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Algebraic independence of real numbers with low density
of nonzero digits

by

HaJmmME KANEKO (Tokyo)

1. Introduction. Let @ > 2 be an integer. A normal number in base
« is a positive number whose base-a digits show a uniform distribution,
that is, all finite words with letters from the alphabet {0, 1,...,a—1} occur
with the proper frequency. Borel [3] showed that almost all positive numbers
are normal in each integral base. However, it is generally difficult to check
whether a given number is normal or not.

Borel [4] conjectured that all algebraic irrational numbers are normal
in every integral base. This conjecture is still open. No algebraic num-
ber has been proven to be normal yet. Moreover, no counterexample is
known. If Borel’s conjecture is true, then nonzero digits in base-a expansions
of algebraic irrational numbers appear with average frequency tending to
(a — 1)/a. Consequently, for any irrational &, if Borel’s conjecture is true
and if nonzero digits of ¢ in base-a occur with average frequency tending
to 0, then £ is transcendental.

We now recall known results about transcendence and algebraic inde-
pendence of positive numbers whose densities of nonzero digits are low. In
this paper, N is the set of nonnegative integers and Z> the set of positive
integers. We denote the integral part of a real number ¢ by [¢], and use
the Vinogradov symbols > and <, as well as the Landau symbols O and
o with their regular meanings. Recall that f < g, ¢ > f and f = O(g)
are all equivalent and mean that |f| < ¢|g| with some positive constant c.
Moreover, f = o(g) (resp. f ~ ¢g) means that the ratio f/g tends to zero
(resp. 1). All implied constants may depend on the given data.

We consider the numbers

(1.1) €= avi,
n=1
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where o > 2 is an integer and (w(n))s2; is a strictly increasing sequence
of nonnegative integers. Liouville [9, [10] was the first to show the existence
of transcendental numbers in 1844. He obtained the transcendence of the
number > 7, a~™ by proving what is nowadays called Liouville’s inequal-
ity. Schmidt [16] generalized this inequality and showed that the numbers
Y1, 72, - . . defined by

v = Z o~ () (l=12,...)
n=1

are algebraically independent. Durand [7] verified for each real algebraic
number z with 0 < z < 1 that the uncountable set

{Ch _ i Lhnt]
n=0

is algebraically independent. Shiokawa [17] established algebraic indepen-
dence of the values of gap series at algebraic points including those that
appeared in [7] and [16]. However, we cannot apply Liouville’s method in
the case of

h>0}

_ w(n+1)

limsup ———— < 0.
Let k > 2 be an integer. Mahler [LT] verified that the number Y °° ja*" is
transcendental. More generally, he proved for each algebraic number z with
0 < |z| < 1 that @x(2) = > o0, 2*" is transcendental by using the functional
equation

(1.2) By (%) = Dp(2) — .

Using the Schmidt Subspace Theorem, Corvaja and Zannier [5] generalized
Mahler’s results above as follows: Assume that (w(n))22, is lacunary, that is,

(1.3) lim inf 2D

> 1.
n—00 w(n)

Then, for every algebraic z with 0 < |z| < 1, the number Y > | 2% ig tran-
scendental. Mahler’s method is also applicable to algebraic independence
theory. Using (1.2)), Nishioka [12] showed that the values ®y(z),®3(z),. ..
are algebraically independent for each algebraic number z with 0 < |z] < 1.
For detailed information concerning Mahler’s method, see [13].

Now we return to the base-a expansions of algebraic numbers. For posi-
tive numbers £ and R, let A\(«, &, R) be the number of nonzero digits among
the first 1 + [R] digits of the base-a expansion of £, that is

Ma, €, R) = Card{n € N | n < [R], [€a"] — a¢a"""] # 0},
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where Card denotes cardinality. Assume that o = 2. Bailey, Borwein, Cran-
dall, and Pomerance [I] showed that for any algebraic irrational £ there
exists a positive computable constant C'(£) depending only on £ satisfying

(1.4) M2,6,N) > C(g)N/dess
for all sufficiently large N. With a suitable positive C'(«, §) in place of C'(§)
we will prove (1.4]) for any integral base o > 2 in the same way:

THEOREM 1.1. Let a be an integer greater than 1 and € > 0 an algebraic
irrational number. Then there exist effectively computable positive constants
C(a, &) and C'(«a, &) depending only on a and & such that, for any integer
N with N > C'(«, ),

(1.5) A, &, N) = O(a, ) N/A8E,

The idea of the proof of Theorem was inspired by the paper of
Knight [§]. Let ApXP + Ap_ 1 XP~! 4 ... 4 Ay € Z[X] be the minimal
polynomial of &, where Ap > 0. In the rest of this section, C1(a, &) and
Cy(a, &) denote effectively computable positive constants depending only
on « and £. We have
(16) ADé-D—l-AD_lfDil —|——|—A0 = 0.

We now explain the notion of nonzero islands introduced by Knight for an-
other proof of the transcendence of & = Y o0 ja~2". Let D', A, A, ..., AL,
be integers with D’ > 1 and A, > 1. We will show that

D/
w = Z ALl £ 0.
k=0

For any k with 1 < k < D’ we have

oo

é‘(])C - Z T(m7 k)aim7

m=0
where 7(m, k) denotes the number of ways that m can be written as a sum
of k powers of 2. Let b be a sufficiently large integer. Put N = (2P" —1)2°.
Let m be an integer with
N-2""141<m<N+2"—1.
Then Lemma 1 in [§] implies that
{D’! ifm=N and k= D/,
T(m, k) =
N

0 otherwise.
Hence, considering the carries of the base-a expansion of D'lA},,a™", we
deduce the following: there exists an integer m with N < m < N+O(1) such
that the mth digit of the base-a expansion of w is not zero. In particular,
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w # 0. Knight used the term nonzero islands to refer to nonzero digits which
occur from the carries of the base-a expansion of D’ !A’D,a_N .

