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L-functions at the origin and annihilation
of class groups in multiquadratic extensions

by

JONATHAN W. SANDS (Burlington, VT)

I. Introduction. Fix an abelian Galois extension of number fields K /F
and let G denote the Galois group. Also fix a finite set .S of primes of F' which
contains all of the infinite primes of F' and all of the primes which ramify
in K. Since it is fixed throughout, we will often suppress S in the notation.
Associated with this data is an equivariant L-function, O /r(s) = Hf(/F(s),
a meromorphic function of s € C with values in the group ring C[G]. When
the real part of s is greater than 1 it is defined as a product over the (finite)
primes p of F' that are not in S. Let Np denote the absolute norm of the
ideal p and o}, € G denote the Frobenius automorphism of p. Then

1 B -1
0xr(s) = ] (1—Npsap1> :

prime p¢S

Each component of this function extends meromorphically to all of C, and
its behavior at s = 0 is connected with the arithmetic of K.

The ring of S-integers (’)f; of F' is defined to be the set of elements of F’
whose valuation is non-negative at every prime not in S. When K = F', the
function 9; y (8) is simply the identity automorphism of F' times ¢ 2(s), the
Dedekind zeta-function of F' with Euler factors for the primes in S removed.
The function ¢3(s) may be viewed as the zeta-function of the Dedekind
domain (915;.

Letting Sk denote the set of primes of K lying above those in .S, we de-
fine O3 to be the ring of Sk-integers of K. Then Cl3 denotes the Sk-class
group of K, which may be identified with the group of non-zero fractional
ideals of Of{ modulo principal fractional ideals. Denote the order of Cl%
by hf(. Let pux denote the group of all roots of unity in K, and wg de-
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note its order. When the Brumer—Stark conjecture holds, it implies that
w3, / (0) annihilates Cl3. as a module over the group-ring Z[G]. However,

this conjecture is vacuous when 6%, / 7(0) = 0. On the other hand, one knows

that for K = F, the leading term in the Taylor series at s = 0 for Cg is
}z’* = —h3R3/wp, where R, is the regulator of the S-units of F. One sees
that this quantity still provides an annihilator —hf; for Cljs;, upon removing
the factors R}S; and wp which relate to the group of S-units and its torsion
subgroup. In this paper, we obtain results on the annihilation of le( by
what may be considered the leading term of 0}9( / r(s) at s = 0. Indeed, we
obtain a non-trivial annihilator associated with each irreducible character
of G, regardless of the order of vanishing of the corresponding L-function.
Such results are clearly related to the refined Stark conjectures of Rubin and
Popescu, but those do not directly concern annihilators for Cl}g(. The con-
nection between leading terms of equivariant L-functions and annihilators of
class groups appears in more recent conjectures of Burns [2] growing out of
his work with Flach on the Equivariant Tamagawa Number Conjecture [3],
and results of Buckingham [I] which had their origins in ideas of Snaith [6].
To state our results, let G denote the group of characters of G and recall
that the S-imprimitive Artin L-function for a character ¢ € G is defined as

15050 = ] (1—N;sw<ap>>_l,

prime p¢S

so that using the idempotents ey, = |G|™' Y. .o ¢(0)o™!, we have

HK/F Z LK/F 5,0 )

el

Defining LK/F(z/J) Lf(;p(z/}) to be the first non-zero coefficient in the
Taylor series for LK/F( s,1) at s = 0, one then puts

QK/F = QK/F Z LK/F
Yed

Next define a regulator as in Burns [2]. For each prime w € Sk, let
| |w denote the corresponding normalized absolute value on K. Let Ux =
Uf; = ((’)f()*, the multiplicative group of Sk-units in K. Let Yj? be the
free abelian group on primes in Sgk. This has a natural G-action which
makes it a Z[G]-module. The submodule X; = X7 is the kernel of the
augmentation homomorphism Yy = Yfg — Z which sends each element to
the sum of its coefficients. Then RU IS< =R®zU 15; is known to be isomorphic
to RX;S; = R®y XIS( by the R-linear extension Aggr = )‘f(,R of the map
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A = /\f{ : UI% — ]RX}% defined by
() = = 3 log il - w.

