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1. Introduction. Each irrational x ∈ (0, 1) has a unique representa-
tion as an infinite regular continued fraction [a1, a2, . . .]. By virtue of this
representation, it is possible to associate to x the sequence of convergents
pn/qn = [a1, . . . , an] (cf. [12]). Define θn(x) = qn|qnx − pn|. We are inter-
ested in studying generic properties of certain subsequences of the sequences
{pn/qn}, {θn} and {(θn, θn+1)}. Our methods make use of ergodic theory
and hyperbolic geometry and build upon Bosma, Jager and Wiedijk’s proof
of the Doeblin–Lenstra conjecture (referred to as D-L) [3, 17, 6] as well as
Jager’s subsequent treatment of the sequence of approximation pairs [13].

For α ∈ (0, 1], define the subsequence Θ̄(α) = {θnk}, where θnk < α
and if θn < α then θn = θnk for some k. There is of course the associated
subsequence of convergents {pnk/qnk}. Denote these two subsequences by
Θ̄(α) = {θ̄k} and {p̄k/q̄k}. One interesting fact that is evident in our treat-
ment is that, while for α ≤ 1/2 and for almost all x ∈ (0, 1) the sequence
Θ̄(α) is equidistributed in the interval (0, α), the corresponding sequence of
pairs {θ̄k, θ̄k+1} is far from evenly distributed in its natural domain. This
was first observed by Kraaikamp [19] for α = 1/2. For α ≥ 1/2 we derive
the density function for the distribution. We also see how D-L and a fa-
mous theorem of Lévy on the growth of the numerator of convergents can
be realized in this setting.

As in [3] and [13], the main tool is the natural automorphic extension T
of the Gauss map. The subsequences are associated to a family of automor-
phisms defined by taking the first return to a region Ωα. These first return
maps are interesting in their own right and are related to Kraaikamp’s the-
ory of S-expansions and singularization [20, 6] as well as his treatment of
Minkowski’s diagonal continued fraction—the case when α = 1/2. While
T is Bernoulli and therefore qualifies as being chaotic, with decreasing α
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the first return maps exhibit increasing complexity and appear to do so in a
manner reminiscent of the structure of the Markov spectrum [5]. Techniques
from hyperbolic geometry will be employed to gain some understanding of
the structure of the first return maps and to point the way for dealing with
cases when α < 1/2.

2. Basic properties of the sequences and the natural extension

2.1. The natural extension of the Gauss map. We begin by dis-
cussing the Gauss map, its natural automorphic extension T and a related
group of first return maps. These maps are used to pinpoint the sequence of
values nk mentioned above as well as providing the framework for analyzing
dynamical properties of the sequence of thetas and the pairs.

The classical Gauss map is defined on the open unit interval I = (0, 1)
by T (x) = 1/x − [1/x], where we use [r] to denote the greatest integer less
than or equal to r. The map has several nice properties. First, T acts as a
shift on the continued fraction expansions: T ([a1, a2, . . .]) = [a2, a3, . . .]. Sec-
ondly, T is ergodic with respect to Lebesgue measure and has the absolutely
continuous invariant probability measure (log 2(1 + x))−1 dx (see [6]).

There is a simple and useful realization of the natural automorphic ex-
tension T of T (cf. [15]) due to Nakada et al. [22, 6]. See also [1]. Let
J = (−∞,−1). We shall use a closely related realization of T, defined on
Ω = I × J by

T(x, y) = (1/x− [1/x], 1/y − [1/x]),

with the ergodic invariant probability measure µ = (log 2)−1(x − y)−2 dA
(cf. [7, 24, 23]).

Define T(x,∞) = (1/x − [1/x],−[1/x]) = (x0, y0) and let Ω∗ = I ×
(J ∪ {∞}). We shall use the convention of denoting the nth iterate of a
map with an exponent. Let Tn(x0, y0) = (xn, yn). By induction we have: if
x = [a1, a2, . . .] then

xn = [an+2, an+3, . . .] and yn = −an+1 − [an, . . . , a1].

Note that for x rational and n sufficiently large, Tn(x) is not defined.

