{0}=1.264085 \ldots$ Sándor [19] improved this to

$$
e^{c k^{3} / \log k} \leq U(k) \leq c_{0}^{(1+\varepsilon) 2^{k-1}}, \quad k \geq k_{0}
$$

The upper bound was recently improved by Browning and Elsholtz [4] to

$$
U(k) \leq c_{0}^{(5 / 48+\varepsilon) 2^{k}}, \quad k \geq k_{0}
$$

Finally, let us remark that the problem of representing 1 as a sum of unit fractions with restricted prime factors in the denominators is closely related to so called "pseudoperfect" numbers. A number is called pseudoperfect if it is the sum of some of its divisors. For example, Sierpiński [23] observed that

$$
945=315+189+135+105+63+45+35+27+15+9+7
$$

which is equivalent to a decomposition already stated by Sierpinski in [22],

$$
1=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{15}+\frac{1}{21}+\frac{1}{27}+\frac{1}{35}+\frac{1}{63}+\frac{1}{105}+\frac{1}{135}
$$

Observe that the denominators have the prime factors 3,5 and 7 only.
2. Statement of results. In this paper we prove the following results.

Theorem 2.1. For $k \geq 4$ we have

$$
T_{o}(2 k+1) \geq(\sqrt{2})^{(k+1)(k-4)} .
$$

Let p_{1}, \ldots, p_{t} be distinct primes. Define

$$
K\left(p_{1}, \ldots, p_{t}\right)=\left\{k: T_{k}\left(p_{1}, \ldots, p_{t}\right) \geq 1\right\} .
$$

By Lemma 4.1, if $k, l \in K\left(p_{1}, \ldots, p_{t}\right)$, then $k+l-1 \in K\left(p_{1}, \ldots, p_{t}\right)$. Observe that for $l \in K\left(p_{1}, \ldots, p_{t}\right)$, the infinite arithmetic progression $a(l-1)+1$ is contained in $K\left(p_{1}, \ldots, p_{t}\right)$.

Theorem 2.2. Let p_{1}, \ldots, p_{t} be distinct primes. Then
(a) $K\left(p_{1}, \ldots, p_{t}\right)$ is a union of finitely many arithmetic progressions;
(b) there are two constants $k_{0}=k_{0}\left(p_{1}, \ldots, p_{t}\right)$ and $c_{1}=c_{1}\left(p_{1}, \ldots, p_{t}\right)>1$ such that for all $k>k_{0}$ with $k \in K\left(p_{1}, \ldots, p_{t}\right)$ we have

$$
c_{1}^{k} \leq T_{k}\left(p_{1}, \ldots, p_{t}\right) \leq \sqrt{2}^{t k^{2}\left(1+o_{k}(1)\right)}
$$

It should be remarked that Evertse's [11 important work on S-unit equations treats a related but more general question. The general bound provided by Evertse would only give a weaker upper bound of $\left(2^{35} k^{2}\right)^{k^{3} t}$.

If $t=1$, there are no solutions, as $\sum_{i=1}^{k} 1 / p^{i}<1$. On the other hand, if the x_{i} are not assumed to be distinct, then very precise asymptotic results are known: see for example Boyd 3], Elsholtz, Heuberger and Prodinger [9.

Now let $t \geq 2$ and let

$$
A=S\left(p_{1}, \ldots, p_{t}\right) \backslash\{1\}=\left\{a_{1}<a_{2}<\cdots\right\} .
$$

Then

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{1}{a_{i}} & =\left(1+\frac{1}{p_{1}}+\frac{1}{p_{1}^{2}}+\cdots\right) \cdots\left(1+\frac{1}{p_{t}}+\frac{1}{p_{t}^{2}}+\cdots\right)-1 \\
& =\frac{p_{1}}{p_{1}-1} \cdots \frac{p_{t}}{p_{t}-1}-1
\end{aligned}
$$

As we are studying finite sums of unit fractions, and as the denominator 1 is discarded from consideration, a necessary condition for $K\left(p_{1}, \ldots, p_{t}\right)$ to be nonempty is

$$
\begin{equation*}
\frac{p_{1}}{p_{1}-1} \cdots \frac{p_{t}}{p_{t}-1}>2 . \tag{2.1}
\end{equation*}
$$

It is interesting that this necessary condition (2.1) is also sufficient:
Theorem 2.3. Let p_{1}, \ldots, p_{t} be distinct primes. Then $K\left(p_{1}, \ldots, p_{t}\right)$ is nonempty (that is, a solution to $\sum_{i=1}^{k} 1 / x_{i}=1$ of any length exists with $1<x_{1}<\cdots<x_{k}$ and all x_{i} in $\left.S\left(p_{1}, \ldots, p_{t}\right)\right)$ if and only if the inverse sum
of the elements in $S\left(p_{1}, \ldots, p_{t}\right)$ is more than 2 , that is,

$$
\frac{p_{1}}{p_{1}-1} \cdots \frac{p_{t}}{p_{t}-1}>2
$$

For a set B of numbers, let

$$
P(B)=\left\{\sum_{a \in I} a|I \subseteq B, 0<|I|<\infty\}\right.
$$

denote the set of finite subset sums. For a set B of nonzero numbers, let

$$
B^{-1}=\left\{b^{-1} \mid b \in B\right\}
$$

In order to prove Theorem 2.3, we make use of well known results of Graham [13, Theorem 5] and Birch [2], and observe that 1, or more generally a / b, can be decomposed into a finite sum of distinct reciprocals for a more general type of integer sequences. Graham's original hypotheses are different, we adapt his work to our applications. We prove the following theorem.