wWESK

Any Z[G]-module homomorphism f : M — N, determines an R[G]-
module homomorphism
fr : RM — RN

by extension of scalars. In particular, suppose that we fix a Z[G]-module
homomorphism f : Uy — X%. Since R[G] is a semisimple commutative
ring and RU f} is finitely generated as a module over this ring, there exists
a complementary R[G]-module P such that RU IS< @ P is a finitely generated
free module. Using the identity map 1p on P, one then obtains a well-defined
regulator of f in R[G]:

R(f) = detrig)(Ag'g © fr) = detgig)(Ax g © fr) © 1p).

Let 79(1) = r(1)) denote the dimension of the R-vector space e, RU%..

Our main result is the following theorem, proved in a slightly stronger
form as Theorem 4.5 at the end of this paper. Remark 4.6 indicates how it
may be strengthened further.

MAIN THEOREM. Let K be a composite of a finite number of quadratic
extensions of a number field F. Let S contain the infinite primes of F and
those which ramify in K/F. Suppose that f : Uf; — XIS; is a Z[G]-module
homomorphism with ker(f) finite. Let o € Z[G] annihilate pg, and let v
be an irreducible character of G. Then |G]”S(¢)+1aR(f)¢9§<7Few lies in Z|G]|

and annihilates C13;.

REMARK 1.1. Burns [2] obtains more general results of this form, con-
sidering components of the units and of X [S( for each character separately.
His Conjecture 2.6.1 and evidence for it (which includes the multiquadratic
extensions considered here) then involves an additional factor of |G|? in the
resulting annihilator. Macias Castillo [5] obtains stronger results specifically
for multiquadratic extensions such as those considered here, but not for all
characters. We have chosen to show what can be done working with U f};
Burns and Macias Castillo (and others) formulate their results in terms of
certain torsion-free subgroups of U }3 In a subsequent paper, we will detail
the connections between their work and ours more fully.

REMARK 1.2. The principal Stark conjecture [7] states that
GO QR0 ey

lies in Q[G], and is already known in the case of multiquadratic extensions.
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II. Computing 9;(/F = Hi}kF From now on, we will omit the set of

primes S from our notation. So Yx = Y;?, Xg = XIS(7 Uk = U;z, hp = h}?,

r(¥) =r3(Y), Rp = R}, Lg/p = Lf(/F, (p =3, and O p = ef(/F, etc.
PROPOSITION 2.1. For the principal character vy of Gal(K/F'), we have

_hFRFe

Wr

K/FCvo = wo-

Proof. Since 1)y is the inflation of the trivial character on Gal(F'/F’), the
functorial properties of Artin L-functions give

Ok spevo = Lic/r(Po)ey, = Cpey,-
The result then follows from the analytic class number formula.

Now assume that G = Gal(K/F) has exponent 2, and let ¢ be a non-
trivial character of G. The image of ¢ is a non-trivial cyclic group of expo-
nent 2, hence of order 2. So ker(¢)) has index 2 in G. Let Ey, denote the fixed
field of ker(v), a relative quadratic extension of F. Let Cg ,/F denote the
cokernel of the natural map from Clp to Clg, that is induced by extension
of ideals. Let 7, denote the generator of Gal(Ey/F'). We will have occasion
to fix a lift of 7, to an element of G, which we also denote by 7,. If M
is a Z|G]-module and a € Z[G], we let M“ denote the image of M under
multiplication by «, and M, denote the kernel of multiplication by «.

PROPOSITION 2.2.
i Cr,/Fl Rp, wp
GK/F% = -7 €y
((Ugy)14r, : (Ug,)'"™) Rp wg,
Proof. First, v is induced from the non-trivial character of Gal(Ey/F),
and this character is the difference between the regular representation of

Gal(Ey/F) and the trivial character. The functorial properties of Artin
L-functions and the analytic class number formula then give

i . (g, (0) hg, Rp, wg
O pey = Lic p(t)ey = C;(O) ey = h;’ R; wm,

A computation of Tate ([7, Thm. IV.5.4]) then shows that

he, CE,/Fl

hp B ((UE¢)1+sz : (UEw)l_Tw)7
and this completes the proof.