2.2. Definition of the first return maps and their relation to
thetas. Set Ωα = {(x, y) ∈ Ω | (x − y)−1 < α}. For (x, y) ∈ Ω∗, let
τα(x, y) = min{n ≥ 1 | Tn(x, y) ∈ Ωα}. Since T is a measure preserving
ergodic transformation, with the exception of a set of measure zero, τα is
defined and Tn(x, y) ∈ Ωα for infinitely many positive integers [15, 4]. More-
over, for a.a. x, if Tn(x, y) ∈ Ωα for infinitely many positive integers, then
it follows from [9, Lemma 1], that for any y′ ∈ J ∪ {∞}, Tn(x, y′) ∈ Ωα for
infinitely many positive integers.
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Henceforth we assume that the exceptional set is removed from Ω∗. Now
define Tα on Ω∗ by

Tα(x, y) = Tτα(x,y)(x, y).

Tα is called the first return map when restricted to Ωα. Note that Ω1 = Ω
and T1 = T.

For (u, v) ∈ R2 let ‖(u, v)‖ = (u − v)−1. Given x ∈ (0, 1) set (x̄k, ȳk) =
Tk
α(x0, y0) = Tk

α(T(x,∞)). Aside from having some inherent interest, the
importance of Tα stems from the way in which it ties the sequence Θ̄(α) to
an ergodic dynamical system.

Lemma 2.1. For 0 < α ≤ 1 and almost all irrational x ∈ (0, 1), θn <
α for infinitely many positive integers. Furthermore, Tn(x0, y0) ∈ Ωα for
infinitely many positive integers and θ̄k = ‖Tk

α(x0, y0)‖ = (x̄k − ȳk)−1.

Proof. We first assume θn < α for infinitely many positive integers
and prove the final assertion of the lemma. It is an elaboration on θn =
‖Tn(x0, y0)‖ (cf. [9, 11]), which is proved in the following sequence of equal-
ities:

1

xn − yn
=

1

[an+2, . . .] + an+1 + [an, . . . , a1]
(2.1)

=

(
1

Tn(x)
− qn−1

qn

)−1
= θn

where we refer to [12] and [18], respectively, for the second and third equal-
ities. In particular, it follows from this that Tn(x0, y0) ∈ Ωα for infinitely
many positive integers.

Now we argue by induction. Letm be the smallest value so that Tm(x0, y0)
= (xm, ym) ∈ Ωα. It follows that Tm(x0, y0) = Tα(x0, y0). But this is also
equivalent to m being the smallest value for which θm = 1/(xm − ym) < α.
Together these give θ̄1 = θm = ‖Tm(x0, y0)‖ = ‖Tα(x0, y0)‖.

Now to the inductive step. We suppose that θ̄k = ‖Tk
α(x0, y0)‖. In terms

of the natural extension this is θnk = ‖Tnk(x0, y0)‖. Let θm = θnk+1
= θ̄k+1.

Then ‖Tm(x0, y0)‖ = θm < α and for nk < r < m, ‖Tr(x0, y0)‖ > α.
Translating this says that Tm(x0, y0) ∈ Ωα and Tr(x0, y0) 6∈ Ωα for nk <
r < m. Thus, Tm(x0, y0) = Tk+1

α (x0, y0). Putting all this together we have

θ̄k+1 = θm = ‖Tm(x0, y0)‖ = ‖Tk+1
α (x0, y0)‖.

Turning to the first sentence of the lemma, by a theorem of Khinchin, for
almost all x ∈ (0, 1) the limiting average of the partial quotients ai diverges
to infinity [16]. Consequently, using the characterization of θn in (2.1), for
a.a. x the values θn get arbitrarily small. It follows that for almost all x,
θn < α for infinitely many positive integers.
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2.3. Basic properties of the subsequences. Our main tool in this
section is the following theorem, which will later be shown to hold when T
is replaced by one of the maps Tα and Ω is replaced by Ωα. The theorem is
originally due to Bosma, Jager and Wiedijk [3, 13] but we use a form that
resembles Theorem 3 from [9].

Theorem 2.2. For almost all x ∈ (0, 1) and all y ∈ J ∪ {∞}, the
sequence of points {Tn(x, y)} is distributed in Ω according to the density
function f(x, y) = (log 2)−1(x− y)−2.