In [I], the Thue-Siegel-Roth theorem [I5] was used to find nonzero is-
lands. However, this theorem is ineffective. In this paper, we use Liouville’s
inequality instead, and obtain the effective lower bounds C’(«, &) in Theo-
rem [L11

We now give a sketch of the proof of Theorem [I.I] without technical
details. For simplicity, assume that 1 < £ < 2 and write the a-ary expansion
of £ as

o0

€= Z t(§,m)a™ ™.

m=0

Note that ¢(£,0) = 1. For any k with 1 < k < D,

(1.7) s’“—ZOa—m Yoo t& i)t ik) = Y a " p(k,m).

i140yip>0 m=0
i1+ tip=m

Let k > 2. Then, putting i = 0, we get

11550120
i1t Fig_1=m
Let N be a positive integer. In the same way as in the proof of Theorem 7.1
in [I], we can show that there exists an interval I = [U;,U2) C [0,N)
satisfying the following four conditions:

e p(D—-1,U;) > 0.
e If Uy < N, then p(D —1,Us) > 0.
e For any m with Uy < m < Us,

(1.9) p(D—1,m)=0.

e The length |I| = Uy — Uy of I satisfies
(1.10) 11> C1 (0, )NYP.
Using and , we get
(1.11) p(k,m) =0,

where k and m are integers with 1 < k < D—1 and U; < m < Us. Liouville’s
inequality and ((1.10) imply that if N > Cy(«, &), then there exists an my
satisfying ¢(§, mg) > 0 and

1 D+1

Il < mo < 272001
Dl =mo= 55l
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Indeed, suppose that t(£, m) = 0 for any m with

Soism< D Ny,
Put
1
my = max{m eN ‘ m < D+2\I\, t(&,m) # 0},

my = min{m € N | mg > mq, t(§, m) # 0}.
Then we have
ma > (D + 1)my.
Let

mi
pi= Z t(,m)a™ "™ q:=a™.
m=0
Then p and ¢ are integers. Thus,

o
§— g = Z t(&,ma " < al=m2 < = (P+hm ag P,

m=msy

which contradicts Liouville’s inequality in the case of N > Cy(a, §) because

we have ((1.10]).

Hence, putting U := U; + my, we obtain

1 D+1
1.12 — I < U< —|I
(1.12) U1+D+2||_U_U1+D+2H
and
(1.13) p(D,U) > p(D — 1, U)H(€, mo) > 0.

In what follows, we analyze the a-ary expansion of the left-hand side of ,
using . Note that is not generally the a-ary expansion of £* because
a~"p(k,m) causes O(log p(k, m)) carries to higher digits. Recall that Ap >
0. Combining 7, we conclude that there are positive digits left in
the a-ary expansion of , which is a contradiction. To explain the details
of the remaining positive digits, Bailey, Borwein, Crandall, and Pomerance
[1] introduced BBP tails, a concept defined in [2] to give rapid algorithms
for the computation of the digits of certain transcendental numbers.

In the case of a = 2, Rivoal [14] improved the constant C'(§) for certain
classes of algebraic irrational €. For example, let ¢ be an arbitrary posi-
tive number and ¢ = 0.558... the unique positive zero of the polynomial
8X3 —2X2% +4X — 3. Theorem 7.1 in [I] implies that for any sufficiently
large N,

A2,6' N) > (1 —¢)167/3N/3,
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On the other hand, using Corollary 2 of [I4], we obtain
A2.€ N) > (1—g)N?

for all sufficiently large V.
Let us consider applications of Theorem For each real k > 1, put

v = i a1,
n=0

Let d be a natural number with 2 < d < k. Then ([1.5)) implies that v is not
an algebraic number of degree at most d. Moreover, using Theorem [1.1] we
deduce criteria for transcendence.

COROLLARY 1.2. Let a be an integer greater than 1, and & a positive
irrational number. Assume that for every positive €,

(1.14) AMa, &, N) = o(N®).
Then £ is transcendental.

For instance, the numbers
oo oo
Z O[in!, Z ()[72”
n=1 n=0
are transcendental by Corollary because they satisfy . Moreover,
for positive [ and x > 1, let

fi(z) = exp((log x)”l).

Then the number

n=1

is transcendental by Corollary because it satisfies ((1.14]). Indeed, it is
easily seen that, for any € > 0,
Ma,mi, R) ~ exp((log R)"/ 1) = o(exp(elog R)) = o(R°)

as R — oo. Note that 7, does not satisfy (1.3)), so we cannot prove its
transcendence using the result of Corvaja and Zannier. Indeed, for x > 1,
we have

filz + 1)> 141 141
log< = (log(z + 1))**" — (logz)**".
S ) = (log(a -+ 1) ~ (log)
By the mean value theorem, there exists ¢ = o(l,z) € (0,1) such that
filz + 1)) (log(z + 7))’
log| —F——= ) =01+1)———.
og( fi(z) ( ) T+o
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Since the right-hand side converges to zero as x — 0o, we obtain

lim 7]}@ +1)
z—oo  fi(x)

The main purpose of this paper is to deduce algebraic independence of
certain classes of numbers £ which satisfy ([1.14). We will introduce crite-
ria for algebraic independence in Theorem We prove this theorem in
Section 4. Our method is quite flexible because we do not use functional
equations. As a consequence, we deduce algebraic independence of the val-
ues n; for real [ > 1:

=1.

THEOREM 1.3. The uncountable set {m; | l > 1} is algebraically indepen-
dent.

We cannot prove, using Theorem that {m; | [ > 0} is algebraically
independent. However, we deduce that any two elements of this set are
algebraically independent:

THEOREM 1.4. Let h and | be distinct positive real numbers. Then np
and n; are algebraically independent.