III. Computing R(f)

LEMMA 3.1. Suppose that ¢ is an endomorphism of a finitely generated
projective R-module M .
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(a) If R is an overring of R, let M' = R' Qr M and ¢ = 1p Qg ¢, an
endomorphism of M'. Then detg (¢') = detr(¢).

(b) If R = R1 @ Ra, then consequently M = My & My where My is a
finitely generated projective Ri-module and My is a finitely gener-
ated projective Ro-module, and ¢ = ¢1 & ¢p2 for ¢1 an endomor-
phism of My and ¢2 an endomorphism of Ms. Then detr(¢) =
(detp, (¢1),detr,(¢2)) € R1 @ Ry = R. Using 1 = ey + ey where
e1 and es are idempotents of R lying in Ry and Ro respectively, this
may be written as detr(¢) = detr, (¢1)e1 + detr,(P2)ea.

Proof. (a) Choose P so that M & P is a finitely generated free R-module
with basis {b1,...,bx}, and let P/ = R'"®@r P. Then M'®&P' = R'Q@pr(M®P)
is a finitely generated free R’-module with basis {] = 1®b1,...,b), = 1®by}.
Using these bases, it is clear that the matrix of ¢ @ 1p is the same as the
matrix of ¢/ & 1p/, as the latter may be identified with 1z ® (¢ & 1p). Thus
detp/(¢') = detp (¢’ © 1p/) = detp(¢ © 1p) = detr(¢).

(b) Note that M; = e;M and My = eaM. After choosing P so that
M @ P is a finitely generated free R-module, we see that e;(M & P) =
etM @ e1P = My @ e1 P is a finitely generated free Ri-module, making
M a finitely generated projective Ri-module, and similarly Ms is a finitely
generated projective Ry-module. Choosing a basis {b,...,b;} for M & P
over R clearly gives a basis {e1b1,...,e1b;} for e;M @ e1 P over R;, and the
case of eaM @ eaP is similar. Now if (r; ;) = (e1ri;) + (ear; ;) is the matrix
of @ 1p, then (eir;;) is the matrix of ¢1 @ 1p, over Ry, and similarly for
@2 ® 1p,. Thus

detr(¢) = det(ri;) = (e1 + e2) det(r; ;)
= det(eqr;,;) + det(ear; ;) = detg, (¢1)e1 + detr, (¢2).
PROPOSITION 3.2.
(a) The following are equivalent:
(1) ker(f) is finite,

(2) ker(f) = px,
E ) coker(f) is finite,

4) fr is an isomorphism,

(5) R(f) € RIG]".

(b) We have the following equalities, the last one requiring that one of
the equivalent conditions in (a) hold (note that C[Gle,, = Cey =2 C):

R(f) = detgig)(fr 0 Ag") = deteig)(fco Ag")

=> detc(gle, (feore e, cxg) = > detgigpe, (Ac © feleyexs)
»e@ e

-1
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(c) When G has exponent 2, we have

R(f) =) detrigle, (fr 0 Mg leyrxs) = D detrigle, A o fz'lo,mxs)
pel Ye@

-1

Proof. (a) These are clear because ug is the torsion subgroup of U 15;,
while U 15; /g and X I*S; are free abelian groups of the same rank.

(b) This follows from Lemma 3.1.

(c) This follows from part (b) and Lemma 3.1(a).

When G has exponent 2, it remains for us to compute
detrigle, (AR © fz ey RXx)

for each v € G. To do this, suppose that F is an intermediate field between
F and K, and H = Gal(K/E). Let Ny =} .y o. Forw € Sg, let @ € Sk
be a choice of a prime above w in K. There is a natural injective Z[G]-module
map Yr — Yx which sends each w € Sg to Ngw. We let VK/E X —
Xk denote the restriction of this map to Xg. Similarly, let 7x/p be the
restriction to Xg of the Z[G]-module map which sends each prime @ € Sk
to the corresponding prime w of F, and note that the image of mg/ lies

in Xp. It is easy to see that g, gives an isomorphism between X g and
Ny (X% ), and that for u € U, we have Ag (u) = Yi/ER(AB(0)).