Observe that f is the density function for the T-invariant probability
measure defined earlier, but the Ergodic Theorem is not sufficient in itself
to guarantee convergence for the particular values appearing in the theorem
[3, 17]. Using Theorem 2.2 we can prove the following version of the well
known theorem of Lévy [21]. It is interesting to see that the placement
of the log term in the constant is a consequence of the same phenomena
observed in D-L, where good approximations that are only first mediants
are not accounted for by the continued fraction expansion when α > 1/2
(cf. [2, 12]).

Proposition 2.3. Given α ∈ (0, 1], for almost all x ∈ (0, 1),

lim
n→∞

log q̄n
n

=

{
π2(12(1− α+ log 2 + logα))−1 if α > 1/2,

π2(12α)−1 if α ≤ 1/2,

Proof. Suppose x satisfies the conclusions of Lemma 2.1 and Theorem
2.2. By definition nk is the smallest value n such that k = #{j ≤ n | θj < α}.
By the lemma, k is precisely #{j ≤ nk | Tj(x0, y0) ∈ Ωα}. Thus, making
use of Theorem 2.2,

lim
k→∞

k

nk
= lim

k→∞

1

nk
#{j ≤ nk | Tj(x0, y0) ∈ Ωα}(2.2)

= lim
n→∞

1

n
#{j ≤ n | Tj(x0, y0) ∈ Ωα} = µ(Ωα).

This last value is (log 2)−1(1−α+ log 2 + logα) if α > 1/2 and is (log 2)−1α
if α ≤ 1/2.

Using the above and the theorem of Lévy, for a.a. x we have

π2

12 log 2
= lim

n→∞

log qn
n

= lim
k→∞

log qnk
nk

= lim
k→∞

log q̄k
nk

=

(
lim
k→∞

k

nk

)(
lim
k→∞

log q̄k
k

)
= µ(Ωα) lim

k→∞

log q̄k
k

,

which proves the proposition.

Henceforth we shall write cα = (log 2µ(Ωα))−1. By a similar approach,
one gets the following version of D-L.
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Proposition 2.4. For α ∈ (0, 1] and for almost all x ∈ (0, 1) the se-
quence Θ̄(α) is distributed in the interval (0, α) according to the density
function cα(2 log 2)−1ζ−1(1− |1− 2ζ|).

2.4. Ergodic theory of the first return maps. The T-invariant
measure µ restricts to an invariant measure for Tα on Ωα, with respect
to which Tα is ergodic [15]. We normalize to get the invariant probability
measure µα = cα(x− y)−2 dA.

Theorem 2.5. For almost all x ∈ (0, 1) and all y ∈ J ∪ {∞}, the
sequence of points {Tn

α(x, y)} is distributed in Ωα according to the density
function fα(x, y) = cα(x− y)−2.

Proof. Let B be a Borel set in Ωα with boundary of zero measure. Let
nk be the smallest value n such that k = #{j ≤ n |Tj(x, y) < α}. Recall
the notation of (2.2) with (x0, y0) replaced by (x, y) ∈ Ω∗. Then for a.a.
x ∈ (0, 1) and all y ∈ J ∪ {∞} the following limits exists and we have(

lim
k→∞

nk
k

)(
lim
k→∞

1

nk
#{0 < j < nk | Tj(x, y) ∈ B}

)
(2.3)

= lim
k→∞

1

k
#{0 < j < k | Tj

α(x, y) ∈ B}.(2.4)

In view of (2.2), the value of the first limit in (2.3) is cα log 2 and conse-
quently the above is equal to

(cα log 2) lim
n→∞

1

n
#{0 < j < n | Tj(x, y) ∈ B} = (cα log 2)µ(B) = µα(B).

By viewing Tα as an automorphism of Ωα with invariant measure µα,
the value for cα with α > 1/2 can be obtained from [20], as a special case
of Theorem 5.9. The constant c1/2 was found in [19].

3. The first return maps and the distribution of theta pairs. In
this section we turn to the space of pairs of the form {(θ̄n, θ̄n+1)} and see
how Jager’s approach can be modified to derive the distribution function
for the generic sequence of pairs.

