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1. Introduction. Let α ≥ 2 be an integer. A normal number in base
α is a positive number whose base-α digits show a uniform distribution,
that is, all finite words with letters from the alphabet {0, 1, . . . , α−1} occur
with the proper frequency. Borel [3] showed that almost all positive numbers
are normal in each integral base. However, it is generally difficult to check
whether a given number is normal or not.

Borel [4] conjectured that all algebraic irrational numbers are normal
in every integral base. This conjecture is still open. No algebraic num-
ber has been proven to be normal yet. Moreover, no counterexample is
known. If Borel’s conjecture is true, then nonzero digits in base-α expansions
of algebraic irrational numbers appear with average frequency tending to
(α − 1)/α. Consequently, for any irrational ξ, if Borel’s conjecture is true
and if nonzero digits of ξ in base-α occur with average frequency tending
to 0, then ξ is transcendental.

We now recall known results about transcendence and algebraic inde-
pendence of positive numbers whose densities of nonzero digits are low. In
this paper, N is the set of nonnegative integers and Z≥1 the set of positive
integers. We denote the integral part of a real number ξ by [ξ], and use
the Vinogradov symbols � and �, as well as the Landau symbols O and
o with their regular meanings. Recall that f � g, g � f and f = O(g)
are all equivalent and mean that |f | ≤ c|g| with some positive constant c.
Moreover, f = o(g) (resp. f ∼ g) means that the ratio f/g tends to zero
(resp. 1). All implied constants may depend on the given data.

We consider the numbers

ξ =

∞∑
n=1

α−w(n),(1.1)
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where α ≥ 2 is an integer and (w(n))∞n=1 is a strictly increasing sequence
of nonnegative integers. Liouville [9, 10] was the first to show the existence
of transcendental numbers in 1844. He obtained the transcendence of the
number

∑∞
n=1 α

−n! by proving what is nowadays called Liouville’s inequal-
ity. Schmidt [16] generalized this inequality and showed that the numbers
γ1, γ2, . . . defined by

γl =

∞∑
n=1

α−(ln)! (l = 1, 2, . . .)

are algebraically independent. Durand [7] verified for each real algebraic
number z with 0 < z < 1 that the uncountable set{

ζh =
∞∑
n=0

z[hn!]
∣∣∣h > 0

}
is algebraically independent. Shiokawa [17] established algebraic indepen-
dence of the values of gap series at algebraic points including those that
appeared in [7] and [16]. However, we cannot apply Liouville’s method in
the case of

lim sup
n→∞

w(n+ 1)

w(n)
<∞.

Let k ≥ 2 be an integer. Mahler [11] verified that the number
∑∞

n=0 α
−kn is

transcendental. More generally, he proved for each algebraic number z with
0 < |z| < 1 that Φk(z) =

∑∞
n=0 z

kn is transcendental by using the functional
equation

Φk(z
k) = Φk(z)− z.(1.2)

Using the Schmidt Subspace Theorem, Corvaja and Zannier [5] generalized
Mahler’s results above as follows: Assume that (w(n))∞n=1 is lacunary, that is,

lim inf
n→∞

w(n+ 1)

w(n)
> 1.(1.3)

Then, for every algebraic z with 0 < |z| < 1, the number
∑∞

n=1 z
w(n) is tran-

scendental. Mahler’s method is also applicable to algebraic independence
theory. Using (1.2), Nishioka [12] showed that the values Φ2(z), Φ3(z), . . .
are algebraically independent for each algebraic number z with 0 < |z| < 1.
For detailed information concerning Mahler’s method, see [13].

Now we return to the base-α expansions of algebraic numbers. For posi-
tive numbers ξ and R, let λ(α, ξ,R) be the number of nonzero digits among
the first 1 + [R] digits of the base-α expansion of ξ, that is

λ(α, ξ,R) = Card{n ∈ N | n ≤ [R], [ξαn]− α[ξαn−1] 6= 0},
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where Card denotes cardinality. Assume that α = 2. Bailey, Borwein, Cran-
dall, and Pomerance [1] showed that for any algebraic irrational ξ there
exists a positive computable constant C(ξ) depending only on ξ satisfying

λ(2, ξ,N) ≥ C(ξ)N1/deg ξ(1.4)

for all sufficiently large N . With a suitable positive C(α, ξ) in place of C(ξ)
we will prove (1.4) for any integral base α ≥ 2 in the same way:

Theorem 1.1. Let α be an integer greater than 1 and ξ > 0 an algebraic
irrational number. Then there exist effectively computable positive constants
C(α, ξ) and C ′(α, ξ) depending only on α and ξ such that, for any integer
N with N ≥ C ′(α, ξ),

λ(α, ξ,N) ≥ C(α, ξ)N1/deg ξ.(1.5)

The idea of the proof of Theorem 1.1 was inspired by the paper of
Knight [8]. Let ADX

D + AD−1X
D−1 + · · · + A0 ∈ Z[X] be the minimal

polynomial of ξ, where AD > 0. In the rest of this section, C1(α, ξ) and
C2(α, ξ) denote effectively computable positive constants depending only
on α and ξ. We have

ADξ
D +AD−1ξ

D−1 + · · ·+A0 = 0.(1.6)

We now explain the notion of nonzero islands introduced by Knight for an-
other proof of the transcendence of ξ0 =

∑∞
n=0 α

−2n . Let D′, A′0, A
′
1, . . . , A

′
D′

be integers with D′ ≥ 1 and A′D′ ≥ 1. We will show that

ω :=
D′∑
k=0

A′kξ
k
0 6= 0.

For any k with 1 ≤ k ≤ D′ we have

ξk0 =

∞∑
m=0

τ(m, k)α−m,

where τ(m, k) denotes the number of ways that m can be written as a sum
of k powers of 2. Let b be a sufficiently large integer. Put N = (2D

′ − 1)2b.
Let m be an integer with

N − 2b−1 + 1 ≤ m ≤ N + 2b − 1.

Then Lemma 1 in [8] implies that

τ(m, k) =

{
D′! if m = N and k = D′,

0 otherwise.

Hence, considering the carries of the base-α expansion of D′!A′D′α
−N , we

deduce the following: there exists an integer m with N ≤ m ≤ N+O(1) such
that the mth digit of the base-α expansion of ω is not zero. In particular,
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ω 6= 0. Knight used the term nonzero islands to refer to nonzero digits which
occur from the carries of the base-α expansion of D′!A′D′α

−N .

In [1], the Thue–Siegel–Roth theorem [15] was used to find nonzero is-
lands. However, this theorem is ineffective. In this paper, we use Liouville’s
inequality instead, and obtain the effective lower bounds C ′(α, ξ) in Theo-
rem 1.1.

We now give a sketch of the proof of Theorem 1.1 without technical
details. For simplicity, assume that 1 ≤ ξ < 2 and write the α-ary expansion
of ξ as

ξ =

∞∑
m=0

t(ξ,m)α−m.

Note that t(ξ, 0) = 1. For any k with 1 ≤ k ≤ D,

(1.7) ξk =
∞∑
m=0

α−m
∑

i1,...,ik≥0
i1+···+ik=m

t(ξ, i1) · · · t(ξ, ik) =:
∞∑
m=0

α−mρ(k,m).