LEMMA 3.3. Suppose that ker(f) is finite. Let nq/p : RG] — R[G/H]

be the natural projection map. If x is a first degree character of G =G/H
and ¢ € G is its inflation, recall that r(x) denotes the dimension of e, RXg
as a real vector space. Then

ey (R(f)ep) = [HI YR (gm0 flug)ex.
Proof. (See [7, 1.6.4(3)].) By Proposition 3.2(c),
meu(R(f) ™ ey) = maym(detpigre, Ak r © fig ey rx)-

Since vx/g(Xg) C Ng(Xk), and fz ' is an R[G]-homomorphism, we see
that the image of fﬂgl o 'y;q(/E g 1s contained in Ny (RUk) C RUE. Thus we
may follow this map with vx/pr © AER = Ak R|RU; and obtain

VE/ER O ABR O R 0V /ER = AirlRUS © fR ' © VK/ER-
Restricting the isomorphism vg/pr : RXgp — Np(RXk) gives an iso-
morphism between e,RXr = eyRXg and ey, Ng(RXg) = |H|exRXg =
eyRXf. So, restricting the functions in the last displayed equation to
exRX g and noting that 7, g (ey) = ey, we get

detpg, (RO (fr Lok BR)leykxs) = Ty m(detrigle, Ak RO fi ey kxs))-
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Since '7K/E,R|6XRXE : GXRXE — ewRXK has the inverse |H|_17TK/E,R|ewRXK7
we deduce from Proposition 3.2(c) again that
eXRXE>

detR[@]eX()\E,R o(fglo YK/ER)lexRX5)
1
= detR[é]EX <)\E’R O (|I—I|7TK/E (e} f|UE>

= [H"YR(ng /5o fluy) ey

Combining the displayed equations gives the result.

-1

R

LEMMA 3.4. Suppose that E/F is relative quadratic and T is the non-
trivial automorphism of E over F. Let x be the non-trivial character of
G = Gal(E/F) = (7). If f : Ug — Xg is a Z[G]-module homomorphism
with finite kernel, then

N _ R wp 21817700
R(Pley = (Xe)rer  T(UR) ) FE S o

Proof. Let M = (Xg : f(Ug)), and let f, : Ug/up — f(Ug) be the
induced isomorphism. Then the composite
-1
g: XE % f(UE) fo_) UE/ME w—E> UE

is an injective Z[G]-module map. For such a map, Tate ([7, 1.6.3]) defines
R(x,g), and it is easy to see that the definition is equivalent to
R(x; 9)ey = det, pg(ABR © gRle,RXp)-

By Proposition 3.2(a), fg is an isomorphism, and it is then clear from our
definition of g that gg = M wEﬂgl. Since r(x) equals the dimension of

exRXE as a real vector space, we see from Proposition 3.2(b) that

7_1 T\ —
R(x, 9)ex=(Mwg)" ™ detyz, (Apzofg o lerxy)=(Mwp) @ R(F) ey.
On the other hand, the proof of [7, Prop. I1.2.1] gives
wr Rp (Up)'"": 9((Xg)141)?)
wg Rp 215|-1 '

As an abelian group, (Ug)!~7 is the direct product of its torsion subgroup
(Ug)'™™ N ug and a free abelian group of rank r(). Using this and the
definition of g, we have

R(x,9) =

(Up)' 7 : ((Up)'—7)*Mwr)
(9((Xp)1+0)? : (Ug)1-7)2Mur)
(Ug)' " N pp|(2Mwg)™=™)

THM(Xp)140)208 - (Ug)i-T)2Mus)

(Ue)'": g((XE)14+)?) =

(f
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Now f_l(M(XE)HT)QwE is torsion-free and hence f is injective on this
submodule, so we have

T M(XE)120) 28 [ (UR)' ") 2MYE 2 2Mwp(Xp)14r /2Mwp f(Ur)' 7).

Then since Xg is Z-torsion-free,

(J 7 (M(Xp)14-)"2 : (Ug)'7T)?M0P)
= 2Mwg(Xp)i4r : 2Mwpf((Up)'™")) = (Xp)14r : F(UE)' 7).
Combining the displayed equations gives the result.