3.1. Theta pairs for α ≥ 1/2. The natural domain for the pairs, when
α is taken to be greater than or equal to 1/2, is the set

Λα = {(w, z) ∈ R2 | 0 < w < α, 0 < z < α, w + z < 1}

Define Λ−α = {(w, z) ∈ Λα | z < w − α+
√

1− 4αw} and Λ+
α = Λα \ Λ−α .

On Λα we have the density function

λα(w, z) =

{
cα(
√

1− 4αzw)−1 if (w, z) ∈ Λ+
α ,

cα((
√

1− 4αzw)−1 + (
√

1 + 4αzw)−1) if (w, z) ∈ Λ−α .
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Λ+
α

Λ−
αΛ
−
α

w

z

Fig. 1. Λα when α = 0.7

Jager’s description of the distribution of approximating pairs becomes

Theorem 3.1. For α ≥ 1/2 and almost all x ∈ (0, 1), the sequence
{θ̄k, θ̄k+1} is distributed in the region Λα according to the density function
λα(w, z). In other words, for almost all x ∈ (0, 1) and for any Borel subset
B of Λα with boundary of measure zero,

lim
n→∞

1

n
#{j ≤ n | (θ̄j , θ̄j+1) ∈ B} =

� �

B

λα(w, z) dw dz.

The proof is deferred until Section 3.4, where we prove the stronger
Theorem 3.4.

3.2. The structure of the first return maps for α ≥ 1/2. Define
the following sets:

Ω−α =

{
(x, y) ∈ Ω

∣∣∣∣ y ≤ αx

α− x

}
,

∇α = {(x, y) ∈ Ωα | y ≥ x− 1/α} = Ω \Ωα, Ω+
α = Ω \ (Ω−α ∪∇α).

As usual we denote the closure of a set with an overline. Let ∇∗α denote
the union of ∇α and its boundary along the line x = 0.

∇α

Ω−
α

Ω+
α

Fig. 2. Ω when α = 0.6

Lemma 3.2. When α ≥ 1/2, T is a bijection, mapping Ω−α onto ∇∗α.
Consequently, there is a simple dichotomy describing Tα:
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Tα(x, y) =

{
T(x, y) if (x, y) ∈ Ω+

α ∪∇α,

T2(x, y) if (x, y) ∈ Ω−α .

The more general case, in terms of S-expansions, was addressed in Kraai-
kamp [20]. We include a simple, short proof.

Proof of Lemma 3.2. For 1/2 < x < 1, T(x, y) = (1/x− 1, 1/y − 1) .
This function naturally extends to a homeomorphism of the strip (1/2, 1]×
(−∞,−1] onto the rectangle [0, 1) × [−2,−1), taking the ray x = 1 to the
segment x = 0. Furthermore, T takes the curve y = αx/(α− x) bounding
Ω−α to the diagonal y = x − 1/α bounding ∇α. The first assertion of the
lemma follows.

Given (x, y) ∈ Ω, T(x, y) 6∈ Ωα if and only if T(x, y) ∈ ∇α. It follows
from the above that this occurs if and only if (x, y) ∈ Ω−α . We observe that
∇α is disjoint from both Ω+

α and Ω−α . Consequently, if (x, y) ∈ Ω+
α ∪∇α then

T(x, y) ∈ Ωα and T(x, y) = Tα(x, y). If (x, y) ∈ Ω−α than T(x, y) ∈ ∇α and
Tα(x, y) = T2(x, y) ∈ Ωα, as asserted.

3.3. From Ωα to the domain of theta pairs. Define

F+(x, y) =
−xy
x− y

and F−(x, y) =
(1− x)(1− y)

x− y
and set

F+(x, y) = (‖(x, y)‖, F+(x, y)), F−(x, y) = (‖(x, y)‖, F−(x, y)).

Then we let

F(x, y) =

{
F+(x, y) if (x, y) ∈ Ω+

α ,

F−(x, y) if (x, y) ∈ Ω−α .

The next proposition describes the relationship between the space Ωα
and the natural domain for the theta pairs Λα. In effect it allows us to equate
the Tα-orbit of a point in Ωα with a sequence of pairs in Λα. It is an easy
step from here to the proof of Theorem 3.1.