Let k ≥ 2. Then, putting ik = 0, we get

(1.8) ρ(k,m) ≥
∑

i1,...,ik−1≥0
i1+···+ik−1=m

t(ξ, i1) · · · t(ξ, ik−1)t(ξ, 0) = ρ(k − 1,m).

Let N be a positive integer. In the same way as in the proof of Theorem 7.1
in [1], we can show that there exists an interval I = [U1, U2) ⊂ [0, N)
satisfying the following four conditions:

• ρ(D − 1, U1) > 0.
• If U2 < N , then ρ(D − 1, U2) > 0.
• For any m with U1 < m < U2,

(1.9) ρ(D − 1,m) = 0.

• The length |I| = U2 − U1 of I satisfies

(1.10) |I| ≥ C1(α, ξ)N
1/D.

Using (1.8) and (1.9), we get

ρ(k,m) = 0,(1.11)

where k and m are integers with 1 ≤ k ≤ D−1 and U1 < m < U2. Liouville’s
inequality and (1.10) imply that if N ≥ C2(α, ξ), then there exists an m0

satisfying t(ξ,m0) > 0 and

1

D + 2
|I| ≤ m0 ≤

D + 1

D + 2
|I|.
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Indeed, suppose that t(ξ,m) = 0 for any m with

1

D + 2
|I| ≤ m ≤ D + 1

D + 2
|I|.

Put

m1 := max

{
m ∈ N

∣∣∣∣ m <
1

D + 2
|I|, t(ξ,m) 6= 0

}
,

m2 := min{m ∈ N | m2 > m1, t(ξ,m) 6= 0}.
Then we have

m2 ≥ (D + 1)m1.

Let

p :=

m1∑
m=0

t(ξ,m)αm1−m, q := αm1 .

Then p and q are integers. Thus,

ξ − p

q
=

∞∑
m=m2

t(ξ,m)α−m ≤ α1−m2 ≤ α1−(D+1)m1 = αq−D−1,

which contradicts Liouville’s inequality in the case of N ≥ C2(α, ξ) because
we have (1.10).

Hence, putting U := U1 +m0, we obtain

U1 +
1

D + 2
|I| ≤ U ≤ U1 +

D + 1

D + 2
|I|(1.12)

and

ρ(D,U) ≥ ρ(D − 1, U1)t(ξ,m0) > 0.(1.13)

In what follows, we analyze the α-ary expansion of the left-hand side of (1.6),
using (1.7). Note that (1.7) is not generally the α-ary expansion of ξk because
α−mρ(k,m) causes O(log ρ(k,m)) carries to higher digits. Recall that AD >
0. Combining (1.10)–(1.13), we conclude that there are positive digits left in
the α-ary expansion of (1.6), which is a contradiction. To explain the details
of the remaining positive digits, Bailey, Borwein, Crandall, and Pomerance
[1] introduced BBP tails, a concept defined in [2] to give rapid algorithms
for the computation of the digits of certain transcendental numbers.

In the case of α = 2, Rivoal [14] improved the constant C(ξ) for certain
classes of algebraic irrational ξ. For example, let ε be an arbitrary posi-
tive number and ξ′ = 0.558 . . . the unique positive zero of the polynomial
8X3 − 2X2 + 4X − 3. Theorem 7.1 in [1] implies that for any sufficiently
large N ,

λ(2, ξ′, N) ≥ (1− ε)16−1/3N1/3.
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On the other hand, using Corollary 2 of [14], we obtain

λ(2, ξ′, N) ≥ (1− ε)N1/3

for all sufficiently large N .

Let us consider applications of Theorem 1.1. For each real k > 1, put

νk =

∞∑
n=0

α−[n
k].

Let d be a natural number with 2 ≤ d < k. Then (1.5) implies that νk is not
an algebraic number of degree at most d. Moreover, using Theorem 1.1, we
deduce criteria for transcendence.

Corollary 1.2. Let α be an integer greater than 1, and ξ a positive
irrational number. Assume that for every positive ε,

λ(α, ξ,N) = o(N ε).(1.14)

Then ξ is transcendental.

For instance, the numbers
∞∑
n=1

α−n!,

∞∑
n=0

α−2
n

are transcendental by Corollary 1.2 because they satisfy (1.14). Moreover,
for positive l and x ≥ 1, let

fl(x) = exp((log x)1+l).

Then the number

ηl =

∞∑
n=1

α−[fl(n)]

is transcendental by Corollary 1.2 because it satisfies (1.14). Indeed, it is
easily seen that, for any ε > 0,

λ(α, ηl, R) ∼ exp((logR)1/(1+l)) = o(exp(ε logR)) = o(Rε)

as R → ∞. Note that ηl does not satisfy (1.3), so we cannot prove its
transcendence using the result of Corvaja and Zannier. Indeed, for x > 1,
we have

log

(
fl(x+ 1)

fl(x)

)
= (log(x+ 1))1+l − (log x)1+l.

By the mean value theorem, there exists σ = σ(l, x) ∈ (0, 1) such that

log

(
fl(x+ 1)

fl(x)

)
= (1 + l)

(log(x+ σ))l

x+ σ
.
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Since the right-hand side converges to zero as x→∞, we obtain

lim
x→∞

fl(x+ 1)

fl(x)
= 1.

The main purpose of this paper is to deduce algebraic independence of
certain classes of numbers ξ which satisfy (1.14). We will introduce crite-
ria for algebraic independence in Theorem 2.1. We prove this theorem in
Section 4. Our method is quite flexible because we do not use functional
equations. As a consequence, we deduce algebraic independence of the val-
ues ηl for real l ≥ 1:

Theorem 1.3. The uncountable set {ηl | l ≥ 1} is algebraically indepen-
dent.

We cannot prove, using Theorem 2.1, that {ηl | l > 0} is algebraically
independent. However, we deduce that any two elements of this set are
algebraically independent:

Theorem 1.4. Let h and l be distinct positive real numbers. Then ηh
and ηl are algebraically independent.

We prove Theorems 1.3 and 1.4 in Section 3.

2. Criteria for algebraic independence. Let α ≥ 2 be an integer
and ξ a positive number. For each integer m, put

t(ξ,m) = [ξαm]− α[ξαm−1] ∈ {0, 1, . . . , α− 1}.

Note that t(ξ,−m) = 0 for all sufficiently large m ∈ N. Then ξ is written as

ξ =

∞∑
m=−∞

t(ξ,m)α−m,

which is the α-ary expansion of ξ. Set

S(ξ) = {m ∈ N | t(ξ,m) 6= 0}.

Recall that for R > 0,

λ(α, ξ,R) = Card{n ∈ S(ξ) | n ≤ R}.

Note that if 1 ≤ ξ < α, then 0 ∈ S(ξ). For each positive integer a, let

aS(ξ) = {n1 + · · ·+ na | n1, . . . , na ∈ S(ξ)}.