We prove Theorems [I.3] and [I.4] in Section 3.

2. Criteria for algebraic independence. Let a > 2 be an integer
and £ a positive number. For each integer m, put

t(€,m) = [¢a™] — aléa™ ] €{0,1,...,a —1}.
Note that t(£, —m) = 0 for all sufficiently large m € N. Then ¢ is written as

o0

§= Z t(&m)aima

m=—0oQ

which is the a-ary expansion of £. Set
5() ={m e N|#(&,m) # 0}.
Recall that for R > 0,
Mo, &, R) = Card{n € S(¢) | n < R}.
Note that if 1 < & < «, then 0 € S(&). For each positive integer a, let
aS€)={ni+---+ng|ni,...,ng €5}

For convenience, set 0S(¢) = {0}. Moreover, for any positive numbers
&1, ..., & and nonnegative integers ay,...,a,, let

Zais(&) ={s1+--+s|s€a5&)forl<i<r}
i=1
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For a nonempty subset A of N and R > min{n € A}, define
0(R; A) = max{n € A|n < R}.

Assume that 1 < &,...,& < a. Let (a1,...,a,),(d},...,a,) € N, where
a; > a; for every i with 1 < < r. Then we have

Z aiS(&) O Z a;S (&)
i=1 i=1

because S(&1),...,5(&) > 0.
We now state criteria for algebraic independence.

THEOREM 2.1. Let &1,...,& be positive irrational numbers. Suppose
that:

(1) For every positive £, we have, as R — oo,
)‘(av &1, R) = O(Ra)’
May&p, R) = oMo, €1, R)?)  forh=2,...,r.
(2) There exists a positive constant Cy such that
S(&)N[C1R,R] # 0
for every sufficiently large real R.

(3) Let ay,...,ar—1,a, be any nonnegative integers. If r > 2, then there
exist a positive integer k = k(ai,...,ar—1) and a positive constant
Cy(ay, ..., ar), both depending only on the indicated parameters, such
that

r—2 r
R—0(R:Y aiS(&) +kS(&-1)) < R[] A& )7

i=1 i=1
for each real R > Cs(ay, ..., a).
Then &1, ...,& are algebraically independent.
REMARK 2.2. In the case of r = 1, Theorem [2.]] follows from Corol-

lary

We prove Theorem in Section 4. In the rest of the present section we
give a sketch of the proof without technical details for » = 2 and x(a;) =
1+ ay for all a; > 0, where £(aq) is defined in condition (3). For simplicity,
suppose that 1 < £1,& < 2. If & and & are algebraically dependent, then
there exists a nonzero polynomial P(X1, X2) € Z[X] such that

(2.1) P(&,&) =0.
Let

P(X1,X2):= Y = AX{PXP
k=(a1,a2)€A
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where A is a nonempty finite subset of N and Ay a nonzero integer for each
k € A. We search nonzero islands of the a-ary expansion of the left-hand
side of (2.1]). For any k = (a,b) € A, we get

oo [e.e]

(22) &&= (Z t(§1,x)a*‘”>a(z t(fzay)Ofy)b

=0 y=0

oo
= > > t(&yin) o t(&rsda) (€25 1) - - U(E2s Jb)
m=0  d1,....8a,J1,--,Jb>0
i1+ +iatj1++jp=m

Observe that p(k,m) > 0 if and only if m € aS(&) + bS(&2). In the proof
of Theorem [I.T] we used the relation

0eSE) c25) c---

to find nonzero islands. Indeed, implies that (k — 1)S(§) C kS(€) (see
also ) On the other hand, let (a1,a2), (a},a}) € A. Then, in general,
neither a15(&1) + a25(&2) C ayS(&1) + abS(&2) nor a}S(&1) + ahS(&) C
a15(&1) + a25(&2) holds. This is the main difference between the proofs of
Theorems and Let = be the lexicographical order in N2, that is,
(a1,a2) > (a},ab) if either a; > af, or a1 = o} and as > a). Let g =
(91,92) € A be the greatest element of A with respect to >. Without loss
of generality, we may assume that Ag > 0. For any (a1,a2) € 4, if a1 = g1,
then ags < go. Thus, a15(&1) + a2S5(&2) C g15(&1) + 925(&2). If a1 < g1,
then the relation above does not hold generally. However, by condition (3)
of Theorem [2.1] the set a15(&1) + a25(€2) is approximated by (1+ a1)S(&1)
because k(a1) = a1 + 1. Moreover, (1 +a1)S(§1) C 15(&1).

Based on the observation above, we give nonzero islands in Section 4.4.
Let N be a sufficiently large integer. We construct an interval J = [T, 1) C
[0, N) such that:

o T1 € p1S(&1) + p2S(&2) for some (p1,p2) € A with p1 < g;.

o If T < N, then Ty € ¢15(&1) + ¢25(&2) for some (q1,q2) € A with
Q< g1-

e Let m be any integer with 73 < m < Ty and let (aj,a2) € A with
a1 < g1. Then m & a1.5(&1) + a2S(&2).

Since p1S(&1) +p2S(§2) and q1.5(81) + q2.5(§2) are approximated by g1.5(&1),
we get a subinterval I = [Ry, Ry) of J satisfying:

o R € g15(61) + (92 — 1)S(&2).
e Ry € g15(61) + (92 — 1)S(&2).
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e Let m be any integer with R1 < m < Rg and let k = (aj, az) € A with
g > k. Then

(2.3) m ¢ a1S(&1) + a28(§2).

Denote the length of I by |I| = Ry — R;. By condition (2) of Theorem
there is an mg € N satisfying mg € S(§2) and

Ch 1
Il < < Il.
rrofEmes g
Putting U := Ry + my, we obtain U € ¢15(&1) + g25(&2) and
1 1
2.4 R I|<U<R I|.
24 1t g s Us Bt o

In particular,
(2.5) p(g,U) > 0.