The case where α = 1 was proved in [14] and the result for α = 1/2 was
obtained in [19].

Proposition 3.3.

(a) F+(x, y) = (w, z) is a homeomorphism of Ω+
α onto Λα. Its inverse

is given by

H+(w, z) =

(
1−
√

1− 4wz

2w
,
−1−

√
1− 4wz

2w

)
.

(b) F−(x, y) = (w, z) is a homeomorphism of Ω−α onto Λ−α . Its inverse
is given by

H−(w, z) =

(
2w + 1−

√
1 + 4wz

2w
,
2w − 1−

√
1 + 4wz

2w

)
.
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(c) Furthermore, for almost all x ∈ (0, 1) and (x0, y0) = T(x,∞),

F(x̄k, ȳk) = F
(
Tk
α(x0, y0)

)
= (θ̄k, θ̄k+1).

Proof. One sees easily that if 1− 4wz ≥ 0, then F+ ◦H+(w, z) = (w, z).
We show that F+ is injective in A+ = {x+ y < 0, y < x}. Suppose (x, y) 6=
(u, v) so that ‖(x, y)‖ = ‖(u, v)‖ and F+(x, y) = F+(u, v). These can be
written

(3.1) x− y = u− v
and

(3.2) xy(u− v) = uv(x− y).

It follows that xy = uv or u = xy/v. Substituting into (3.2) we get the
equation x2 − x(y − v) − yv = 0. Since y < 0 this implies v = −x and also
u = −y. But then (u, v) 6∈ A+ proving that F+ is injective.

Note that in general F+(x, y) = F+(−y,−x) and the image of the ray
y = −x with x > 0 is piece of the hyperbola z = 1/(4w) with w > 0. Thus F+

maps A+ homeomorphically onto a subset of B+ = {z < 1/(4w), w > 0}.
But since H+ is defined in B+, A+ must map homeomorphically onto the
entire region. One easily checks that the curves bounding Ω+

α in A+ map
to the four curves bounding Λα in the right half-plane. That completes the
proof of part (a).

Part (b) follows the same script. One concludes first that F− is injective
on A− = {x+ y < 0, y < −x+ 2} with inverse H−. In this case we see that
F−(x, y) = F−(−y+ 2,−x+ 2) and F− takes the ray y = −x+ 2 with x > 0
to the piece of the hyperbola z = −1/(4w) with w > 0. As above it follows
that F− maps A− homeomorphically onto the region in the right half-plane
with z > −1/(4w). The positive x-axis maps to the positive w-axis. The
other boundary arc of Ω−α in A− is the curve y = αx/(α− x). Its image
under F− has

(3.3) w =
x− α
x2

and therefore x =
1−
√

1− 4wα

2w
.

Now substituting in for y and using the first and second parts of (3.3) we
have

z =
(1− x)(1− αx/(α− x))

x− αx/(α− x)
=
x− α
x2

+
2α

x
− 1− α

= w +
2α

x
− 1− α = w − α+

√
1− 4wα.

This curve, together with the w-axis, bounds Λ−α in A−. That completes the
proof of (b).

We still need to address part (c), which says that given x ∈ (0, 1), F takes
the sequence (x̄k, ȳk) to the corresponding sequence of theta pairs. Suppose x
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belongs to the full measure set for which θ̄k = ‖Tk
α(x0, y0)‖, as in Lemma

2.1. Since θ̄k = ‖(x̄k, ȳk)‖, the result is clear for the w coordinate, so we turn
to the second coordinate.

By Lemma 3.2 there are only two possibilities for the value of θ̄k+1. First,
if (x̄k, ȳk) ∈ Ω+

α , then Tα(x̄k, ȳk) = T(x̄k, ȳk) and

θ̄k+1 = ‖Tα(x̄k, ȳk)‖ = ‖T(x̄k, ȳk)‖ =
−x̄kȳk
x̄k − ȳk

= F+(x̄k, ȳk).