TheOrem 2.4. Let $A=\left\{a_{1}<a_{2}<\cdots\right\}$ be a sequence of positive integers such that
(a) A is complete, i.e. all sufficiently large integers are contained in $P(A)$;
(b) A is multiplicative, i.e. for all i, j with $a_{i}, a_{j} \in A$, also $a_{i} a_{j} \in A$;
(c) $\sum_{j=i+1}^{\infty} 1 / a_{j} \geq 1 / a_{i}$ for all $i \geq 1$.

Then $p / q \in P\left(A^{-1}\right)$, where $(p, q)=1$, if and only if
(d) $p / q<\sum_{i=1}^{\infty} 1 / a_{i}$;
(e) q divides some term of A.

This implies the following corollary:
Corollary 2.5. Let $A=\left\{a_{1}<a_{2}<\cdots\right\}$ be a sequence of integers with $a_{1}>1$ such that
(a) A is complete;
(b) A is multiplicative;
(c) $\sum_{i=1}^{\infty} 1 / a_{i}>1$.

Then $1 \in P\left(A^{-1}\right)$.
We pose the following problem for future research.
Problem 2.6. Let p_{1}, \ldots, p_{t} be distinct primes. Is there a constant V depending only on p_{1}, \ldots, p_{t} such that

$$
T_{k}\left(p_{1}, \ldots, p_{t}\right) \leq V^{k} ?
$$

Finally, we give two special results.
Theorem 2.7.
(a) $T_{k}(3,5,7) \geq c_{1} \sqrt{62}^{k}$ for a computable constant $c_{1}>0$ and any odd number $k \geq 11$;
(b) $T_{k}(2,3,5) \geq c_{2} \sqrt{368}^{k}$ for a computable constant $c_{2}>0$ and any integer $k \geq 3$.
3. Proof of Theorem 2.1. In order to prove Theorem 2.1, we establish a relation between $T_{o}(2 k-1)$ and $T_{o}(2 k+1)$, which inductively gives a bound for an arbitrary odd number of fractions. For this purpose we first establish the following lemma.

Lemma 3.1. If n is odd, then the number of solutions of

$$
\frac{1}{n}=\frac{1}{u}+\frac{1}{v}+\frac{1}{w}, \quad n<u<v<w, 2 \nmid u v w, d(w) \geq 2 d(n)+1
$$

is at least $\frac{1}{2} d(n)-1$. (Here $d(n)$ denotes the number of positive divisors of n.)

Proof. Recall that the number of ways to write an integer n as a sum of two squares is $r_{2}(n)=4\left(d_{1}(n)-d_{3}(n)\right)$, where $d_{i}(n)$ is the number of positive divisors d of n with $d \equiv i(\bmod 4)(i=1,3)($ see 15 , Theorem 278 and (16.9.2)] or [18, Theorem 14.3]): As $r_{2}(n)$ is a nonnegative integer it follows that $d_{1}(n) \geq d_{3}(n)$ and $d_{1}(n) \geq \frac{1}{2} d(n)$.

Let $k>1$ be a positive divisor of n of the form $4 l+1$. Let

$$
u=n+2, \quad v=\frac{1}{2 k} n(n+2)(k+1), \quad w=\frac{1}{2} n(n+2)(k+1) .
$$

Then

$$
\frac{1}{n}=\frac{1}{u}+\frac{1}{v}+\frac{1}{w}, \quad n<u<v<w, 2 \nmid u v w .
$$

Since $(k+1) / 2>1$ is an integer and $(n, n+2)=1$, we have

$$
\begin{aligned}
d(w) & =d(n(n+2)(k+1) / 2) \geq d(n(n+2))+1=d(n) d(n+2)+1 \\
& \geq 2 d(n)+1
\end{aligned}
$$

Proof of Theorem 2.1. Let $T_{o}^{\prime}(2 k+1)$ denote the number of solutions of $\sum_{i=1}^{2 k+1} 1 / x_{i}=1$ in odd numbers $1<x_{1}<\cdots<x_{2 k+1}$ with $d\left(x_{2 k+1}\right)>2^{k}$. Suppose that $1<x_{1}<\cdots<x_{2 k-1}(k \geq 5)$ is a solution of $\sum_{i=1}^{2 k-1} 1 / x_{i}=1$ in odd numbers with $d\left(x_{2 k-1}\right)>2^{k-1}$. By Lemma 3.1 the number of solutions of

$$
\frac{1}{x_{2 k-1}}=\frac{1}{u}+\frac{1}{v}+\frac{1}{w}, \quad x_{2 k-1}<u<v<w, 2 \nmid u v w, d(w) \geq 2 d\left(x_{2 k-1}\right)+1
$$

is at least $\frac{1}{2} d\left(x_{2 k-1}\right)-1$. Since
$d(w) \geq 2 d\left(x_{2 k-1}\right)+1>2^{k}, \quad \frac{1}{2} d\left(x_{2 k-1}\right)-1 \geq \frac{1}{2}\left(2^{k-1}+1\right)-1=2^{k-2}-\frac{1}{2}$,
the number of solutions of

$$
\frac{1}{x_{2 k-1}}=\frac{1}{u}+\frac{1}{v}+\frac{1}{w}, \quad x_{2 k-1}<u<v<w, 2 \nmid u v w, d(w)>2^{k}
$$

is at least 2^{k-2}. Hence

$$
T_{o}^{\prime}(2 k+1) \geq 2^{k-2} T_{o}^{\prime}(2 k-1)
$$

By [20], [21] (see also [5]) there exist nine odd numbers $1<x_{1}<\cdots<x_{9}$ with $x_{9}=10395$ and

$$
\sum_{i=1}^{9} \frac{1}{x_{i}}=1
$$

Since $d(10395)=32$, we have $T_{o}^{\prime}(9) \geq 1$. Thus

$$
\begin{aligned}
T_{o}^{\prime}(2 k+1) & \geq 2^{k-2} T_{o}^{\prime}(2 k-1) \geq \cdots \geq 2^{(k-2)+(k-3)+\cdots+(5-2)} T_{o}^{\prime}(9) \\
& \geq 2^{\frac{1}{2}(k+1)(k-4)}
\end{aligned}
$$