PROPOSITION 3.5. Suppose that G = Gal(K/F') has exponent 2, ¢ is a
non-trivial character of G, and f : Ux — Xk is a Z[G]-module homomor-
phism with finite kernel. Then
2511 wp, Rp (X, )itr, : (7x/B, © /)(Us,) ™))

E(f)ey = T €.

GI"¥) wr Rg, [(Ug,) ™™ Npg,|

Proof. Let E = Ey and H = ker(¢)) = Gal(K/E). Then 1 is the infla-

tion of the non-trivial character x on G/H = Gal(E/F) = G. Since 7q, g

-1

restricts to an R-module isomorphism from R[Gley = Rey, to R[Gle, = Re,,
with 7/ g (ey) = ey, the result follows directly from Lemmas 3.3 and 3.4.

LEMMA 3.6. For the trivial extension F/F, with identity automor-
phism oq, and f: Up — Xp with finite kernel, we have

7 _ . (Xp: f(Ur))
R(f) = ZER—FO'().

Proof. Let M = (Xp : f(Up)), and let f, : Up/ur — f(Ur) be the
induced isomorphism. Then the composite
M — ?_1 w
g: Xp — f(UF) =, UF/NF —= Ur

is an injective Z-module map. Therefore, as in the proof of Lemma 3.4,
_ -1
R(1,g9) = detr(Apr © gr) = (Mwp)*I ™ detr(Apr o fz)
= (Mwp) 57 R(F) .
On the other hand, the proof of [7, Prop. II.1.1] gives

R(1Lg) = %25 Uy : g(Xp)).
wWr
As an abelian group, Up is the direct product of its torsion subgroup pp
and a free abelian group of rank |S| — 1. Using this and the definition of g,
we have

(Up : g(Xp)) = U (Up)™™r) wi(Mwg)!SI=1

(9(Xp) - (URMer) — (F L (MXpyor : (Up)Mer)
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Now f_l(M Xp)YF is Z-torsion-free and hence f is injective on this
submodule, so we have 771(MXF)“’F/(UF)M“’F > Mwp(Xp)/Mwpf(Ur).
Then since X is Z-torsion-free,

1 w w r r
(f (MXp)“r : (Up)Mr) = (MwpXp : Mwpf(Ur)) = (Xr : f(Ur)).
Combining the displayed equations gives the result.

PROPOSITION 3.7. Suppose that G = Gal(K/F) has exponent 2, 1y is the
trivial character of G, and f : Ux — Xk is a Z[G]-module homomorphism

with finite kernel. Then
(Xp: TK/F © f(Ur))

R(f)ewo = ]G||S|_1RF € -

Proof. Since 1y is the inflation of the trivial character o on Gal(F/F),
and mg/ ¢ restricts to an R-module isomorphism from R[G]ey, = Rey, to
Rog with 7 ¢(ey,) = 0o, the result follows from Lemmas 3.3 and 3.6.

IV. Class group annihilators

PROPOSITION 4.1. Suppose that G = Gal(K/F') has exponent 2 and that
f: Uk — Xk is a Z|G]-module homomorphism with finite kernel. Then

. hp(Xp fU
R Wi = F( i};gﬁgl(_l( F)))ed,o
25171 Cp, | (XEy )14, : ”K/Ew(f((UEw)”W)))e
|G|® @) |0y ) 147, v

+ 2
b#o

Proof. Combining Propositions 2.1 and 3.7 gives the coefficient of ey .
Using Propositions 2.2 and 3.5 for 1 # 1)y yields

R(f)‘g;(/F%
= 2lS1=1 |CE¢/F’ ((XEw)HTw :WK/Ew(f((UEfﬂ)liw)))e
G @ U ) N eyl (Usy)iem, : (Us,)" ) v
Then