For convenience, set 0S(ξ) = {0}. Moreover, for any positive numbers
ξ1, . . . , ξr and nonnegative integers a1, . . . , ar, let

r∑
i=1

aiS(ξi) = {s1 + · · ·+ sr | si ∈ aiS(ξi) for 1 ≤ i ≤ r}.
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For a nonempty subset A of N and R > min{n ∈ A}, define

θ(R;A) = max{n ∈ A | n < R}.
Assume that 1 ≤ ξ1, . . . , ξr < α. Let (a1, . . . , ar), (a

′
1, . . . , a

′
r) ∈ Nr, where

ai ≥ a′i for every i with 1 ≤ i ≤ r. Then we have
r∑
i=1

aiS(ξi) ⊃
r∑
i=1

a′iS(ξi)

because S(ξ1), . . . , S(ξr) 3 0.
We now state criteria for algebraic independence.

Theorem 2.1. Let ξ1, . . . , ξr be positive irrational numbers. Suppose
that:

(1) For every positive ε, we have, as R→∞,

λ(α, ξ1, R) = o(Rε),

λ(α, ξh, R) = o(λ(α, ξh−1, R)ε) for h = 2, . . . , r.

(2) There exists a positive constant C1 such that

S(ξr) ∩ [C1R,R] 6= ∅
for every sufficiently large real R.

(3) Let a1, . . . , ar−1, ar be any nonnegative integers. If r ≥ 2, then there
exist a positive integer κ = κ(a1, . . . , ar−1) and a positive constant
C2(a1, . . . , ar), both depending only on the indicated parameters, such
that

R− θ
(
R;

r−2∑
i=1

aiS(ξi) + κS(ξr−1)
)
< R

r∏
i=1

λ(α, ξi, R)−ai

for each real R ≥ C2(a1, . . . , ar).

Then ξ1, . . . , ξr are algebraically independent.

Remark 2.2. In the case of r = 1, Theorem 2.1 follows from Corol-
lary 1.2.

We prove Theorem 2.1 in Section 4. In the rest of the present section we
give a sketch of the proof without technical details for r = 2 and κ(a1) =
1 + a1 for all a1 ≥ 0, where κ(a1) is defined in condition (3). For simplicity,
suppose that 1 ≤ ξ1, ξ2 < 2. If ξ1 and ξ2 are algebraically dependent, then
there exists a nonzero polynomial P (X1, X2) ∈ Z[X] such that

P (ξ1, ξ2) = 0.(2.1)

Let

P (X1, X2) :=
∑

k=(a1,a2)∈Λ

AkX
a1
1 Xa2

2 ,



Algebraic independence 333

where Λ is a nonempty finite subset of N2 and Ak a nonzero integer for each
k ∈ Λ. We search nonzero islands of the α-ary expansion of the left-hand
side of (2.1). For any k = (a, b) ∈ Λ, we get

ξa1ξ
b
2 =

( ∞∑
x=0

t(ξ1, x)α−x
)a( ∞∑

y=0

t(ξ2, y)α−y
)b

(2.2)

=
∞∑
m=0

∑
i1,...,ia,j1,...,jb≥0

i1+···+ia+j1+···+jb=m

t(ξ1, i1) · · · t(ξ1, ia)t(ξ2, j1) · · · t(ξ2, jb)

=:

∞∑
m=0

α−mρ(k,m).

Observe that ρ(k,m) > 0 if and only if m ∈ aS(ξ1) + bS(ξ2). In the proof
of Theorem 1.1, we used the relation

0 ∈ S(ξ) ⊂ 2S(ξ) ⊂ · · ·

to find nonzero islands. Indeed, (1.8) implies that (k − 1)S(ξ) ⊂ kS(ξ) (see
also (1.13)). On the other hand, let (a1, a2), (a

′
1, a
′
2) ∈ Λ. Then, in general,

neither a1S(ξ1) + a2S(ξ2) ⊂ a′1S(ξ1) + a′2S(ξ2) nor a′1S(ξ1) + a′2S(ξ2) ⊂
a1S(ξ1) + a2S(ξ2) holds. This is the main difference between the proofs of
Theorems 1.1 and 2.1. Let � be the lexicographical order in N2, that is,
(a1, a2) � (a′1, a

′
2) if either a1 > a′1, or a1 = a′1 and a2 > a′2. Let g =

(g1, g2) ∈ Λ be the greatest element of Λ with respect to �. Without loss
of generality, we may assume that Ag > 0. For any (a1, a2) ∈ Λ, if a1 = g1,
then a2 ≤ g2. Thus, a1S(ξ1) + a2S(ξ2) ⊂ g1S(ξ1) + g2S(ξ2). If a1 < g1,
then the relation above does not hold generally. However, by condition (3)
of Theorem 2.1, the set a1S(ξ1) + a2S(ξ2) is approximated by (1 + a1)S(ξ1)
because κ(a1) = a1 + 1. Moreover, (1 + a1)S(ξ1) ⊂ g1S(ξ1).

Based on the observation above, we give nonzero islands in Section 4.4.
Let N be a sufficiently large integer. We construct an interval J = [T1, T2) ⊂
[0, N) such that:

• T1 ∈ p1S(ξ1) + p2S(ξ2) for some (p1, p2) ∈ Λ with p1 < g1.
• If T2 < N , then T2 ∈ q1S(ξ1) + q2S(ξ2) for some (q1, q2) ∈ Λ with
q1 < g1.
• Let m be any integer with T1 < m < T2 and let (a1, a2) ∈ Λ with
a1 < g1. Then m 6∈ a1S(ξ1) + a2S(ξ2).

Since p1S(ξ1)+p2S(ξ2) and q1S(ξ1)+ q2S(ξ2) are approximated by g1S(ξ1),
we get a subinterval I = [R1, R2) of J satisfying:

• R1 ∈ g1S(ξ1) + (g2 − 1)S(ξ2).
• R2 ∈ g1S(ξ1) + (g2 − 1)S(ξ2).
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• Let m be any integer with R1 < m < R2 and let k = (a1, a2) ∈ Λ with
g � k. Then

(2.3) m 6∈ a1S(ξ1) + a2S(ξ2).

Denote the length of I by |I| = R2 −R1. By condition (2) of Theorem 2.1,
there is an m0 ∈ N satisfying m0 ∈ S(ξ2) and

C1

1 + C1
|I| ≤ m0 ≤

1

1 + C1
|I|.

Putting U := R1 +m0, we obtain U ∈ g1S(ξ1) + g2S(ξ2) and

R1 +
C1

1 + C1
|I| ≤ U ≤ R1 +

1

1 + C1
|I|.(2.4)

In particular,

ρ(g, U) > 0.(2.5)

Now we analyze the α-ary expansion of the left-hand side of (2.1), using
(2.2). Recall that Ag > 0 and that α−mρ(k,m) causes O(log ρ(k,m)) carries
to higher digits. Hence, combining (2.3)–(2.5), we conclude that there are
positive digits left in the α-ary expansion of (2.1), which is a contradiction.
To explain the details of the remaining positive digits, we introduce BBP
tails YR in Section 4.2.