Hence $T_{o}(2 k+1) \geq(\sqrt{2})^{(k+1)(k-4)}$.
4. Proof of Theorem $\mathbf{2 . 2}$. For distinct primes p_{1}, \ldots, p_{t}, we define $\mathcal{T}_{k}\left(p_{1}, \ldots, p_{t}\right)$ to be the set of all solutions $\left(x_{1}, \ldots, x_{k}\right)$ of

$$
\sum_{i=1}^{k} \frac{1}{x_{i}}=1, \quad 1<x_{1}<\cdots<x_{k}, x_{i} \in S\left(p_{1}, \ldots, p_{t}\right)
$$

Define

$$
\left(x_{1}, \ldots, x_{k}\right) *\left(y_{1}, \ldots, y_{l}\right)=\left(x_{1}, \ldots, x_{k-1}, x_{k} y_{1}, \ldots, x_{k} y_{l}\right)
$$

and

$$
\left(a_{1}, \ldots, a_{k}\right)^{i}=\left(a_{1}, \ldots, a_{k}\right)^{i-1} *\left(a_{1}, \ldots, a_{k}\right), \quad i \geq 2
$$

It is clear that if $\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{T}_{k}\left(p_{1}, \ldots, p_{t}\right)$ and $\left(y_{1}, \ldots, y_{l}\right) \in \mathcal{T}_{l}\left(p_{1}, \ldots, p_{t}\right)$, then

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{k}\right) *\left(y_{1}, \ldots, y_{l}\right) \in \mathcal{T}_{k+l-1}\left(p_{1}, \ldots, p_{t}\right) \tag{4.1}
\end{equation*}
$$

The following lemma gives a recursive lower bound:
Lemma 4.1. Let p_{1}, \ldots, p_{t} be distinct primes. Then, for any two positive integers k and l, we have

$$
T_{k+l-1}\left(p_{1}, \ldots, p_{t}\right) \geq T_{k}\left(p_{1}, \ldots, p_{t}\right) T_{l}\left(p_{1}, \ldots, p_{t}\right)
$$

Proof. We define a map

$$
f: \mathcal{T}_{k}\left(p_{1}, \ldots, p_{t}\right) \times \mathcal{T}_{l}\left(p_{1}, \ldots, p_{t}\right) \rightarrow \mathcal{T}_{k+l-1}\left(p_{1}, \ldots, p_{t}\right)
$$

as follows:

$$
\left(x_{1}, \ldots, x_{k}\right) \times\left(y_{1}, \ldots, y_{l}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right) *\left(y_{1}, \ldots, y_{l}\right)
$$

It is clear that f is injective. Now Lemma 4.1 follows immediately.
Lemma 4.2. Let p_{1}, \ldots, p_{t} be distinct primes. If we have $\left(x_{1}, \ldots, x_{k}\right) \in$ $\mathcal{T}_{k}\left(p_{1}, \ldots, p_{t}\right)$ and $\left(y_{1}, \ldots, y_{l}\right) \in \mathcal{T}_{l}\left(p_{1}, \ldots, p_{t}\right)$ with $x_{k}^{l-1} \neq y_{l}^{k-1}$, then

$$
T_{(k-1)(l-1)+1}\left(p_{1}, \ldots, p_{t}\right) \geq 2
$$

Proof. By 4.1) we have

$$
\left(x_{1}, \ldots, x_{k}\right)^{l-1},\left(y_{1}, \ldots, y_{l}\right)^{k-1} \in \mathcal{T}_{(k-1)(l-1)+1}\left(p_{1}, \ldots, p_{t}\right)
$$

Since x_{k}^{l-1}, y_{l}^{k-1} are the largest elements of $\left(x_{1}, \ldots, x_{k}\right)^{l-1},\left(y_{1}, \ldots, y_{l}\right)^{k-1}$ respectively, by $x_{k}^{l-1} \neq y_{l}^{k-1}$ we have

$$
\left(x_{1}, \ldots, x_{k}\right)^{l-1} \neq\left(y_{1}, \ldots, y_{l}\right)^{k-1}
$$

Hence $T_{(k-1)(l-1)+1}\left(p_{1}, \ldots, p_{t}\right) \geq 2$.
The following lemma is an extension of a well known theorem of Birch [2]. The possibility for this extension was already mentioned by Davenport and Birch (see [2] and [16]). Hegyvári [16] gave an explicit value on $C(p, q)$. The upper bound on $C(p, q)$ was recently improved by Fang [12] and further improved by Chen and Fang [7].

Lemma 4.3 (Hegyvári [16]). For any integers p, q with $p, q>1$ and $(p, q)=1$, there exists $C=C(p, q)$ such that the set

$$
Y_{C}=\left\{p^{\alpha} q^{\beta} \mid \alpha, \beta \in \mathbb{N}_{0}, 0 \leq \beta \leq C\right\}
$$

is complete. That is, every sufficiently large integer is the sum of distinct terms taken from Y_{C}.

Lemma 4.4. Let p_{1}, \ldots, p_{t} be distinct primes. If $T_{k}\left(p_{1}, \ldots, p_{t}\right) \geq 1$ for some k, then $T_{l}\left(p_{1}, \ldots, p_{t}\right) \geq 2$ for some l.