The second possibility occurs when (x̄k, ȳk) ∈ Ω−α . Then we must have
1/2 ≤ α < x̄k < 1 and consequently [1/x̄k] = 1. Using this fact and a little
calculation gives

θ̄k+1 = ‖Tα(x̄k, ȳk)‖ = ‖T2(x̄k, ȳk)‖ =
(1− x̄k)(1− ȳk)

x̄kȳk
= F−(x̄k, ȳk).

That completes the proof of the proposition.

3.4. The distribution. The following is a strengthened version of The-
orem 3.1. Again the cases α = 1 and α = 1/2 were dealt with in [13] and
[19], respectively. See also [14].

Theorem 3.4. For almost all η ∈ (0, 1) and all ζ ∈ J ∪ {∞}, the se-
quence (wk, zk) = F(Tk

α(η, ζ)) is distributed in the region Λα according to
the density function λα. In particular, for almost all x ∈ (0, 1) this holds
with (η, ζ) = (x0, y0) = T(x,∞) and in this case (wk, zk) = (θ̄k, θ̄k+1).

Proof. This is a modification of the proof in [13] along the lines of [10].
First off, we define the measure λα on Borel sets in Λα by setting λα(D) =
µα(F−1(D)). Let D−α = D∩Λ−α . Then following a computation of Jacobians,
we have

λα(D) =
� �

F−1(D)

fα dx dy =
� �

D

fα(H(w, z))|Jac H(w, z)| dw dz

+
� �

D−
α

fα(H−(w, z))|Jac H−(w, z)| dw dz =
� �

D

λα(w, z) dwdz.

As a consequence of Theorem 2.5, for almost all (η, ζ) ∈ Ω∗,

λα(D) = µα(F−1(D)) = lim
k→∞

1

k
#{j ≤ k | Tk

α(η, ζ) ∈ F−1(D)}(3.4)

= lim
k→∞

1

k
#{j ≤ k | (wk, zk) ∈ D}.

That proves the first assertion of the theorem.

Now suppose x ∈ (0, 1) is chosen from the full measure set guaranteed
by Theorem 2.5, for which the sequence (x̄k, ȳk) is distributed according to
the density function fα. Then as a consequence of Proposition 3.3 and (3.4)
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above we get

lim
n→∞

1

n
#{j ≤ n | (θ̄j , θ̄j+1) ∈ D}

= lim
k→∞

1

k
#{j ≤ k | (wk, zk) ∈ D} = λα(D).
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Fig. 3

In the three graphs of Figure 3, the sets of pairs (θ̄j , θ̄j+1) are plotted
for different values of α. The θ̄’s have been extracted from a sequence of θ’s
generated by taking x ≈ π2 +

√
2− 1. When α = 1 you see the distribution

described by Jager’s theorem [13]. Note the similarity to Figure 1 in [14].
When α = 1/2 compare to Figure 2 in [19]. For α < 1/2 it is difficult to see
any interesting detail using this approach.

4. A geometric approach that addresses all values α. In this final
section we revisit the first return maps using a more geometric approach.

4.1. The setup. Given a fraction p/q in lowest terms and a number
κ ∈ (0, 1], Dp/q(κ) is the open disc of radius κ/q2 which is tangent to the
real line at the point p/q. Set D∞(κ) = {ζ = u + iv | v > 1/(2κ)}. These
regions are sometimes called horocycles or their boundaries are called Ford
circles. Let D(κ) denote the union of all such discs. We will be particularly
interested when p/q is in the closed unit interval.

Suppose x is irrational with continued fraction expansion x = [a1, a2, . . .].
As in [4] define

∆ = ∆n+1
a1,...,an+1

= {ζ = [a1, . . . , an+1 + r] | r ∈ (0, 1), irrational}.
This interval has endpoints

pn+1

qn+1
= [a1, . . . , an+1] and

pn+1 + pn
qn+1 + qn

= [a1, . . . , an+1 + 1].
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Notice that Tn+1 restricted to the closure of ∆ is a Möbius transforma-
tion g mapping ∆̄ one-one onto [0, 1] and taking pn/qn to ∞. It is easy to
verify that

(4.1) gn+1(x) =

(
qn+1 −pn+1

−qn pn

)
(x) =

qn+1x− pn+1

−qnx+ pn
.