Now we analyze the a-ary expansion of the left-hand side of , using
. Recall that Ag > 0 and that o= p(k, m) causes O(log p(k, m)) carries
to higher digits. Hence, combining 7, we conclude that there are
positive digits left in the a-ary expansion of , which is a contradiction.
To explain the details of the remaining positive digits, we introduce BBP
tails Yg in Section 4.2.

3. Proofs of main results

Proof of Theorem [1.5 Let {n,,...,m,} be any finite subset of {n; |
[ > 1}. Without loss of generality, we may assume that [; < --- < [,. Let
52' =N, — [7711'] +1le (172)
for i = 1,...,r. Then S(§) 2 0 for i = 1,...,r. We check that &;,...,&,

satisfy the assumptions of Theorem Let [ be a positive number. In
Section 1 we proved that, for any sufficiently large x,

(3.1) filz) < filz +1) <2fi(2).

Thus, we have verified condition (2) with C; = 1/2. For any positive numbers
[ and x > 1, put

(3-2) gi(w) = exp((log )/ *),

Note that g; is the inverse function of f, that is, fi(g;(x)) = « for any x > 1.
Let ¢ and j be integers with 1 <4, j < r. As mentioned in Section 1, for any
e>0,

(3'3) )‘(O‘a &is R) ~ gli(R) - O(RE)
as R — oco. If 7 < j, then, for any € > 0,
(3.4) g1, (R) = o(exp(e(log )"/ H1))) = o(g,, (R)*).
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Thus condition (1) holds by (3.3) and (3.4). Finally we check (3). We invoke

the results of Daniel [6]. Let (1), be the strictly increasing sequence of

those positive integers that can be represented as the sum of three cubes of

positive integers. Then Daniel showed that
Hnt1 — Hn = O(/‘g/w)'

In the same way as in the proof of the result above, we get the following:

LeEMMA 3.1. Let k = (a1,...,a,) € N\ {(0,...,0)}. Then, for R > 2,
83 R 0(RY wS(E)) < Allog ()
where -
g(R)*=[]a @R
i=1

Proof. We argue by induction on aq +- - - +a,. Assume that a; +---+a,
= 1. Then there exists an integer h with 1 < h <7 and ap = 1. We have
/ (14 In) fy, (z) (log fi, (x))tn/ (A +in)
flh(x) =
9, (fu, (7))
Let  be a sufficiently large real number. Then, by the mean value theorem,
there exists p = p(z) € (0,1) such that

(14 In) fu, (z + p)(log fi, (x + p))tn/(Hin)
fo,(+1) = fi,(z) = o (@ + )
< (14 1) fi, (x + 1) (log fi, (x4 1))/ OF)
B 9, (fi,(2))
fu, (@) log fi, (x)
g (fi, ()~
where for the last inequality we use (3.1]). For R > 1, let
Rlog R
F(R) = aw(R)

Taking the logarithm of F'(R), we deduce that F'(R) is increasing for large R.
If R is sufficiently large, then there exists m € N such that

[fi,(m)] < R < [fi,(1+m)].
Thus, we get 0(R; S(&p)) = [ f1, (m)]. Since
F(fi, (m)) < F([fi,(m)]) < F(R),

<

we obtain

0<R—0(R;S(&n) < fi,(m+1) = fi,(m) + 1 < F(fy,(m)) < F(R),
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which implies (3.5) in the case of a; + --- + a, = 1. Next, assume that
ar+ - +ay > 2. Let

d=max{i >1|a; >1}.
Put
k' = (a},...,a) :=(a1,...,a4-1,—1+aq,0,...,0).

Then, using the case of a; + --- + a, = 1, we deduce that there exists a
positive constant C' satisfying

Rlog R
gld(R)

R = R—0(R: S(¢2) < C
Note that
R—0(R:Y aS(E) <R
=1

because Y ;4 a;S(&) D S(€q). Thus, we may assume that R > 2. By the
induction hypothesis, we get
R — 9<R/; Z aéS(fi)) < R'(log R+ targ(RYK = G(R)).
i=1
Let

7= 0(R; S(¢a) + 0(RG Y alS(&)).

i=1
Then since v € Y1, a;S(&;), we get
(3.6) 0<R-0(RY wS(&) <R~
i=1

—R - 9(3'; 3 a;S(&)> < G(R).
i=1
Taking the logarithm of G(R), we deduce that the function G(R) is increas-
ing for sufficiently large R. Thus, we obtain

Rlog R Rlog R
3.7 G(R) < G(C) < G()
S 0a(R) 0a(R)
_ RlogR ( o RlogR>“'1+"'+“? (Rlog R> K
91,(R) g1,(R) 91,(R)

R \ ¥
(log R) g (B

<
gld(R)
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Let i € N with 1 <4 < d. Since I; > 1, we observe that, for any sufficiently
large R,

R\ 1/(14+1) Y1/ (1+1:)
log<>> = (logR — (log R g g
< 0.(R) (log B = (log R)" )

= (log R)l/(1+li)(1 — (log R)_li/(1+li))1/(1+li)
> (log R)l/(l-‘rlz’) (1 _ (log R)—li/(l—l-li))

14+
> (log R)/(1+h) — 1

and hence
R R
91; > g@-() > g1, (R).
<gld(R)> gli(R) ( )
Therefore,
R \¥ ,
( ) & (gld (R) ) g( )

Combining the inequalities (3.6)—(3.8]), we conclude that
0<R- Q(R; 3 aiS(&-)) < R(log R)yM++arg(R)k
i=1

which implies (3.5)). =
Let k = (ai,...,a,) € N". Then, by (3.3)), (3.4) and Lemma

r—2

R— Q(R; Z a;S(&) + (1 + arfl)S(grfl))

=1
r—1 r
< Rg,_,(R) " [T ou(R)™ = o( R]] Mo &, B)™)
=1 i=1

as R — oo. Hence, condition (3) of Theorem [2.1|is satisfied with
k=r(al,...,ap—1) =14 a,_1.
Thus we have proved Theorem .