Proof. Let $\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{T}_{k}\left(p_{1}, \ldots, p_{t}\right)$. It is clear that x_{k} is not a prime power. Therefore, there exist two distinct primes $p, q \in\left\{p_{1}, \ldots, p_{t}\right\}$ with $p q \mid x_{k}$. Let C be as in Lemma 4.3. Take a large $v>C$ such that q^{v} is the sum of distinct terms taken from Y_{C}. Assume that

$$
q^{v}=\sum_{i=1}^{t} p^{\alpha_{i}} q^{\beta_{i}}, \quad p^{\alpha_{1}} q^{\beta_{1}}<\cdots<p^{\alpha_{t}} q^{\beta_{t}}
$$

where $\alpha_{i}, \beta_{i} \in \mathbb{N}_{0}$ and $0 \leq \beta_{i} \leq C$. Since $v>C$, we have $t \geq 2$ and $v>\beta_{i}$ $(1 \leq i \leq t)$. Let $u=\max \left\{v, \alpha_{1}, \ldots, \alpha_{t}\right\}$. Write

$$
\left(x_{1}, \ldots, x_{k}\right)^{u}=\left(y_{1}, \ldots, y_{u(k-1)+1}\right)
$$

Then $y_{u(k-1)+1}=x_{k}^{u}$. It is clear that

$$
\begin{aligned}
&\left(y_{1}, \ldots, y_{u(k-1)}, y_{u(k-1)+1} q^{v-\beta_{t}} p^{-\alpha_{t}}, \ldots, y_{u(k-1)+1} q^{v-\beta_{1}} p^{-\alpha_{1}}\right) \\
& \in \mathcal{T}_{u(k-1)+t}\left(p_{1}, \ldots, p_{t}\right)
\end{aligned}
$$

In order to prove Lemma 4.4, it is enough by Lemma 4.2 to prove that

$$
y_{u(k-1)+1}^{u(k-1)+t-1} \neq\left(y_{u(k-1)+1} q^{v-\beta_{1}} p^{-\alpha_{1}}\right)^{u(k-1)},
$$

or equivalently

$$
y_{u(k-1)+1}^{t-1} p^{u(k-1) \alpha_{1}} \neq q^{u(k-1)\left(v-\beta_{1}\right)} .
$$

This follows from $t \geq 2, u(k-1) \alpha_{1} \geq 0$ and $p q \mid y_{u(k-1)+1}^{t-1}$.
Proof of Theorem 2.2. If $K\left(p_{1}, \ldots, p_{t}\right)$ is empty, then Theorem 2.2 is true trivially. So we assume that $K\left(p_{1}, \ldots, p_{t}\right)$ is not empty.

We first prove (a). By Lemma 4.4 there exists an m_{0} with $T_{m_{0}}\left(p_{1}, \ldots, p_{t}\right)$ ≥ 2. For each integer $0 \leq i<m_{0}-1$, let k_{i} be the least positive integer k (if any) such that $k \equiv i\left(\bmod m_{0}-1\right)$ and $k \in K\left(p_{1}, \ldots, p_{t}\right)$. By Lemma 4.1 we have

$$
\begin{equation*}
T_{\left(m_{0}-1\right) l+k_{i}}\left(p_{1}, \ldots, p_{t}\right) \geq\left(T_{m_{0}}\left(p_{1}, \ldots, p_{t}\right)\right)^{l} T_{k_{i}}\left(p_{1}, \ldots, p_{t}\right) \geq 2^{l} \tag{4.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
K\left(p_{1}, \ldots, p_{t}\right)=\bigcup_{i=0, k_{i} \text { exists }}^{m_{0}-2}\left\{\left(m_{0}-1\right) l+k_{i}: l=1,2, \ldots\right\} \tag{4.3}
\end{equation*}
$$

which proves part (a).
We now prove the lower bound of part (b). Let $c_{1}=\min 2^{1 /\left(m_{0}-1+k_{i}\right)}$ and $t_{0}=\max k_{i}$, where the minimum and maximum are taken over all i such that k_{i} exists. If $k \in K\left(p_{1}, \ldots, p_{t}\right)$ and $k>t_{0}$, then, by (4.3), there exists an i with $0 \leq i<m_{0}-1$ and a positive integer l such that $k=\left(m_{0}-1\right) l+k_{i}$. By (4.2) we have

$$
T_{k}\left(p_{1}, \ldots, p_{t}\right)=T_{\left(m_{0}-1\right) l+k_{i}}\left(p_{1}, \ldots, p_{t}\right) \geq 2^{l} \geq 2^{\left(\left(m_{0}-1\right) l+k_{i}\right) /\left(m_{0}-1+k_{i}\right)} \geq c_{1}^{k}
$$

To prove the upper bound, let

$$
\sum_{i=1}^{k} \frac{1}{x_{i}}=1, \quad 1<x_{1}<\cdots<x_{k}, x_{i} \in S\left(p_{1}, \ldots, p_{t}\right)(1 \leq i \leq k)
$$

Define $u_{1}=1$ and $u_{n+1}=u_{n}\left(u_{n}+1\right)$ for $n \geq 1$. Then $u_{n}<2^{2^{n}}$ for $n \geq 1$. As in the proof of [19, p. 218] we have

$$
x_{j} \leq(k-j+1) u_{j}<k 2^{2^{j}}, \quad j=1, \ldots, k
$$

Let $x_{j}=p_{1}^{\alpha_{j 1}} \cdots p_{t}^{\alpha_{j t}}$. Then $\alpha_{j i} \leq 2 \log k+2^{j}$. Thus

$$
T_{k}\left(p_{1}, \ldots, p_{t}\right) \leq \prod_{2^{j} \leq 2 \log k}(4 \log k)^{t} \prod_{j \leq k, 2^{j}>2 \log k}\left(2^{j+1}\right)^{t}=\sqrt{2}^{t k^{2}(1+o(1))}
$$

5. Proofs of Theorems 2.3, 2.4 and Corollary 2.5. In order to prove Theorem 2.4, we need a well known result of Graham.

For a sequence $S=\left(s_{1}, s_{2}, \ldots\right)$ of positive integers, $M(S)$ is defined to be the increasing sequence of all products $\prod_{i=1}^{m} s_{k_{i}}$, where $m=1,2, \ldots$ and $k_{1}<\cdots<k_{m}$. Thus all the terms of $M(S)$ are distinct.