3. Proofs of main results

Proof of Theorem 1.3. Let {ηl1 , . . . , ηlr} be any finite subset of {ηl |
l ≥ 1}. Without loss of generality, we may assume that l1 < · · · < lr. Let

ξi = ηli − [ηli ] + 1 ∈ (1, 2)

for i = 1, . . . , r. Then S(ξi) 3 0 for i = 1, . . . , r. We check that ξ1, . . . , ξr
satisfy the assumptions of Theorem 2.1. Let l be a positive number. In
Section 1 we proved that, for any sufficiently large x,

fl(x) ≤ fl(x+ 1) ≤ 2fl(x).(3.1)

Thus, we have verified condition (2) with C1 = 1/2. For any positive numbers
l and x ≥ 1, put

gl(x) = exp((log x)1/(1+l)).(3.2)

Note that gl is the inverse function of fl, that is, fl(gl(x)) = x for any x ≥ 1.
Let i and j be integers with 1 ≤ i, j ≤ r. As mentioned in Section 1, for any
ε > 0,

λ(α, ξi, R) ∼ gli(R) = o(Rε)(3.3)

as R→∞. If i < j, then, for any ε > 0,

glj (R) = o(exp(ε(logR)1/(1+li))) = o(gli(R)ε).(3.4)
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Thus condition (1) holds by (3.3) and (3.4). Finally we check (3). We invoke
the results of Daniel [6]. Let (µn)∞n=1 be the strictly increasing sequence of
those positive integers that can be represented as the sum of three cubes of
positive integers. Then Daniel showed that

µn+1 − µn = O(µ8/27n ).

In the same way as in the proof of the result above, we get the following:

Lemma 3.1. Let k = (a1, . . . , ar) ∈ Nr \ {(0, . . . , 0)}. Then, for R ≥ 2,

R− θ
(
R;

r∑
i=1

aiS(ξi)
)
� R(logR)a1+···+arg(R)−k,(3.5)

where

g(R)−k =
r∏
i=1

gli(R)−ai .

Proof. We argue by induction on a1 + · · ·+ar. Assume that a1 + · · ·+ar
= 1. Then there exists an integer h with 1 ≤ h ≤ r and ah = 1. We have

f ′lh(x) =
(1 + lh)flh(x)(log flh(x))lh/(1+lh)

glh(flh(x))
.

Let x be a sufficiently large real number. Then, by the mean value theorem,
there exists ρ = ρ(x) ∈ (0, 1) such that

flh(x+ 1)− flh(x) =
(1 + lh)flh(x+ ρ)(log flh(x+ ρ))lh/(1+lh)

glh(flh(x+ ρ))

≤ (1 + lh)flh(x+ 1)(log flh(x+ 1))lh/(1+lh)

glh(flh(x))

� flh(x) log flh(x)

glh(flh(x))
,

where for the last inequality we use (3.1). For R > 1, let

F (R) =
R logR

glh(R)
.

Taking the logarithm of F (R), we deduce that F (R) is increasing for large R.
If R is sufficiently large, then there exists m ∈ N such that

[flh(m)] < R ≤ [flh(1 +m)].

Thus, we get θ(R;S(ξh)) = [flh(m)]. Since

F (flh(m))� F ([flh(m)]) ≤ F (R),

we obtain

0 < R− θ(R;S(ξh)) ≤ flh(m+ 1)− flh(m) + 1� F (flh(m))� F (R),
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which implies (3.5) in the case of a1 + · · · + ar = 1. Next, assume that
a1 + · · ·+ ar ≥ 2. Let

d = max{i ≥ 1 | ai ≥ 1}.

Put

k′ = (a′1, . . . , a
′
r) := (a1, . . . , ad−1,−1 + ad, 0, . . . , 0).

Then, using the case of a1 + · · · + ar = 1, we deduce that there exists a
positive constant C satisfying

R′ := R− θ(R;S(ξd)) ≤ C
R logR

gld(R)
.

Note that

R− θ
(
R;

r∑
i=1

aiS(ξi)
)
≤ R′

because
∑r

i=1 aiS(ξi) ⊃ S(ξd). Thus, we may assume that R′ ≥ 2. By the
induction hypothesis, we get

R′ − θ
(
R′;

r∑
i=1

a′iS(ξi)
)
� R′(logR′)a

′
1+···+a′rg(R′)−k

′
=: G(R′).

Let

γ = θ(R;S(ξd)) + θ
(
R′;

r∑
i=1

a′iS(ξi)
)
.

Then since γ ∈
∑r

i=1 aiS(ξi), we get

0 < R− θ
(
R;

r∑
i=1

aiS(ξi)
)
≤ R− γ(3.6)

= R′ − θ
(
R′;

r∑
i=1

a′iS(ξi)
)
� G(R′).

Taking the logarithm of G(R), we deduce that the function G(R) is increas-
ing for sufficiently large R. Thus, we obtain

G(R′)� G

(
C
R logR

gld(R)

)
� G

(
R logR

gld(R)

)
(3.7)

=
R logR

gld(R)

(
log

R logR

gld(R)

)a′1+···+a′r
g

(
R logR

gld(R)

)−k′
� R

gld(R)
(logR)a1+···+arg

(
R

gld(R)

)−k′
.
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Let i ∈ N with 1 ≤ i ≤ d. Since li ≥ 1, we observe that, for any sufficiently
large R,(

log

(
R

gli(R)

))1/(1+li)

= (logR− (logR)1/(1+li))1/(1+li)

= (logR)1/(1+li)(1− (logR)−li/(1+li))1/(1+li)

≥ (logR)1/(1+li)
(

1− 2

1 + li
(logR)−li/(1+li)

)
≥ (logR)1/(1+li) − 1

and hence

gli

(
R

gld(R)

)
� gli

(
R

gli(R)

)
� gli(R).

Therefore,

g

(
R

gld(R)

)−k′
� g(R)−k

′
.(3.8)

Combining the inequalities (3.6)–(3.8), we conclude that

0 < R− θ
(
R;

r∑
i=1

aiS(ξi)
)
� R(logR)a1+···+arg(R)−k,

which implies (3.5).

Let k = (a1, . . . , ar) ∈ Nr. Then, by (3.3), (3.4) and Lemma 3.1,

R− θ
(
R;

r−2∑
i=1

aiS(ξi) + (1 + ar−1)S(ξr−1)
)

≤ Rglr−1(R)−1/2
r−1∏
i=1

gli(R)−ai = o
(
R

r∏
i=1

λ(α, ξi, R)−ai
)

as R→∞. Hence, condition (3) of Theorem 2.1 is satisfied with

κ = κ(a1, . . . , ar−1) = 1 + ar−1.

Thus we have proved Theorem 1.3.

Proof of Theorem 1.4. Without loss of generality, we may assume that
h < l. Let ξ1 = ηh − [ηh] + 1 and ξ2 = ηl − [ηl] + 1. Note that 1 < ξ1, ξ2 < 2
and that S(ξ1), S(ξ2) 3 0. As in the proof of Theorem 1.3, we can verify that
ξ1 and ξ2 satisfy conditions (1) and (2) of Theorem 2.1 with C1 = 1/2. In
what follows, we prove that (3) is also satisfied. Let gl(x) be defined by (3.2).