Proof of Theorem [I.4} Without loss of generality, we may assume that
h <l Let & =mnp— [np] + 1 and & = — [] + 1. Note that 1 < &;,& < 2
and that S(&1), S(§2) 2 0. As in the proof of Theorem we can verify that
&1 and & satisfy conditions (1) and (2) of Theorem with C; = 1/2. In
what follows, we prove that (3) is also satisfied. Let g;(x) be defined by (3.2).

LEMMA 3.2. Let b be a positive integer. Then, for any e > 0,
(3.9) R —0(R;bS(£1)) < Rgn(R)™"™  for R>2.
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Proof. We show (3.9) by induction on b. Assume that b = 1. As in
the proof of Lemma, [3.1] we deduce that there exists a positive constant C'
satisfying
RlogR
9n(R)’

(3.10) R :=R-0(R;S(&)) <C

which implies (3.9) because, for any positive ¢,
log R = o(gn(R)%)

as R — oo. Suppose that b > 2. Without loss of generality, we may assume
that R' > 2 and ¢ < 1. In particular,

—b+1+e<0.
By the induction hypothesis,
R = 0(R; (b= 1)S(&)) < Rgn(R) "% = H(R').

Taking the logarithm of H(R), we see that the function H(R) is increasing
for large R. Hence,
(3.11) 0 < R—0(R;bS(&1))

< R—0(R;S(&)) — 0(R; (b —1)S(&1))

= R —0(R’; (b —1)S(&)) < H(R)

<t ) < (i)

Rlog R (Rlog R> —bH1+e/3
= g
an(R) 7"\ gn(R)

1+¢/3 R\ U
< Rgn(R) 9n <gh(R)>
Let
= o520
Then

(1—5’)<—b+1+§> =—b+1+ze.

For all sufficiently large R, we obtain

R HEh) 1/(1+h)\1/(1+h)
lo = (log R — (log R
< g<9h(R)>> (log (log ) )

> (1 — ') (log R)/(0+M)
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and hence

R b+1+¢/3 ,
o <gh<R>> < gn(R)I IR = gy (R) OIS,

Combining (3.11]) and the inequality above yields (3.9)). =

Let (a1, az) € N2, Then, applying Lemmawith b=aj+lande =1/2,
we get

R—0(R; (a1 +1)S(&)) < Rgh(R)—al—l/Q
2
= O(RH)\(a,gi,R)*ai)
i=1

as R — oo. Thus we have checked condition (3) of Theorem with & =
k(a1) = a1 + 1 and hence verified Theorem n

4. Proof of Theorem 2.1]

4.1. Base-a expansions of powers of real numbers. We prove The-
orem by induction on r. Corollary yields the case of r = 1. In what
follows, suppose that » > 2. We may assume that 1 < &,...,& < 2. In-
deed, &1, ...,& are algebraically independent if and only if &,...,&. are
algebraically independent, where

E=&—[&G]+1 fori=1,...,m
For simplicity, let
Ai(R) = Mo, &, R) fori=1,...,7 and R > 0.

For convenience, put N’ = {0}. Let £ >0, b€ N, x = (z1,...,2;) € N’ and
s=(s1,...,8) € Z°. Put

0 (b=0),
|X‘_{{I)1+"'+xb (bZI),
1 (b=0),
t(&,x) = {t(f,l‘l) et(&ap) (b>1),
Xs_{1 (b:0)7
ol (b>1).

Denote ({1,...,&) and (Ai(R),...,A\(R)) by £ and A(R), respectively.
Then, for each k = (a,...,a,) € N"\ {(0,...,0)},



340 H. Kaneko

(1) g ﬁ(it(&’@ax)ai _ H( 3 t(&-,X)a*\XO
i=1 =0 =1 xeN%

B Z t(gl’xl) ’ "t(éraxr)a_lxl|_"'_|x7"

x1 €N ... xr€Nar

=) pk,m)a ™,
m=0
where
pk,m) = > t(&1,x1) - t(&,x,) € N

x1ENa1 . x,ENar
e |=m

Note that, for each m € N, p(k,m) > 0 if and only if m € Y, a;S(&). It
is easily seen that

(4.2) pk,m) < Z (a— 1) = (o — 1)Kl (

x1 €N .., xpeNar
Iy [ er | =m

m+ k| —1
k| -1

We now check the following;:

LEMMA 4.1. Let k = (a1,...,a,) € N'\ {(0,...,0)} and N € N. Then
N

S plie,m) < (o — HMAN)E,

m=0
Card{m € N|m < N, p(k,m) > 0} < (o — 1)KIA(N)k.
Proof. Put, fori=1,...,r,
S;={meS&)|m<N}, S)=/{o0}.
Then

N
> plk,m) = > (TR SHRRRRA(SHS

m=0 x1€EN .. x,.eNT
s -+ [N

< Y @-pM=(a-pFamk
xleS‘fl,...,xTGS,‘?T
which implies the first statement. The second follows from the first because
p(k,m) € N for each m € N. u

4.2. Auxiliary functions. We define the lexicographical order > on
N" as follows. For any k = (ai,...,a,), k' = (da},...,a.) with k # K/,
there exists a positive [ such that the first [ — 1 symbols in k = (ay,...,a,)
and k' = (a},...,al) coincide, but their [th symbols are different. Then
k= (ai,...,a,) = k' =(d},...,a) if and only if a; > aj.