For a sequence of real numbers, a real number α is said to be S-accessible if, for any $\varepsilon>0$, there exists $\beta \in P(S)$ such that $0 \leq \beta-\alpha<\varepsilon$.
S is said to be complete if all sufficiently large integers belong to $P(S)$.
Theorem A ([13, Theorem 5]). Let $S=\left(s_{1}, s_{2}, \ldots\right)$ be a sequence of positive integers such that
(1) $M(S)$ is complete,
(2) s_{n+1} / s_{n} is bounded.

Then

$$
p / q \in P\left((M(S))^{-1}\right)
$$

(where $(p, q)=1$) if and only if
(3) p / q is $(M(S))^{-1}$-accessible,
(4) q divides some term of $M(S)$.

With this preparation, we can prove our Theorem 2.4.
Proof of Theorem 2.4. By (b) we have $M(A)=A$. By (a) and $M(A)=A$ we know that condition (1) of Theorem A is true. By (b) we have $a_{2} a_{n} \in A$. As $a_{2}>a_{1} \geq 1$ we have $a_{2} a_{n}>a_{n}$. Thus $a_{n+1} \leq a_{2} a_{n}$. So $a_{n+1} / a_{n} \leq a_{2}$. Hence condition (2) of Theorem A holds.

If $p / q \in P\left(A^{-1}\right)$, where $(p, q)=1$, then (d) is true and by Theorem A, q divides some term of A, i.e. (e) holds.

Now we assume that (d) and (e) are true. From (e) we know that condition (4) of Theorem A holds. In order to prove that $p / q \in P\left(A^{-1}\right)$, by Theorem A, it is enough to prove that condition (3) of Theorem A holds, i.e., p / q is A^{-1}-accessible.

Suppose that $p / q \notin P\left(A^{-1}\right)$ (this prevents equality in the following arguments). We will show that p / q is A^{-1}-accessible. Then by Theorem A we have $p / q \in P\left(A^{-1}\right)$, a contradiction.

If

$$
\sum_{i=1}^{\infty} \frac{1}{a_{i}}=+\infty
$$

let $a_{0}=0$. Otherwise the infinite sum is convergent and we define the real number a_{0} by

$$
\frac{1}{a_{0}}=\sum_{i=1}^{\infty} \frac{1}{a_{i}}
$$

Let i_{1} be the integer i such that

$$
\begin{equation*}
\frac{1}{a_{i}}<\frac{p}{q}<\frac{1}{a_{i-1}} \tag{5.1}
\end{equation*}
$$

By (d) we have $i_{1} \geq 1$. Moreover, by (c) and (d),

$$
\begin{equation*}
\sum_{i=i_{1}}^{\infty} \frac{1}{a_{i}} \geq \frac{1}{a_{i_{1}-1}}>\frac{p}{q} \tag{5.2}
\end{equation*}
$$

Thus by (5.1) and (5.2) we obtain

$$
0<\frac{p}{q}-\frac{1}{a_{i_{1}}}<\frac{1}{a_{i_{1}-1}}-\frac{1}{a_{i_{1}}} \leq \sum_{i=i_{1}+1}^{\infty} \frac{1}{a_{i}}
$$

Suppose that we have found a sequence $\left\{i_{k}\right\}_{k=1}^{n}$ such that $1 \leq i_{1}<\cdots<i_{n}$ and

$$
0<\frac{p}{q}-\sum_{l=1}^{k} \frac{1}{a_{i_{l}}}<\sum_{i=i_{k}+1}^{\infty} \frac{1}{a_{i}}, \quad k=1, \ldots, n .
$$

If

$$
\frac{1}{a_{i_{n}+1}}<\frac{p}{q}-\sum_{l=1}^{n} \frac{1}{a_{i_{l}}}
$$

let $i_{n+1}=i_{n}+1$; then

$$
0<\frac{p}{q}-\sum_{l=1}^{n+1} \frac{1}{a_{i_{l}}}<\sum_{i=i_{n+1}+1}^{\infty} \frac{1}{a_{i}}
$$

If

$$
\frac{p}{q}-\sum_{l=1}^{n} \frac{1}{a_{i_{l}}}<\frac{1}{a_{i_{n}+1}}
$$

let i_{n+1} be the integer i with

$$
\frac{1}{a_{i}}<\frac{p}{q}-\sum_{l=1}^{n} \frac{1}{a_{i_{l}}}<\frac{1}{a_{i-1}}
$$

then $i_{n+1}>i_{n}+1$ and

$$
0<\frac{p}{q}-\sum_{l=1}^{n+1} \frac{1}{a_{i_{l}}}<\frac{1}{a_{i_{n+1}-1}}-\frac{1}{a_{i_{n+1}}} \leq \sum_{i=i_{n+1}+1}^{\infty} \frac{1}{a_{i}}
$$

Thus we can find a sequence $\left\{i_{k}\right\}_{k=1}^{\infty}$ such that $1 \leq i_{1}<i_{2}<\cdots$ and

$$
0<\frac{p}{q}-\sum_{l=1}^{k} \frac{1}{a_{i_{l}}}<\sum_{i=i_{k}+1}^{\infty} \frac{1}{a_{i}}, \quad k=1,2, \ldots
$$

Let j_{k} be the least j with $j \geq i_{k}+1$ such that

$$
0<\frac{p}{q}-\sum_{l=1}^{k} \frac{1}{a_{i_{l}}}<\sum_{i=i_{k}+1}^{j} \frac{1}{a_{i}} .
$$