Lemma 3.2. Let b be a positive integer. Then, for any ε > 0,

(3.9) R− θ(R; bS(ξ1))� Rgh(R)−b+ε for R ≥ 2.
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Proof. We show (3.9) by induction on b. Assume that b = 1. As in
the proof of Lemma 3.1, we deduce that there exists a positive constant C
satisfying

R′ := R− θ(R;S(ξ1)) ≤ C
R logR

gh(R)
,(3.10)

which implies (3.9) because, for any positive ε,

logR = o(gh(R)ε)

as R→∞. Suppose that b ≥ 2. Without loss of generality, we may assume
that R′ ≥ 2 and ε < 1. In particular,

−b+ 1 + ε < 0.

By the induction hypothesis,

R′ − θ(R′; (b− 1)S(ξ1))� R′gh(R′)−b+1+ε/3 =: H(R′).

Taking the logarithm of H(R), we see that the function H(R) is increasing
for large R. Hence,

0 < R− θ(R; bS(ξ1))(3.11)

≤ R− θ(R;S(ξ1))− θ(R′; (b− 1)S(ξ1))

= R′ − θ(R′; (b− 1)S(ξ1))� H(R′)

� H

(
C
R logR

gh(R)

)
� H

(
R logR

gh(R)

)
=
R logR

gh(R)
gh

(
R logR

gh(R)

)−b+1+ε/3

� Rgh(R)−1+ε/3gh

(
R

gh(R)

)−b+1+ε/3

.

Let

ε′ :=
ε

3b− 3− ε
∈ (0, 1).

Then

(1− ε′)
(
−b+ 1 +

ε

3

)
= −b+ 1 +

2

3
ε.

For all sufficiently large R, we obtain(
log

(
R

gh(R)

))1/(1+h)

= (logR− (logR)1/(1+h))1/(1+h)

≥ (1− ε′)(logR)1/(1+h)
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and hence

gh

(
R

gh(R)

)−b+1+ε/3

≤ gh(R)(1−ε
′)(−b+1+ε/3) = gh(R)−b+1+2ε/3.

Combining (3.11) and the inequality above yields (3.9).

Let (a1, a2) ∈ N2. Then, applying Lemma 3.2 with b = a1+1 and ε = 1/2,
we get

R− θ(R; (a1 + 1)S(ξ1))� Rgh(R)−a1−1/2

= o
(
R

2∏
i=1

λ(α, ξi, R)−ai
)

as R → ∞. Thus we have checked condition (3) of Theorem 2.1 with κ =
κ(a1) = a1 + 1 and hence verified Theorem 1.4.

4. Proof of Theorem 2.1

4.1. Base-α expansions of powers of real numbers. We prove The-
orem 2.1 by induction on r. Corollary 1.2 yields the case of r = 1. In what
follows, suppose that r ≥ 2. We may assume that 1 ≤ ξ1, . . . , ξr < 2. In-
deed, ξ1, . . . , ξr are algebraically independent if and only if ξ′1, . . . , ξ

′
r are

algebraically independent, where

ξ′i = ξi − [ξi] + 1 for i = 1, . . . , r.

For simplicity, let

λi(R) = λ(α, ξi, R) for i = 1, . . . , r and R > 0.

For convenience, put N0 = {0}. Let ξ > 0, b ∈ N, x = (x1, . . . , xb) ∈ Nb, and
s = (s1, . . . , sb) ∈ Zb. Put

|x| =
{

0 (b = 0),

x1 + · · ·+ xb (b ≥ 1),

t(ξ,x) =

{
1 (b = 0),

t(ξ, x1) · · · t(ξ, xb) (b ≥ 1),

xs =

{
1 (b = 0),

xs11 · · ·x
sb
b (b ≥ 1).

Denote (ξ1, . . . , ξr) and (λ1(R), . . . , λr(R)) by ξ and λ(R), respectively.
Then, for each k = (a1, . . . , ar) ∈ Nr \ {(0, . . . , 0)},
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ξk =

r∏
i=1

( ∞∑
x=0

t(ξi, x)α−x
)ai

=

r∏
i=1

( ∑
x∈Nai

t(ξi,x)α−|x|
)

(4.1)

=
∑

x1∈Na1 ,...,xr∈Nar

t(ξ1,x1) · · · t(ξr,xr)α−|x1|−···−|xr|

=
∞∑
m=0

ρ(k,m)α−m,

where

ρ(k,m) :=
∑

x1∈Na1 ,...,xr∈Nar

|x1|+···+|xr|=m

t(ξ1,x1) · · · t(ξr,xr) ∈ N.

Note that, for each m ∈ N, ρ(k,m) > 0 if and only if m ∈
∑r

i=1 aiS(ξi). It
is easily seen that

(4.2) ρ(k,m) ≤
∑

x1∈N
a1 ,...,xr∈Nar

|x1|+···+|xr |=m

(α− 1)|k| = (α− 1)|k|
(
m+ |k| − 1

|k| − 1

)
.

We now check the following:

Lemma 4.1. Let k = (a1, . . . , ar) ∈ Nr \ {(0, . . . , 0)} and N ∈ N. Then

N∑
m=0

ρ(k,m) ≤ (α− 1)|k|λ(N)k,

Card{m ∈ N | m ≤ N, ρ(k,m) > 0} ≤ (α− 1)|k|λ(N)k.

Proof. Put, for i = 1, . . . , r,

Si = {m ∈ S(ξi) | m ≤ N}, S0
i = {0}.

Then
N∑
m=0

ρ(k,m) =
∑

x1∈Na1 ,...,xr∈Nar

|x1|+···+|xr|≤N

t(ξ1,x1) · · · t(ξr,xr)

≤
∑

x1∈S
a1
1 ,...,xr∈Sar

r

(α− 1)|k| = (α− 1)|k|λ(N)k,

which implies the first statement. The second follows from the first because
ρ(k,m) ∈ N for each m ∈ N.

4.2. Auxiliary functions. We define the lexicographical order � on
Nr as follows. For any k = (a1, . . . , ar), k′ = (a′1, . . . , a

′
r) with k 6= k′,

there exists a positive l such that the first l− 1 symbols in k = (a1, . . . , ar)
and k′ = (a′1, . . . , a

′
r) coincide, but their lth symbols are different. Then

k = (a1, . . . , ar) � k′ = (a′1, . . . , a
′
r) if and only if al > a′l.
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Each nonzero polynomial Q(X) ∈ Z[X1, . . . , Xr] is uniquely written as

Q(X) =
∑

k∈Λ(Q)

BkX
k,

where Λ(Q) is a finite subset of Nr determined by Q, Bk a nonzero integer
and X = (X1, . . . , Xr). Recall that Xk = Xa1

1 · · ·Xar
r for k = (a1, . . . , ar).