»r
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Each nonzero polynomial Q( ) € Z[X1,...,X,] is uniquely written as
Z Bi Xk,
keA(Q

where A(Q) is a finite subset of N" determlned by @, By a nonzero integer
and X = (X1,...,X,). Recall that X¥ = X ... X% for k = (ay,...,a,).
Let g(Q) = (91(Q), . .., 9-(Q)) be the greatest element of A(Q) with respect
to . Moreover, put

5 (Q)={keAQ)|ar=q(Q)-..,ar—1 = g-1(Q), ar < g(Q)},

A2(Q) = AQ)\ (A1(Q) U {g(@)}),

A3(Q) ={k € AQ) [ a1 = 91(Q), - .-, ar—2 = gr—2(Q), ar—1 < gr—1(Q)},
where k = (ai,...,a,). We define a number e(Q) as follows. If A3(Q) is
empty, then put e(Q) = 0. Otherwise, let

e(Q) = max{a,—1 | (a1,...,a,-1,a,) € A3(Q)}.

Now assume that &1,...,&,. are algebraically dependent. Then there exists
a nonzero polynomial P(X) € Z[X;, ..., X,] such that
P(§) =0.

By the induction hypothesis &3, . .., &, are algebraically independent. Thus,
the degree of P(X) in X is positive, so g1 (P) > 1. Without loss of generality,
we may assume that

(4.3) Xr(Xr = 1) [ P(X).
Let
£(n) == K(g1(P), ..., gr—2(P),n),
where n is a nonnegative integer and the right-hand side is defined in con-

dition (3) of Theorem Let m and n be integers with 0 < m < n. Then,
for any positive number R,

R—0(R Zgz S(&)+nS (- 1>)sR—e(R;rfgxP)S(@HmS(a_l))
=1

because

Zgz gz +nS 57" 1 ngz fz)"‘ms(fr 1)

So, by increasmg k(n) if necessary, we may assume that x(n) > 1 for any
n € N and that the sequence (k(n))22, is increasing.

LEMMA 4.2. There is a nonzero polynomial F(X,_1,X,) € Z[X,—1, X;]
such that
Gr-1(FP) > n(e(FP)).



342 H. Kaneko

Proof. We define a nonzero polynomial o(X,_1,X,) € Z[X,_1, X,] as
follows. If » = 2, then put

(44) O'(Xl,XQ) = P(XI,XQ).
If r > 3, then P(X) is uniquely written as
(4.5) PX)= > X, X)X X

k=(a1,....,ar—2)El
where I is a finite subset of N" =2 and ¢y (X,_1, X;) € Z[X,_1, X,] a nonzero
polynomial. Note that 1 := (g1(P),...,gr—2(P)) € I". Now put
o(Xr-1, Xr) == o1(Xp-1, Xo).
Let

b
o(Xp1, X)) =) oi(X)X]
1=0

where 0;(X,) € Z[X,| with o5(X,;) # 0. We show that for any integer
n > b there is a nonzero polynomial ¥ (X, |, X,) € Z[X,_1, X,] such
that o(X,_1, X, )™ (X,_1, X,.) can be written as

(4.6)  o(Xo—1, X)) (X1, X,) = ) (X 1+Z¢ 1

where wgn)(XT) € Z[X,] for i = 0,1,...,b with ¢bn)( X,) # 0 In the case
of b = 0, it is clear that w(”)(Xr_l,Xr) X', satisfies . Suppose

that b > 1. We check (4.6) by induction on n. If n = b, then putting
YO (X,_1, X,) =1, we get (4.6). Assume that n > b+1. Then the induction

hypothesis implies that
W (X1, Xp) = 0y (X)Xt (X1, X) — 0 ()
satisfies . Moreover, (" (Xr_l,Xr) # 0 since ob(X,,)w("*l)(XT_l,XT)
# 0. Let w = max{0,b — 1}. In what follows, we verify that
F(Xpo1, Xp) = (X, 4, X,)

satisfies the statement of Lemma [£.2] Using (4.5) and (4.6]), we deduce that
the first 7 — 2 symbols of g(P) and g(FP) coincide in the case of r > 3.
Moreover,

(4.7) gr—1(FP) = r(w),
(4.8) e(FP)<w
In fact, if A3(FP) # (Z) then by ([.4)-([4.6), we get e(FP) < b— 1. Hence,

combining (4.7) and (4.8), we conclude that g,_1(FP) > k(e(FP)) because
the sequence (/{(n))gozo is increasing. m
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For simplicity, put
A= A(FP),
Ap = Ap(FP)  for1 <h<3,
ko = (g1,.--,9r) = g(F'P).
Recall that ¢; = g;(FP) = gi(P) fori=1,...,7—2, s0

k(n) =k(g1,...,gr—2,m)
for each n € N. Let
F(X, 1, X)P(X) = ) AX",
keA
where Ay is a nonzero integer. Then
(4.9) Z Akgk =0.
keA
Note that |k| > 1 for each k € A, because X, divides P(X). Without loss
of generality, we may assume that Ay, > 1.

LEMMA 4.3. Ay and As are not empty.

Proof. First suppose that Ag is empty. Then, for each k = (aq,...,a,),
we have a1 = ¢1,...,0,—1 = gr—1. Thus, implies that &, is an algebraic
number, which contradicts the induction hypothesis.

Next, assume that A; is empty. Then we get

(4.10) > A XK = Ay X0,

k:(al ..... a’,»)E/l
a1=g1,--,ar—-1=gr—1

Let @ : Z[X4,..., X, = Z[X1,...,X,—1] be defined by

Q(Q(Xla s 7XT)) = Q(le coey X1, 1)
By (4.10)), the greatest element of ®(F(X,_1, X, )P(X)) with respect to the
lexicographical order on N"~!is (g1,...,g,-1). So, ®(F(X,_1, X, )P(X)) is
not zero, that is, X, — 1 does not divide F(X,_1, X, )P(X), which contra-
dicts (4.3]). =

Let
D =1+ max{|k| | k € A}.