Then

$$
0<\sum_{i=i_{k}+1}^{j_{k}} \frac{1}{a_{i}}-\left(\frac{p}{q}-\sum_{l=1}^{k} \frac{1}{a_{i_{l}}}\right)<\frac{1}{a_{j_{k}}}
$$

that is,

$$
0<\sum_{l=1}^{k} \frac{1}{a_{i_{l}}}+\sum_{i=i_{k}+1}^{j_{k}} \frac{1}{a_{i}}-\frac{p}{q}<\frac{1}{a_{j_{k}}} .
$$

Since $a_{j_{k}} \rightarrow \infty$, it follows that p / q is A^{-1}-accessible.
Proof of Corollary 2.5. By Theorem 2.4 it is enough to prove that

$$
\sum_{j=i+1}^{\infty} \frac{1}{a_{j}} \geq \frac{1}{a_{i}} \quad \text { for all } i \geq 1
$$

Since $a_{i}<a_{i} a_{1}<a_{i} a_{2}<\cdots$, we have $\sum_{j=i+1}^{\infty} \frac{1}{a_{j}} \geq \sum_{j=1}^{\infty} \frac{1}{a_{i} a_{j}}>\frac{1}{a_{i}}$.. Proof of Theorem 2.3. Let

$$
A=S\left(p_{1}, \ldots, p_{t}\right) \backslash\{1\}=\left\{a_{1}<a_{2}<\cdots\right\}
$$

The necessity of the condition was explained as motivation just before the statement of Theorem 2.3. We only need to prove the sufficiency. Assume that

$$
\frac{p_{1}}{p_{1}-1} \cdots \frac{p_{t}}{p_{t}-1}>2 .
$$

Then $t \geq 2$ and

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{a_{i}}>1 \tag{5.3}
\end{equation*}
$$

Since $t \geq 2$, by Lemma 4.3, A is complete. It is clear that (b) in Corollary 2.5 is true. By Corollary 2.5 we have $1 \in P\left(A^{-1}\right)$.
6. Proof of Theorem 2.7. Let $A_{k}(M)$ denote the set of solutions of $\sum_{i=1}^{k} 1 / x_{i}=1$ in distinct integers $1<x_{1}<\cdots<x_{k}$ with $M \mid x_{k}$ and $x_{i} \in\left\{2^{\alpha} 3^{\beta} 5^{\gamma}\right\}(1 \leq i \leq k)$. Let $B_{k}(M)$ denote the set of solutions of $\sum_{i=1}^{k} 1 / x_{i}=1$ in distinct integers $1<x_{1}<\cdots<x_{k}$ with $M \mid x_{k}$ and
$x_{i} \in\left\{3^{\alpha} 5^{\beta} 7^{\gamma}\right\}(1 \leq i \leq k)$. It is clear that $T_{k}(2,3,5) \geq\left|A_{k}(M)\right|$ for any $M \in\left\{2^{\alpha} 3^{\beta} 5^{\gamma}\right\}$ and $T_{k}(3,5,7) \geq\left|B_{k}(M)\right|$ for any $M \in\left\{3^{\alpha} 5^{\beta} 7^{\gamma}\right\}$. In order to obtain good lower bounds on $T_{k}(2,3,5)$ and $T_{k}(3,5,7)$, we choose two suitable constants M_{1} and M_{2} such that $\left|A_{k}\left(M_{1}\right)\right|$ and $\left|B_{k}\left(M_{2}\right)\right|$ have good lower bounds to start with. We will establish recursive relations between $\left|A_{k+2}(M)\right|$ and $\left|A_{k}(M)\right|$, and between $\left|B_{k+2}(M)\right|$ and $\left|B_{k}(M)\right|$, which inductively prove the desired result. (Observe that $B_{2 k}(M)=\emptyset$.)

We start with the following lemma.
Lemma 6.1. Let $m_{i}, a_{i}, b_{i}, c_{i}, d_{i}$ be nonzero integers with $0<a_{i}<b_{i}<$ $c_{i}, a_{i}+b_{i}+c_{i}=d_{i}$ and $\left(a_{i}, b_{i}, c_{i}\right)=1(i=1,2)$. If

$$
\begin{equation*}
\left\{\frac{d_{1} m_{1}}{a_{1}}, \frac{d_{1} m_{1}}{b_{1}}, \frac{d_{1} m_{1}}{c_{1}}\right\}=\left\{\frac{d_{2} m_{2}}{a_{2}}, \frac{d_{2} m_{2}}{b_{2}}, \frac{d_{2} m_{2}}{c_{2}}\right\} \tag{6.1}
\end{equation*}
$$

then $a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=c_{2}$ and $m_{1}=m_{2}$.
Proof. Since $0<a_{i}<b_{i}<c_{i}(i=1,2)$, by (6.1) we have

$$
\frac{d_{1} m_{1}}{a_{1}}=\frac{d_{2} m_{2}}{a_{2}}, \quad \frac{d_{1} m_{1}}{b_{1}}=\frac{d_{2} m_{2}}{b_{2}}, \quad \frac{d_{1} m_{1}}{c_{1}}=\frac{d_{2} m_{2}}{c_{2}} .
$$

Thus

$$
\begin{equation*}
a_{2} d_{1} m_{1}=a_{1} d_{2} m_{2}, \quad b_{2} d_{1} m_{1}=b_{1} d_{2} m_{2}, \quad c_{2} d_{1} m_{1}=c_{1} d_{2} m_{2} \tag{6.2}
\end{equation*}
$$

Hence

$$
\left(a_{2} d_{1} m_{1}, b_{2} d_{1} m_{1}, c_{2} d_{1} m_{1}\right)=\left(a_{1} d_{2} m_{2}, b_{1} d_{2} m_{2}, c_{1} d_{2} m_{2}\right)
$$

Since $\left(a_{i}, b_{i}, c_{i}\right)=1(i=1,2)$, we have $d_{1} m_{1}=d_{2} m_{2}$. By (6.2) we have $a_{1}=a_{2}, b_{1}=b_{2}$ and $c_{1}=c_{2}$. Thus $d_{1}=d_{2}$. By $d_{1} m_{1}=d_{2} m_{2}$ we have $m_{1}=m_{2}$.