Let g(Q) = (g1(Q), . . . , gr(Q)) be the greatest element of Λ(Q) with respect
to �. Moreover, put

Λ1(Q) = {k ∈ Λ(Q) | a1 = g1(Q), . . . , ar−1 = gr−1(Q), ar < gr(Q)},
Λ2(Q) = Λ(Q) \ (Λ1(Q) ∪ {g(Q)}),
Λ3(Q) = {k ∈ Λ(Q) | a1 = g1(Q), . . . , ar−2 = gr−2(Q), ar−1 < gr−1(Q)},

where k = (a1, . . . , ar). We define a number e(Q) as follows. If Λ3(Q) is
empty, then put e(Q) = 0. Otherwise, let

e(Q) = max{ar−1 | (a1, . . . , ar−1, ar) ∈ Λ3(Q)}.
Now assume that ξ1, . . . , ξr are algebraically dependent. Then there exists
a nonzero polynomial P (X) ∈ Z[X1, . . . , Xr] such that

P (ξ) = 0.

By the induction hypothesis ξ2, . . . , ξr are algebraically independent. Thus,
the degree of P (X) inX1 is positive, so g1(P ) ≥ 1. Without loss of generality,
we may assume that

Xr(Xr − 1) |P (X).(4.3)

Let

κ(n) := κ(g1(P ), . . . , gr−2(P ), n),

where n is a nonnegative integer and the right-hand side is defined in con-
dition (3) of Theorem 2.1. Let m and n be integers with 0 ≤ m ≤ n. Then,
for any positive number R,

R−θ
(
R;

r−2∑
i=1

gi(P )S(ξi)+nS(ξr−1)
)
≤ R−θ

(
R;

r−2∑
i=1

gi(P )S(ξi)+mS(ξr−1)
)

because
r−2∑
i=1

gi(P )S(ξi) + nS(ξr−1) ⊃
r−2∑
i=1

gi(P )S(ξi) +mS(ξr−1).

So, by increasing κ(n) if necessary, we may assume that κ(n) ≥ 1 for any
n ∈ N and that the sequence (κ(n))∞n=0 is increasing.

Lemma 4.2. There is a nonzero polynomial F (Xr−1, Xr) ∈ Z[Xr−1, Xr]
such that

gr−1(FP ) ≥ κ(e(FP )).
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Proof. We define a nonzero polynomial σ(Xr−1, Xr) ∈ Z[Xr−1, Xr] as
follows. If r = 2, then put

σ(X1, X2) := P (X1, X2).(4.4)

If r ≥ 3, then P (X) is uniquely written as

P (X) =
∑

k=(a1,...,ar−2)∈Γ

ϕk(Xr−1, Xr)X
a1
1 · · ·X

ar−2

r−2 ,(4.5)

where Γ is a finite subset of Nr−2 and ϕk(Xr−1, Xr) ∈ Z[Xr−1, Xr] a nonzero
polynomial. Note that l := (g1(P ), . . . , gr−2(P )) ∈ Γ . Now put

σ(Xr−1, Xr) := ϕl(Xr−1, Xr).

Let

σ(Xr−1, Xr) =:

b∑
i=0

σi(Xr)X
i
r−1,

where σi(Xr) ∈ Z[Xr] with σb(Xr) 6= 0. We show that for any integer
n ≥ b there is a nonzero polynomial ψ(n)(Xr−1, Xr) ∈ Z[Xr−1, Xr] such
that σ(Xr−1, Xr)ψ

(n)(Xr−1, Xr) can be written as

(4.6) σ(Xr−1, Xr)ψ
(n)(Xr−1, Xr) = ψ

(n)
b (Xr)X

n
r−1 +

b−1∑
i=0

ψ
(n)
i (Xr)X

i
r−1,

where ψ
(n)
i (Xr) ∈ Z[Xr] for i = 0, 1, . . . , b with ψ

(n)
b (Xr) 6= 0. In the case

of b = 0, it is clear that ψ(n)(Xr−1, Xr) = Xn
r−1 satisfies (4.6). Suppose

that b ≥ 1. We check (4.6) by induction on n. If n = b, then putting
ψ(b)(Xr−1, Xr) = 1, we get (4.6). Assume that n ≥ b+1. Then the induction
hypothesis implies that

ψ(n)(Xr−1, Xr) = σb(Xr)Xr−1ψ
(n−1)(Xr−1, Xr)− ψ(n−1)

−1+b (Xr)

satisfies (4.6). Moreover, ψ(n)(Xr−1, Xr) 6= 0 since σb(Xr)ψ
(n−1)(Xr−1, Xr)

6= 0. Let w = max{0, b− 1}. In what follows, we verify that

F (Xr−1, Xr) := ψ(κ(w))(Xr−1, Xr)

satisfies the statement of Lemma 4.2. Using (4.5) and (4.6), we deduce that
the first r − 2 symbols of g(P ) and g(FP ) coincide in the case of r ≥ 3.
Moreover,

gr−1(FP ) = κ(w),(4.7)

e(FP ) ≤ w.(4.8)

In fact, if Λ3(FP ) 6= ∅, then by (4.4)–(4.6), we get e(FP ) ≤ b − 1. Hence,
combining (4.7) and (4.8), we conclude that gr−1(FP ) ≥ κ(e(FP )) because
the sequence (κ(n))∞n=0 is increasing.
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For simplicity, put

Λ = Λ(FP ),

Λh = Λh(FP ) for 1 ≤ h ≤ 3,

k0 = (g1, . . . , gr) := g(FP ).

Recall that gi = gi(FP ) = gi(P ) for i = 1, . . . , r − 2, so

κ(n) = κ(g1, . . . , gr−2, n)

for each n ∈ N. Let

F (Xr−1, Xr)P (X) =
∑
k∈Λ

AkX
k,

where Ak is a nonzero integer. Then∑
k∈Λ

Akξ
k = 0.(4.9)

Note that |k| ≥ 1 for each k ∈ Λ, because Xr divides P (X). Without loss
of generality, we may assume that Ak0 ≥ 1.

Lemma 4.3. Λ1 and Λ2 are not empty.

Proof. First suppose that Λ2 is empty. Then, for each k = (a1, . . . , ar),
we have a1 = g1, . . . , ar−1 = gr−1. Thus, (4.9) implies that ξr is an algebraic
number, which contradicts the induction hypothesis.

Next, assume that Λ1 is empty. Then we get∑
k=(a1,...,ar)∈Λ

a1=g1,...,ar−1=gr−1

AkX
k = Ak0X

k0 .(4.10)

Let Φ : Z[X1, . . . , Xr]→ Z[X1, . . . , Xr−1] be defined by

Φ(Q(X1, . . . , Xr)) = Q(X1, . . . , Xr−1, 1).

By (4.10), the greatest element of Φ(F (Xr−1, Xr)P (X)) with respect to the
lexicographical order on Nr−1 is (g1, . . . , gr−1). So, Φ(F (Xr−1, Xr)P (X)) is
not zero, that is, Xr − 1 does not divide F (Xr−1, Xr)P (X), which contra-
dicts (4.3).

Let

D = 1 + max{|k| | k ∈ Λ}.
Denote the greatest elements of Λ1 and Λ2 with respect to � by k1 and k2,
respectively. Let

e = (g1, . . . , gr−2, e(FP ), D).