Denote the greatest elements of Ay and Ay with respect to = by ki and ko,
respectively. Let

e=1(91,...,9r—2,¢(FP),D).

Then k < e for each k € As. Indeed, if A3 is empty, then there exists a
positive [ < r — 2 such that the first [ — 1 symbols in e and ks coincide, but
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the [th symbol of e is greater than that of ks. Otherwise,
ko = (glv <oy Gr—2; e(FP)7a)
with a < D, and so kg < e. By condition (1) of Theorem [2.1] for any k € A»,

(4.11) A(n)* = o(A(n)°).
Lemma [4.2| implies
(4.12) gr—1 = K(e(FP)).

Let = be the set of nonnegative integers N such that, for every integer n
with 0 <n < N,

(4.13) nA(n)~¢ < NA(N)™©.
Note that = is infinite. Indeed, by condition (1) of Theorem 2.1} we have
lim NA(N) ® = oc.

N—o0

If necessary, by increasing C(e), we may assume that \.(n) > 5 for every
n € N with n > Cy(e), where Cy(e) is defined in condition (3) of Theo-
rem 2.1} For simplicity, let

9(R) = 9<R; fgiS(&))-
=1

LEMMA 4.4. Let M and E be any positive real numbers with
M > Cy(e) and E >4MAM)™°.
Then
M+E/2<0M+E).
Proof. Using
E/A> MMNM)™¢, E/4>FENM)"C,
we get
E/2>(M+ E)AM)™®>(M+E)XM+E)°.

Note that M + E > Cs(e). Thus, using (4.12) and condition (3) of Theo-
rem with (a1,...,a,) =e, R= M + E, we deduce that

M+E—-0M+E)<(M+EMNM+E)®<E/2,
which implies the conclusion. =

Using (4.1) and (4.9)), we get, for each R € N,

o0

0= aR Z Akék = Z Ak Z p(k,m + R)a*m,

keA keA m=—R
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SO

YR—ZAkZ km+R) € 7Z.

keA m=1
Let N € N. In what follows, we estimate the number

y(N) = Card{R e N| R < N, Yz > 0}.
4.3. Bounds for y(N). First, we consider upper bounds for y(N).
LEMMA 4.5. We have

y(N) = o(N)
as N — o0.
Proof. For k € A and R € N, let
Y(k,R) = plk,m+ R)a™™ > 0.
m=1
Then by (4.2)),
S +R+ |kl -1\ _
< k(T m
<3 0(" )

m=1

- +R+ k| -1\ _
< (a—1)H m 2 m
<le-) mZ:( K -1

In the proof of Theorem 2.1 of [1], Bailey, Borwein, Crandall, and Pomerance
showed that for R > 0 and [ > 1,

o~ (m+R+1-1\__,, (R+1)!
n;( -1 >2 SU-DRT D)

Since |k| > 1, we get
(o = DM(R + k)

4.14 Y(k,R) <
. B < T m D+ )
In particular,
N N
(o — DN 4 [k])*
(4.15) Y Y(kR <> (K11
R=0 R=0
o (a— D)MW + k)
B (k| = 1)!
By condition (1) of Theorem we have
(4.16) AN = o(N).

Let K = [Dlog, N, where log, N = (log N)/(log ) and [z] is the smallest
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integer greater than or equal to x. Then by (4.15]), (4.16) and the first
inequality of Lemma we get

N-K 00 N-K
Z Y(k,R) = Za—m p(k,m + R)
R=0 m=1 R=0
K N 00 N-K
< Z a” ™ Z p(k,R) +a ¥ Z off=m Z p(k,m+ R)
m=1 R=0 m=14+K R=0
N-K oo
< (- DFANF+a YN pk,m+ R+ K)o
R=0m=1
N-K
=o(N)+a® > V(k,R+K)
R=0

Since Y (k, R) > 0,

N—-—K
Vil <> | A Z o(N).
R=0 keA
Using Yr € Z, we obtain
N-K
y(N) <K+ ) |Yg|=0(N). =
R=0

Next, we find lower bounds for y(IV).

LEMMA 4.6. Let N € N be sufficiently large and I = [Uy,Us) an interval
with I C [0, N). Suppose that p(k,z) = 0 for any integer x € (U1, Us) and
ke A\ {kg}. Moreover, assume that there exists U € N satisfying

Uy <U<U;—Dlog, N and p(ko,U)>0.
Then Yy, > 0 for any n € [U,U).

Proof. We use induction on n. First we consider the case of n = U — 1.
Using (4.14), Ak, > 1, and the assumptions on I and U, we obtain

YU 1—2141{2 km+U—1)
keA m=1

> Y Y km U T

keA\{ko} m=1+Us—U
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1
- - Z | AoV "2y (k, Uy — 1)
@ keA\{ko}
1
>—— Y AN Pla-D)PT(N+D-1)P >0
keA\{ko}

for all sufficiently large N.
Next, suppose that Y,, > 0 for some n € Nwith 1 +U; <n<U — 1.
Then from Ay, p(ko,n) > 0 we get

1 1 o
Y, ;= — - o —m+1
1= E Akp(k,n)+a E Ag E plk,m+n—1)a
keA keA m=2

1 1
= fAkOp(k(), n) + =Y, > 0.
e «
Hence we have verified Lemma [4.6] =

4.4. Completion of the proof of Theorem We construct inter-
vals I = [Uy, Us) satisfying the assumptions of Lemma Using and
the second inequality of Lemma[4.I] we deduce the following: Let N € = be
sufficiently large. Then the number of nonnegative integers T" with T' < N
such that there exists a k € Ay with p(k,T") > 0 is at most