Then for any y < −1, Tn+1(x, y) = (gn+1(x), gn+1(y)) (cf. [9]).

The transformation gn is an automorphism of the Riemann sphere. It
will preserve the upper half-plane H when n is even and it will interchange
the upper and lower half-planes when n is odd. We shall extend gn to a
self-map of H by setting

Gn(z) =

{
gn(z) if n even,

gn(z) if n odd.

Given x 6= y, real numbers or infinity, let xy denote the arc of the circle
in the upper half-plane H orthogonal to R ∪ {∞} = R̂. This is a geodesic
in the Poincaré model for the hyperbolic plane. We will have Tn+1 act on
geodesics by setting Tn+1(xy) = gn+1(x)gn+1(y) = Gn+1(xy).

One begins to see how this fits with the earlier material in the following.

Proposition 4.1. For x irrational in (0, 1) with convergents pj/qj, any
y < −1 and n ∈ N,

‖Tn+1(x, y)‖ < α if and only if xy ∩Dpn/qn(α) 6= ∅.

Proof. The result holds for n = 0 by taking p0/q0 = 0/1 = 0.

A simple calculation [8] shows that the transformations Gn permute the
discs in D(α). Then, since gn+1(pn/qn) = ∞, Gn+1(Dpn/qn(α)) = D∞(α).

Therefore xy ∩Dpn/qn(α) 6= ∅ if and only if Tn+1(x, y) ∩D∞(α) 6= ∅. But

this last is equivalent to (x− y)/2 > 1/(2α) or ‖Tn+1(x, y)‖ < α.

4.2. Geodesic-horocycle intersections and τα. Given (x, y) ∈ Ω∗,
let D(x, y) = Dpn/qn(α) be the horocycle intersecting xy with qn minimal.
If qn = 1 and D0(α) ∩ xy 6= 0 then set D(x, y) = D0(α), otherwise set
D(x, y) = D1(α).

Theorem 4.2. Suppose α ≥ 1/2. Then D(x, y) is either D0(α) or D1(α)
and

(4.2) τα(x, y) =

{
1 if D(x, y) = D0(α),

2 if D(x, y) = D1(α).

Suppose α < 1/2. Then either D(x, y) is one of D0(α) or D1(α) and the
conclusion of (4.2) holds, or else D(x, y) = Dpn/qn(α) with qn > 1 and then
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τα(x, y)

=

{
n+ 1 if n is odd and x < pn/qn, or if n is even and x > pn/qn,

n+ 2 if n is even and x < pn/qn, or if n is odd and x > pn/qn.

One could use this point of view to characterize Ω+
α and Ω−α and reprove

Lemma 3.2. In Example 1, we will see how one might address the next
simplest case with α < 1/2.

Proof of Theorem 4.2. First observe that if α ≥ 1/2, every xy must meet
one of D0(α) or D1(α). Suppose D(x, y) = D0(α). Then xy ∩D0(α) 6= ∅,
and by Proposition 4.1, ‖T(x, y)‖ < α. In other words, τα(x, y) = 1. If
xy ∩ D0(α) = ∅, then xy ∩ D1(α) 6= ∅. Then x > 1/2 and consequently
p1/q1 = 1/1. Again, it follows from the proposition that τα(x, y) = 2. Note
that (4.2) remains true even when α ≤ 1/2.

Henceforth we take α ≤ 1/2. Suppose D(x, y) = D1/a1(α) for a1 > 1. If
x > 1/a1 then an easy computation shows that x < 1/(a1 − 1) or, in other
words, x ∈ ∆1

a1−1. Observe that T (x) = g(x) = 1/x−a1+1 maps the closure
of ∆1

a1−1 to [0, 1], taking 1/a1 to 1. Let T(x, y) = (x′, y′). Then T(xy) =

G(xy) = x′y′ intersects D1(α) = G(D1/a1(α)). Furthermore, since xy is

disjoint from D1/(a1−1)(α), x′y′ does not intersect D0(α) = G(D1/(a1−a)(α)).
It follows from the previous paragraph that τα(x′, y′) = 2 and consequently
that τα(x, y) = 3.