The two lemmas below establish recursive relations between $\left|A_{k+2}(M)\right|$ and $\left|A_{k}(M)\right|$, and between $\left|B_{k+2}(M)\right|$ and $\left|B_{k}(M)\right|$.

Lemma 6.2. Let $M_{2}=3^{20} \times 5^{20} \times 7^{20}$. Then

$$
\left|B_{k+2}\left(M_{2}\right)\right| \geq 62\left|B_{k}\left(M_{2}\right)\right|
$$

Proof. If $\left|B_{k}\left(M_{2}\right)\right|=0$, then the conclusion is clear. So we assume that $\left|B_{k}\left(M_{2}\right)\right|>0$. By Lemma 6.1 we only need to find 62 four-tuples (a, b, c, d) to each $\left(x_{1}, \ldots, x_{k}\right) \in B_{k}\left(M_{2}\right)$ with $a, b, c, d \in\left\{3^{\alpha} 5^{\beta} 7^{\gamma}\right\}, a+b+c=d$, $a<b<c,(a, b, c)=1, a\left|d x_{k}, b\right| d x_{k}, c \mid d x_{k}$ and $M_{2} \left\lvert\, \frac{d x_{k}}{a}\right.$. The reason is that

$$
\frac{1}{x_{k}}=\frac{1}{d x_{k} / c}+\frac{1}{d x_{k} / b}+\frac{1}{d x_{k} / a}
$$

and

$$
x_{k}<d x_{k} / c<d x_{k} / b<d x_{k} / a
$$

By a simple Mathematica program we find that there are 62 four-tuples (a, b, c, d) with $a, b, c, d \in\left\{3^{\alpha} 5^{\beta} 7^{\gamma}: 0 \leq \alpha \leq 14,0 \leq \beta, \gamma \leq 8\right\}, a+b+c=d$, $a<b<c,(a, b, c)=1$ and $a \mid d$. Since $M_{2}=3^{20} \times 5^{20} \times 7^{20}$ and $M_{2} \mid x_{k}$, the conclusion follows immediately.

Lemma 6.3. Let $M_{1}=2^{20} \times 3^{20} \times 5^{20}$. Then

$$
\left|A_{k+2}\left(M_{1}\right)\right| \geq 368\left|A_{k}\left(M_{1}\right)\right| .
$$

Proof. By a simple Mathematica program we find that there are 368 four-tuples (a, b, c, d) with $a, b, c, d \in\left\{2^{\alpha} 3^{\beta} 5^{\gamma}: 0 \leq \alpha \leq 15,0 \leq \beta \leq 10,0 \leq\right.$ $\gamma \leq 8\}, a+b+c=d, a<b<c,(a, b, c)=1$ and $a \mid d$. The proof is now similar to the proof of Lemma 6.2 ,

Proof of Theorem 1. (a) By [22] (see also [6]) there exist 11 odd numbers $1<x_{1}<\cdots<x_{11}$ with $x_{11}=135, x_{i} \in\left\{3^{\alpha} 5^{\beta} 7^{\gamma}\right\}$ such that

$$
\sum_{i=1}^{11} \frac{1}{x_{i}}=1
$$

(see the introduction). Since

$$
\frac{1}{x_{11}}=\frac{1}{105 x_{11} /\left(3^{2} \times 7\right)}+\frac{1}{105 x_{11} / 3^{3}}+\frac{1}{105 x_{11} / 3^{2}}+\frac{1}{105 x_{11} / 5}+\frac{1}{105 x_{11}}
$$

there exist 15 odd numbers $1<y_{1}<\cdots<y_{15}$ with $y_{15}=105 x_{11}, y_{i} \in$ $\left\{3^{\alpha} 5^{\beta} 7^{\gamma}\right\}$ such that

$$
\sum_{i=1}^{15} \frac{1}{y_{i}}=1
$$

Continuing this procedure, there exists an odd number k_{0} such that $\left|B_{k_{0}}\left(M_{2}\right)\right| \geq 1$. By Lemma 6.2 we have

$$
\left|B_{k}\left(M_{2}\right)\right| \geq \sqrt{62}^{k-k_{0}}\left|B_{k_{0}}\left(M_{2}\right)\right| \geq \sqrt{62}^{k-k_{0}}, \quad k \geq k_{0}, 2 \nmid k .
$$

So

$$
T_{k}(3,5,7) \geq \sqrt{62}^{k-k_{0}}, \quad k \geq k_{0}, 2 \nmid k
$$

Since

$$
\frac{1}{x_{11}}=\frac{1}{5 x_{11} / 3}+\frac{1}{3 x_{11}}+\frac{1}{15 x_{11}}
$$

there exist 13 odd numbers $1<z_{1}<\cdots<z_{13}$ with $z_{13}=15 x_{11}, z_{i} \in$ $\left\{3^{\alpha} 5^{\beta} 7^{\gamma}\right\}$ such that

$$
\sum_{i=1}^{13} \frac{1}{z_{i}}=1
$$

Continuing this procedure, we have $T_{k}(3,5,7) \geq 1$ for all odd numbers $k \geq 11$. Hence there exists a positive constant c_{1} such that $T_{k}(3,5,7)$ $\geq c_{1} \sqrt{62}^{k}$ for all odd numbers $k \geq 11$.
(b) Since

$$
\begin{gathered}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{30}+\frac{1}{60}+\frac{1}{120}+\frac{1}{240}=1 \\
\frac{1}{a}=\frac{1}{30 a / 24}+\frac{1}{30 a / 3}+\frac{1}{30 a / 2}+\frac{1}{30 a}
\end{gathered}
$$

and

$$
\frac{1}{a}=\frac{1}{3 a / 2}+\frac{1}{3 a}
$$

there exists an integer k_{0} such that

$$
\left|A_{2 k_{0}}\left(M_{1}\right)\right| \geq 1, \quad\left|A_{2 k_{0}+1}\left(M_{1}\right)\right| \geq 1
$$