1

> (a= DRANE < CA)®.

keAs
Say these T’s are 0 =T < --- < T, where

1
4.1 < —A(N)S.
(1.17) "< LA
Set Th4r = N and
T =A{J=J0)=[T;,Tiyy) |1 <j <7}

For any interval I C R, let |I| denote its length. Then

(4.18) > =N

JeJ
Moreover, put

J1 = {J eJ | |J| > 16NA(N)_e}, Jo = {J e | J C [CQ(G),N)}
LEMMA 4.7. Let N € = be sufficiently large. Then

S =N/2, > I =N/

JET JET2
Proof. By (4.17)) and (4.18)),

SI=D = Y. [J=N-7-16NA(N)"° > N/2,

JeT JeJg JeT\TN
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which implies the first inequality. We now check the second. Take positive
integers Ny < Nj satisfying N; > Ca(e) and p(ka, N;) > 0 for i = 0,1. If
N > N, then there exists jo = jo(IV) with

T}, = No, Thyjo <M

by the definition of Ty,...,Ti4,. Let J(j) € J1 \ Jo. Then j < jo. Hence,
for any N € = with N > 6Ny,

SUI= Y =Y 1T6) = N/2— Ny > N/3. m

JET2 Jen Jj=1

By Lemma [£.1] the number of nonnegative integers R with R < N such
that there exists a k € A; with p(k, R) > 0 is at most

> (a— DAV < sV,
ke
where (3 is a positive constant. Say these R’s are 0 = Ry < --- < R,,, where

(4.19) 1< C3A(N)kL,
Let Ry, = N and
T={I=[Ri,Rivi) | 1<i<pu}.
Then > ;7 |I| = N. Put
Iy={le€Z|ICJforsomeJeT}

1&1: {]>E Z}

1 —k
> — 1.
112 e N ™ |

LEMMA 4.8. Let N € = be sufficiently large. Then
S II=Nf6, > |I]=N/12.
1€l 1€ls

Proof. We check the first inequality. For any J = [T}, T14;) € Jo, we
have Cy(e) < T; < T14; < N. If N € = is sufficiently large, then by (4.13]),

|J|/4 > ANA(N)™® > Ty A (Tigy)°

So, using (4.12) and condition (3) of Theorem with (a1,...,a,) = e,
R =Ty, we obtain

Ty > 0(T14y) > Ty — TipjA(T145)"° > Thgy — | J]/4

Now, k; is written as k; = (g1,...,¢r—1,u). Since
r—1 r—1
0(Tiig) € Y gnS(En) Y gnS(En) + uS(&),
h=1 h=1
we get

p(k1,0(Ti4;)) > 0.
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Thus, by the definition of R1,..., Ri4,,
(4.20) 0(Th+;) = R;
for some ¢ € N. Consequently, we put
B(J) =min{n € N |n > T}, n = R; for some i € N},
¥(J) = max{n € N|n < Tiyj, n = R; for some ¢ € N}.
Then it is clear that

(4.21) > =~(1) - B()
1€T,ICJ

and

(4.22) Y(J) = 0(T145) > Thgj — | J] /4.

Similarly, we have

[7]/4 > ANA(N) ™ > 4T;A(Ty)°.
Applying Lemma 4.4 with M = Tj, E = |J|/4, we get

T+ |J1/8 < 0(T; + [J]/4) < Tj + |J|/4.
In the same way as in the proof of (£.20), we deduce that (T} +|.J|/4) = R;
for some ¢ € N. Hence
(4.23) BJT) < Ty + | J1/4) < Ty + || /4.
Therefore, combining 7, we obtain
> =2
IeT, ICJ

Consequently, using Lemma [4.7, we conclude that

)ILED SED SNIEE D IV EE-IY

17, JeS I€T, ICT JeT>

which is the first inequality of Lemma
Using (4.19) and the first inequality, we get

1 1 1
I = Il - I > -N — p—+r NAN)™ > —N.
SU=Y - Y Mz N ape e L
1€, IeZ, 1€y \IQ
Thus we have verified the second inequality. =

Now, we show that each interval I € 7, satisfies the assumptions of
Lemma Condition (1) of Theorem implies that, for any k € A,

(4.24) log, N = o( NA(N)7¥).
By condition (2), there exists C4 > 0 such that, for any real R > Cy,
S(&) N [ChR, R] # (.
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Moreover, by (|4.24) there is C5 > 0 such that, for each natural N > Cs,

(4.25) NA(N)™ — Dlog, N > Cj.

12(5

Let N € 5 and I = [R;, R1+i) € Zy. Suppose that N is sufficiently large.
Then

(4.26) HE WNA( )k

If N > C5, then by and (4.26)), there exists V € S(&,) with
(4.27) Cy(|/I|] — Dlog,, N) <V <|I| — Dlog, N

Using (4.24) and (4.26)), we get

(4.28) Ci(|/I| — Dlog, N) > 1+ [C1|I]/2]

because N is sufficiently large. Let U = R; + V. Then there exists k =
(915---,9r—1,b) € Ay (b < gr) such that

UeZgz & fr ngz éz

so p(ko,U) > 0. Moreover by (4.27) and (4.28),
.&+1+KMHﬂk§U§RH1—Db%Aﬁ
By the definition of Zy, there exists a positive integer j such that
I =[Ri, Rit1) C [T}, Tj41).
Hence, for any integer z with € (R;, Ri+1) and k € A\ {ko}, we have

p(k,z) = 0 because A\ {ko} = A; U Ay. Thus, by Lemma Y, > 0 for
any n € N with

R, <n < R; + [C1|I]/2].
Hence, using Lemma, we conclude that

1
> > —
y(N) = S+ [GIT1/2) 2 iGN,
I€Zs
which contradicts the statement of Lemma Thus we have proved The-
orem [2.11
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