Then k ≺ e for each k ∈ Λ2. Indeed, if Λ3 is empty, then there exists a
positive l ≤ r− 2 such that the first l− 1 symbols in e and k2 coincide, but
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the lth symbol of e is greater than that of k2. Otherwise,

k2 = (g1, . . . , gr−2, e(FP ), a)

with a < D, and so k2 ≺ e. By condition (1) of Theorem 2.1, for any k ∈ Λ2,

λ(n)k = o(λ(n)e).(4.11)

Lemma 4.2 implies

gr−1 ≥ κ(e(FP )).(4.12)

Let Ξ be the set of nonnegative integers N such that, for every integer n
with 0 ≤ n ≤ N ,

nλ(n)−e ≤ Nλ(N)−e.(4.13)

Note that Ξ is infinite. Indeed, by condition (1) of Theorem 2.1, we have

lim
N→∞

Nλ(N)−e =∞.

If necessary, by increasing C2(e), we may assume that λr(n) ≥ 5 for every
n ∈ N with n ≥ C2(e), where C2(e) is defined in condition (3) of Theo-
rem 2.1. For simplicity, let

θ(R) = θ
(
R;

r−1∑
i=1

giS(ξi)
)
.

Lemma 4.4. Let M and E be any positive real numbers with

M ≥ C2(e) and E ≥ 4Mλ(M)−e.

Then

M + E/2 < θ(M + E).

Proof. Using

E/4 ≥Mλ(M)−e, E/4 > Eλ(M)−e,

we get

E/2 > (M + E)λ(M)−e ≥ (M + E)λ(M + E)−e.

Note that M + E ≥ C2(e). Thus, using (4.12) and condition (3) of Theo-
rem 2.1 with (a1, . . . , ar) = e, R = M + E, we deduce that

M + E − θ(M + E) < (M + E)λ(M + E)−e < E/2,

which implies the conclusion.

Using (4.1) and (4.9), we get, for each R ∈ N,

0 = αR
∑
k∈Λ

Akξ
k =

∑
k∈Λ

Ak

∞∑
m=−R

ρ(k,m+R)α−m,
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so

YR :=
∑
k∈Λ

Ak

∞∑
m=1

ρ(k,m+R)α−m ∈ Z.

Let N ∈ N. In what follows, we estimate the number

y(N) = Card{R ∈ N | R ≤ N, YR > 0}.

4.3. Bounds for y(N). First, we consider upper bounds for y(N).

Lemma 4.5. We have

y(N) = o(N)

as N →∞.

Proof. For k ∈ Λ and R ∈ N, let

Y (k, R) =
∞∑
m=1

ρ(k,m+R)α−m ≥ 0.

Then by (4.2),

Y (k, R) ≤
∞∑
m=1

(α− 1)|k|
(
m+R+ |k| − 1

|k| − 1

)
α−m

≤ (α− 1)|k|
∞∑
m=1

(
m+R+ |k| − 1

|k| − 1

)
2−m.

In the proof of Theorem 2.1 of [1], Bailey, Borwein, Crandall, and Pomerance
showed that for R ≥ 0 and l ≥ 1,

∞∑
m=1

(
m+R+ l − 1

l − 1

)
2−m <

(R+ l)l

(l − 1)!(R+ 1)
.

Since |k| ≥ 1, we get

Y (k, R) <
(α− 1)|k|(R+ |k|)|k|

(|k| − 1)!(R+ 1)
.(4.14)

In particular,

N∑
R=0

Y (k, R) <

N∑
R=0

(α− 1)|k|(N + |k|)|k|

(|k| − 1)!
(4.15)

≤ (α− 1)|k|(N + |k|)|k|+1

(|k| − 1)!
.

By condition (1) of Theorem 2.1, we have

λ(N)k = o(N).(4.16)

Let K = dD logαNe, where logαN = (logN)/(logα) and dxe is the smallest



346 H. Kaneko

integer greater than or equal to x. Then by (4.15), (4.16) and the first
inequality of Lemma 4.1, we get

N−K∑
R=0

Y (k, R) =

∞∑
m=1

α−m
N−K∑
R=0

ρ(k,m+R)

≤
K∑
m=1

α−m
N∑
R=0

ρ(k, R) + α−K
∞∑

m=1+K

αK−m
N−K∑
R=0

ρ(k,m+R)

≤ (α− 1)|k|λ(N)k + α−K
N−K∑
R=0

∞∑
m=1

ρ(k,m+R+K)α−m

= o(N) + α−K
N−K∑
R=0

Y (k, R+K)

≤ o(N) +N−D(α− 1)D(N +D)D = o(N).

Since Y (k, R) ≥ 0,

N−K∑
R=0

|YR| ≤
∑
k∈Λ
|Ak|

N−K∑
R=0

Y (k, R) = o(N).

Using YR ∈ Z, we obtain

y(N) ≤ K +

N−K∑
R=0

|YR| = o(N).

Next, we find lower bounds for y(N).

Lemma 4.6. Let N ∈ N be sufficiently large and I = [U1, U2) an interval
with I ⊂ [0, N). Suppose that ρ(k, x) = 0 for any integer x ∈ (U1, U2) and
k ∈ Λ \ {k0}. Moreover, assume that there exists U ∈ N satisfying

U1 < U ≤ U2 −D logαN and ρ(k0, U) > 0.

Then Yn > 0 for any n ∈ [U1, U).

Proof. We use induction on n. First we consider the case of n = U − 1.
Using (4.14), Ak0 ≥ 1, and the assumptions on I and U , we obtain

YU−1 =
∑
k∈Λ

Ak

∞∑
m=1

ρ(k,m+ U − 1)α−m

≥ 1

α
−

∑
k∈Λ\{k0}

|Ak|
∞∑

m=1+U2−U
ρ(k,m+ U − 1)α−m
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=
1

α
−

∑
k∈Λ\{k0}

|Ak|αU−U2Y (k, U2 − 1)

≥ 1

α
−

∑
k∈Λ\{k0}

|Ak|N−D(α− 1)D−1(N +D − 1)D−1 > 0

for all sufficiently large N .
Next, suppose that Yn > 0 for some n ∈ N with 1 + U1 ≤ n ≤ U − 1.

Then from Ak0ρ(k0, n) ≥ 0 we get

Yn−1 =
1

α

∑
k∈Λ

Akρ(k, n) +
1

α

∑
k∈Λ

Ak

∞∑
m=2

ρ(k,m+ n− 1)α−m+1

=
1

α
Ak0ρ(k0, n) +

1

α
Yn > 0.

Hence we have verified Lemma 4.6.

4.4. Completion of the proof of Theorem 2.1. We construct inter-
vals I = [U1, U2) satisfying the assumptions of Lemma 4.6. Using (4.11) and
the second inequality of Lemma 4.1, we deduce the following: Let N ∈ Ξ be
sufficiently large. Then the number of nonnegative integers T with T ≤ N
such that there exists a k ∈ Λ2 with ρ(k, T ) > 0 is at most∑

k∈Λ2

(α− 1)|k|λ(N)k ≤ 1

32
λ(N)e.