By Lemma 6.3 we have

$$
\begin{aligned}
\left|A_{2 k}\left(M_{1}\right)\right| & \geq \sqrt{368}^{2 k-2 k_{0}}\left|A_{2 k_{0}}\left(M_{1}\right)\right| \geq 368^{k-k_{0}}, \quad k \geq k_{0} \\
\left|A_{2 k+1}\left(M_{1}\right)\right| \geq \sqrt{368}^{2 k-2 k_{0}}\left|A_{2 k_{0}+1}\left(M_{1}\right)\right| \geq 368^{k-k_{0}}, & k \geq k_{0}
\end{aligned}
$$

Since

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{3^{2}}+\cdots+\frac{1}{3^{k}}+\frac{1}{2 \times 3^{k}}=1
$$

we have $T_{k}(2,3,5) \geq 1$ for all $k \geq 3$. So there exists a positive constant c_{2} such that $T_{k}(2,3,5) \geq c_{2} \sqrt{368}^{k}$ for all integers $k \geq 3$.

Acknowledgements. We are grateful to the referee for his/her helpful comments.

The work of Y. G. Chen was supported by the National Natural Science Foundation of China, Grant Nos. 11071121 and 10771103.

References

[1] E. J. Barbeau, Expressing one as a sum of odd reciprocals: comments and a bibliography, Crux Math. 3 (1977), 178-181.
[2] B. J. Birch, Note on a problem of Erdős, Proc. Cambridge Philos. Soc. 55 (1959), 370-373.
[3] D. W. Boyd, The asymptotic number of solutions of a diophantine equation from coding theory, J. Combinatorial Theory Ser. A 18 (1975), 210-215.
[4] T. Browning and C. Elsholtz, The number of representations of rationals as a sum of unit fractions, Illinois J. Math., to appear.
[5] N. Burshtein, The equation $\sum_{i=1}^{9} 1 / x_{i}=1$ in distinct odd integers has only the five known solutions, J. Number Theory 127 (2007), 136-144.
[6] N. Burshtein, All the solutions of the equation $\sum_{i=1}^{11} 1 / x_{i}=1$ in distinct integers of the form $x_{i} \in 3^{\alpha} 5^{\beta} 7^{\gamma}$, Discrete Math. 308 (2008), 4286-4292.
[7] Y. G. Chen and J. H. Fang, Remark on the completeness of an exponential sequence, Acta Math. Hungar., doi: 10.1007/s10474-011-0188-x.
[8] E. S. Croot, On a coloring conjecture about unit fractions, Ann. of Math. (2) 157 (2003), 545-556.
[9] C. Elsholtz, C. Heuberger and H. Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1.
[10] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monogr. Enseign. Math. 28, Univ. Genève, 1980.
[11] J.-H. Evertse, The number of solutions of decomposable form equations, Invent. Math. 122 (1995), 559-601.
[12] J. H. Fang, A note on the completeness of an exponential sequence, Chinese Ann. Math. 53 (2011), 527-532.
[13] R. L. Graham, On finite sums of unit fractions, Proc. London Math. Soc. 14 (1964), 193-207.
[14] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, Berlin, 2004.
[15] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
[16] N. Hegyvári, On the completeness of an exponential type sequence, Acta Math. Hungar. 86 (2000), 127-135.
[17] G. Martin, Dense Egyptian fractions, Trans. Amer. Math. Soc. 351 (1999), 36413657.
[18] M. B. Nathanson, Elementary Methods in Number Theory, Grad. Texts in Math. 195, Springer, 2000.
[19] C. Sándor, On the number of solutions of the diophantine equation $\sum_{i=1}^{n} 1 / x_{i}=1$, Period. Math. Hungar. 47 (2003), 215-219.
[20] P. Shiu, Preprints of Dept. Math., Univ. of Loughborough, 04-11, 2004; http://www. lboro.ac.uk/departments/ma/research/preprints/papers04/04-11.pdf.
[21] P. Shiu, Egyptian fraction representations of 1 with odd denominators, Math. Gazette 93 (2009), no. 527, 271-276.
[22] W. Sierpiński, Sur les décompositions de nombres rationnels en fractions primaires, Mathesis 65 (1956), 16-32.
[23] W. Sierpiński, Sur les nombres pseudoparfaits, Mat. Vesnik 2 (1965), 212-213.
[24] E. P. Starke (proposer) and R. Breusch (solver), A special case of Egyptian fractions, Amer. Math. Monthly 61 (1954), no. 3, solution 4512, 200-201.
[25] B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), 779-785.
[26] Z. W. Sun, Some famous problems and related results in combinatorial number theory, a talk at the Annual Conference of the Chinese Mathematical Society, Beijing, 2007; http://math.nju.edu.cn/~zwsun/CombinNT.pdf.

Yong-Gao Chen, Li-Li Jiang
School of Mathematical Sciences
and Institute of Mathematics
Nanjing Normal University
Nanjing 210046, P.R. China
E-mail: ygchen@njnu.edu.cn
lljsys321@163.com

Christian Elsholtz
Institut für Mathematik A
Steyrergasse 30/II
A-8010 Graz, Austria
E-mail: elsholtz@math.tugraz.at

Received on 13.8.2010 and in revised form on 9.11.2011