(Xg,)11r, - 7x/E, (F(UE,)' ™))
- ((XEw)H-Tw : WK/Ew(f((UEd,)l-FTw)))
< (7 /8, (F(Upy)140,)) : iy, (F(Up,) 7).
Now consider the kernel of 7y g, o f restricted to Ug,. So let u € Ug,
and f(u) = >, cg, ww. Since o(u) = u for 0 € H = Gal(K/Ey), we
have ny, = ng(y) for each w. Fix a set of representatives {w;}, one for each
distinct orbit of Sk under the action of H, and write w; ~ w if w; and w
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lie in the same orbit with cardinality d;. Then
=D D mw=)_ ) nwzw—anz dow
i w~w; i wNw; ww;
and

7TK/Ew anl Z 7TK/Ew anz Z WK/Ew w;)

wew; wWw;

= Z nwidiﬂ'K/Ew (wz)

Since the elements mx/p, (w;) are distinct, the above is zero if and only if
each n,, is zero and hence f(u) = 0. Our assumption on f implies that
this holds if and only if u € ur. So the kernel of TK/E, © f restricted
to Ug, is clearly pg,. Thus 7/ s © f induces a homomorphism from

(Ugy )14,/ (Ug,)' "™ onto  mxp, (f(Up,)14n,))/7r) e, (F(Ur,)' ™))
with kernel (MEw)ler/(UEw)l_w N (kE,)1+r,- Consequently,
(Ugy 147, : (Ug,)' ™)
((pey)14m, + (Ug) "™ O (1B, ) 147,)
= (&g, (F(U,)147,)) : 7reym, (F(Ug,) ™).
Combining the displayed equations then gives the result.

LEMMA 4.2. Suppose that a € Anngg) (k) and that G is the direct
product of its subgroups H and J. Let M be the fixed field of H, and
identify J with Gal(M/F) by restriction. Then aNyg = BNg for some

B € Anng s ().
Proof. Write
o= Z Z Npopo € Anng(pk)-
ped oeH
Restricting to M, we define

B = Z ( Z npa)f) € Anngz(pm).

ped o€eH

- p) = Z Z Npep(o —1).

peJ oeH

Since (¢ — 1)Ng = 0 for each 0 € H, we have (o — f)Ny = 0 and thus
alNyg = BNy, as desired.

COROLLARY 4.3. Suppose that o € Anng g (uk). Then:

Note that

(1) aNg = cwpNg for some ¢ € Z.
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(2) Suppose that E is a quadratic extension of F in K, with H =
Gal(K/E), and H  J = (1) of order 2, so that G is the direct
product of H and J. Then aNg(1 — 7) = d|(tg)14-|Nu (1 — 1) for
some integer d.

Proof. (1) Applying Lemma 4.2 with H = G and J trivial gives aNg =
BN¢g with 8 € Anng(ur) = wrZ. So = cwp, giving the desired result.
(2) First, applying Lemma 4.2 with M = FE gives
aNyg = BNu

with 8 € Anngj(pg). Now Z[J] = Z + Z7, so 3 = m + nt with m,n € Z.
Since 8 annihilates (ug)14+- on which 7 acts as —1, we have

m-+nt

L= ((ep)ir)” = (1p)14r) = ((pg)r4-)" "

Therefore m —n € Anng((ug)i1++) = [(kE)1+-|Z, and m —n = d|(LE)1++]-
Finally,

Bl—=71)=(m+n7)(l-7)=(m—n)(1-7)=dl(pp)it-|1—-7)
Combining this with the first displayed equation gives the result.

PROPOSITION 4.4. If1) # 1y and the integer b is an exponent for CEw/Fa
then b|Gley annihilates C13. Indeed, if a is an ideal of OF, then allClev =
503 for some § € (Ey)14r,-

Proof. Let H = Gal(K/Ey) and let 7, be a fixed lift of a generator of
Gal(Ey/F) to G. Then

b|Gley = DN (1 — 7y).
Any element of Cl% is represented by an ideal ag of OIS(. Then
a%’{ = apOF
for some ideal ag of O%F ” while
afy = yapO3 ”
for some ideal ap of Ofp and 0 # v € Ey, since b annihilates Cl% 3 modulo
the image of Cl%. Finally,

1— 1—7y 1—T 1— S
(vap) T =4 TVa, Y =T OR.

Since § = Y17 € (Ey)14r »» combining the displayed equations gives the
result.