Similarly, if x < 1/a1 then x > 1/(a1 + 1) or x ∈ ∆1
a1 . We notice that

T (x)=g(x)=1/x−a1 maps the closure of ∆1
a1 to [0, 1], taking 1/a1 to 0. Now,

T(xy) = G(xy) = x′y′ intersects D0(α) = G(D1/a1(α)). Then τα(x′, y′) = 1
and τα(x, y)=2. The theorem follows for k = 1 where p1/q1=1/a1.

The proof is completed by induction. Suppose the result holds for k > 1
and D(x, y) = Dpk+1/qk+1

(α). The convergent pk+1/qk+1 is contained in

the interval ∆1
a1 . Thus, on the interval, and therefore in a neighborhood

of the fraction, T is the transformation g which extends to H as G(z) =
1/z̄ − a1. Then, as above, T maps the geodesic xy to x′y′. Since g reverses
orientation on R, if x is greater than or less than pk+1/qk+1 then the reverse
is true for g(x) relative to g(pk+1/qk+1). In particular, if x > pk+1/qk+1,
then g(x) = x′ < g(pk+1/qk+1). Now, note that the kth convergent to g(x)
is g(pk+1/qk+1). Then D(x′, y′) = G(Dpk+1/qk+1

(α)) = Dg(pk/qk)(α), and by
the inductive hypothesis, τα(x′, y′) is k + 1 if k is odd and it is k + 2 if k is
even. It follows that τα(x, y) is k + 2 if k + 1 is even and it is k + 3 if k + 1
is odd. In the same manner the result follows when x < pk+1/qk+1. That
completes the proof.

Example 1. Choose 1/
√

5 < α < 1/2. Since α < 1/2 there exist (x, y) ∈
I × J so that D(x, y) = D1/2(α). Moreover, because of the choice of lower
bound, D(x, y) must be one of the horocycles D0(α), D1(α) or D1/2(α) for
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any (x, y) ∈ Ω and consequently in Ωα. If the first or the second possibility
holds, then τα(x, y) is respectively 1 or 2. In the remaining case xy meets
D1/2(α) but neither of the other horocycles. If x < 1/2, then by the theorem
τα(x, y) = 2, whereas if x > 1/2, then τα(x, y) = 3.

Given such an α and some free time, it would be possible to numeri-
cally characterize the regions on which each of the behaviors holds. Then
Ωα will be divided into regions, and by specifying the appropriate power
τα(x, y) of T on each of them, one can describe Tα. One could then, in
principle, compute the density function for the distribution of theta pairs as
in Theorem 3.4.

It would appear that the dynamical systems determined by values α
with 1/

√
5 < α < 1/2 will be structurally identical, where the sets Ωα are

subdivided into regions of the same shape, on which τα(x, y) is constant;
much like the situation when α > 1/2. We conjecture that there will be
an infinite, discrete set of numbers αi decreasing to some value α∞ greater
than zero, so that for αi+1 < α < αi the dynamical systems {Tα, Ωα} are
topologically conjugate. At each of the values αi, the system will abruptly
change, in particular sup τα(x, y) will increase. Below α∞ the systems should
attain a higher degree of complexity. All this might somehow relate to the
Markov spectrum [5].

Example 2. It follows in the previous example that if α > 1/
√

5 then
τα(x, y) is defined for all (x, y) ∈ Ω. This is no longer true if α < 1/

√
5. In

the simplest case, consider what happens when we take ζ = 1
2(
√

5− 1). By

an old theorem of Hurwitz [12], for α < 1/
√

5 there are only finitely many
fractions p/q with ∣∣∣∣ζ − p

q

∣∣∣∣ < α

q2
.

This inequality can be read geometrically as implying that ζ∞ meets
only finitely many of the horocycles Dpn/qn(α), where the fractions are the
continued fraction convergents of ζ. It follows that Tn(ζ,∞) ∈ Ω.4 for only
finitely many values n.

Set α = .4, and let η = 1
2(−
√

5 − 1). It follows from Markov’s theorem

[5] that ζη is disjoint from all of the horocycles Dp/q. Consequently, τ.4(ζ, η)
is not defined.

As in Example 1, one expects that as α decreases, the set on which τα
is not defined will increase in complexity.
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