Say these T ’s are 0 = T1 < · · · < Tτ , where

τ ≤ 1

32
λ(N)e.(4.17)

Set T1+τ = N and

J = {J = J(j) = [Tj , T1+j) | 1 ≤ j ≤ τ}.
For any interval I ⊂ R, let |I| denote its length. Then∑

J∈J
|J | = N.(4.18)

Moreover, put

J1 = {J ∈ J | |J | ≥ 16Nλ(N)−e}, J2 = {J ∈ J1 | J ⊂ [C2(e), N)}.
Lemma 4.7. Let N ∈ Ξ be sufficiently large. Then∑

J∈J1

|J | ≥ N/2,
∑
J∈J2

|J | ≥ N/3.

Proof. By (4.17) and (4.18),∑
J∈J1

|J | =
∑
J∈J
|J | −

∑
J∈J\J1

|J | ≥ N − τ · 16Nλ(N)−e ≥ N/2,
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which implies the first inequality. We now check the second. Take positive
integers N0 < N1 satisfying Ni > C2(e) and ρ(k2, Ni) > 0 for i = 0, 1. If
N > N1, then there exists j0 = j0(N) with

Tj0 = N0, T1+j0 ≤ N1

by the definition of T1, . . . , T1+τ . Let J(j) ∈ J1 \ J2. Then j ≤ j0. Hence,
for any N ∈ Ξ with N ≥ 6N1,∑

J∈J2

|J | ≥
∑
J∈J1

|J | −
j0∑
j=1

|J(j)| ≥ N/2−N1 ≥ N/3.

By Lemma 4.1 the number of nonnegative integers R with R ≤ N such
that there exists a k ∈ Λ1 with ρ(k, R) > 0 is at most∑

k∈Λ1

(α− 1)|k|λ(N)k ≤ C3λ(N)k1 ,

where C3 is a positive constant. Say these R’s are 0 = R1 < · · · < Rµ, where

(4.19) µ ≤ C3λ(N)k1 .

Let R1+µ = N and

I = {I = [Ri, R1+i) | 1 ≤ i ≤ µ}.
Then

∑
I∈I |I| = N. Put

I1 = {I ∈ I | I ⊂ J for some J ∈ J },

I2 =

{
I ∈ I1

∣∣∣∣ |I| ≥ 1

12C3
Nλ(N)−k1

}
.

Lemma 4.8. Let N ∈ Ξ be sufficiently large. Then∑
I∈I1

|I| ≥ N/6,
∑
I∈I2

|I| ≥ N/12.

Proof. We check the first inequality. For any J = [Tj , T1+j) ∈ J2, we
have C2(e) ≤ Tj < T1+j ≤ N . If N ∈ Ξ is sufficiently large, then by (4.13),

|J |/4 ≥ 4Nλ(N)−e ≥ T1+jλ(T1+j)
−e.

So, using (4.12) and condition (3) of Theorem 2.1 with (a1, . . . , ar) = e,
R = T1+j , we obtain

T1+j > θ(T1+j) > T1+j − T1+jλ(T1+j)
−e ≥ T1+j − |J |/4.

Now, k1 is written as k1 = (g1, . . . , gr−1, u). Since

θ(T1+j) ∈
r−1∑
h=1

ghS(ξh) ⊂
r−1∑
h=1

ghS(ξh) + uS(ξr),

we get
ρ(k1, θ(T1+j)) > 0.
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Thus, by the definition of R1, . . . , R1+µ,

(4.20) θ(T1+j) = Ri

for some i ∈ N. Consequently, we put

β(J) = min{n ∈ N | n > Tj , n = Ri for some i ∈ N},
γ(J) = max{n ∈ N | n < T1+j , n = Ri for some i ∈ N}.

Then it is clear that

(4.21)
∑

I∈I, I⊂J
|I| = γ(J)− β(J)

and

(4.22) γ(J) ≥ θ(T1+j) > T1+j − |J |/4.
Similarly, we have

|J |/4 ≥ 4Nλ(N)−e ≥ 4Tjλ(Tj)
−e.

Applying Lemma 4.4 with M = Tj , E = |J |/4, we get

Tj + |J |/8 < θ(Tj + |J |/4) < Tj + |J |/4.
In the same way as in the proof of (4.20), we deduce that θ(Tj + |J |/4) = Ri
for some i ∈ N. Hence

(4.23) β(J) ≤ θ(Tj + |J |/4) < Tj + |J |/4.
Therefore, combining (4.21)–(4.23), we obtain∑

I∈I, I⊂J
|I| ≥ |J |/2.

Consequently, using Lemma 4.7, we conclude that∑
I∈I1

|I| ≥
∑
J∈J2

∑
I∈I, I⊂J

|I| ≥ 1

2

∑
J∈J2

|J | ≥ 1

6
N,

which is the first inequality of Lemma 4.8.
Using (4.19) and the first inequality, we get∑
I∈I2

|I| =
∑
I∈I1

|I| −
∑

I∈I1\I2

|I| ≥ 1

6
N − µ 1

12C3
Nλ(N)−k1 ≥ 1

12
N.

Thus we have verified the second inequality.

Now, we show that each interval I ∈ I2 satisfies the assumptions of
Lemma 4.6. Condition (1) of Theorem 2.1 implies that, for any k ∈ Λ,

logαN = o(Nλ(N)−k).(4.24)

By condition (2), there exists C4 > 0 such that, for any real R ≥ C4,

S(ξr) ∩ [C1R,R] 6= ∅.
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Moreover, by (4.24) there is C5 > 0 such that, for each natural N ≥ C5,

1

12C3
Nλ(N)−k1 −D logαN ≥ C4.(4.25)

Let N ∈ Ξ and I = [Ri, R1+i) ∈ I2. Suppose that N is sufficiently large.
Then

(4.26) |I| ≥ 1

12C3
Nλ(N)−k1 .

If N ≥ C5, then by (4.25) and (4.26), there exists V ∈ S(ξr) with

(4.27) C1(|I| −D logαN) ≤ V ≤ |I| −D logαN.

Using (4.24) and (4.26), we get

(4.28) C1(|I| −D logαN) ≥ 1 + [C1|I|/2]

because N is sufficiently large. Let U = Ri + V. Then there exists k =
(g1, . . . , gr−1, b) ∈ Λ1 (b < gr) such that

U ∈
r−1∑
i=1

giS(ξi) + (1 + b)S(ξr) ⊂
r∑
i=1

giS(ξi),

so ρ(k0, U) > 0. Moreover, by (4.27) and (4.28),

Ri + 1 + [C1|I|/2] ≤ U ≤ Ri+1 −D logαN.

By the definition of I2, there exists a positive integer j such that

I = [Ri, Ri+1) ⊂ [Tj , Tj+1).

Hence, for any integer x with x ∈ (Ri, Ri+1) and k ∈ Λ \ {k0}, we have
ρ(k, x) = 0 because Λ \ {k0} = Λ1 ∪ Λ2. Thus, by Lemma 4.6, Yn > 0 for
any n ∈ N with

Ri ≤ n ≤ Ri + [C1|I|/2].

Hence, using Lemma 4.8, we conclude that

y(N) ≥
∑
I∈I2

(1 + [C1|I|/2]) ≥ 1

24
C1N,

which contradicts the statement of Lemma 4.5. Thus we have proved The-
orem 2.1.
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