THEOREM 4.5. Let K be a composite of a finite number of quadratic exten-

sions of a number field F'. Let S contain the infinite primes of F' and those
which ramify in K/F. Suppose ker(f) is finite and o € Z[G] annihilates pug .
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Let 1) be an irreducible character of G. Then |G]rs(¢)+1aR(f)9}g<’}kFe¢ lies in
Z|G] and annihilates C13.. Indeed, if a is an ideal of O%-, then

S S, x
|GI"" (D HIQR(£)0] ey S
a K/F = 50]{

for some § € F' when 1) = vy, and for some 0 satisfying § € (Ey)1+r, when
Y # Yo.
Proof. First consider ¢ = tp. Note that |Gley, = Ng and () =
|S| — 1. Using Proposition 4.1 and Corollary 4.3(1) yields
er S,*
|G‘ (w0)+1aR(f)9K/F€¢O

hp(XF: U
= |G| R85 el Gley, = rXr iy e(fUF)

(0
hp(XF : 7g/e(f(UF))) .

wr

wpNg = hp(XF : mg/p(f(Ur)))ecNa,

which clearly lies in Z[G]. Now any element of Cl% is represented by an ideal
ax of (’)f(, and
Q%G = CIFO}q(

for some ideal ap of (’)f,w. Then
0 =107,

for some v € F. Thus the result follows from the displayed equations, with
5= /y(XFZﬂ'K/F(f(UF)))C'

Next consider 9 # 1po. Put H = Gal(K/Ey) and let 7, be a fixed lift of a
generator of Gal(Ey/F) to G. Then |Gley, = Ng (1 —7y). Using Proposition
4.1 and Corollary 4.3(2) yields

S * rS ¥
G W aR(£)05 pey = |Gl W R(f)05) pepalGley
(Xey)1+7,  Tr B, (f(UBy)147,)))

=2l5-1¢ eya|Gle
EVJ/F‘ ‘(ME¢)1+T¢‘ v ‘ v
_ (Xey 147y 7r B, (F((UBy)147,))
= 2ISl "Cp,/rl - I . ey d| (B, ) 14| |Glew
/"[’Ew)1+71/)|

— 2‘5‘71|CE¢,/F|((XE¢)1+W " TK/E, (f((UEw)1+Tw)))d|G‘e¢‘

Since this is an integer multiple of |Cg, /r||Gley = |Cpg,/p|Nu (1 —Ty), the
result follows from Proposition 4.4.

REMARK 4.6. It is clear from the proof of Theorem 4.5 that in fact
(1G> @+ 2SI aR(£)6}) ey annibilates CIF when ¢ # 1. Further-

more, in this situation, if rlg denotes the 2-rank of Cl%, one can show by an
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argument similar to that in [4, Proposition 2| that the 2-rank of C'g ,/F 1s al-

ways at least T}S; —1. Thus |C’Ew/ls|/2’"g_2 suffices as an exponent for Cg, /.,
and this allows one to modify the proof of Theorem 4.5 to conclude that
(|G| L 2lSIHrE=3)  R(£)07:" e,y annihilates C13 when ¢ # 1, and that

K/F
S S _ S
(|G|T (¢)+1/27’F 1)aR(f)9K7F
lary 2] shows that 2% 477 is an integer multiple of |G|, so that for ¢ # 1y,

we see that 23|G|rs(w)aR(f)«9}q<’;Fe¢ annihilates Cl3.

ey does so when v = 1)p. Finally, [4, Corol-

REMARK 4.7. By analogy with the Brumer—Stark conjecture, one may
also be interested in further properties of the generator 6 in Theorem 4.5.
The conditions given there guarantee that K(v/0)/F is an abelian Galois
extension in all cases. If F' has a real embedding, and ¢ # v, the condition

6 € (By)1+r, suffices to imply that K((Sl/wEw)/F is an abelian Galois ex-

tension, by application of [7, Proposition IV.1.2]. Indeed, Ew(él/ Yy JF s
abelian by the criterion there since 1 + 7, annihilates up,, in this case and
§'*7 =1, which is a wp, -power.
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