A set of squares without arithmetic progressions

by
Katalin Gyarmati and Imre Z. Ruzsa (Budapest)

To Andrzej Schinzel, with respect and gratitude

1. Introduction. The problem of finding arithmetic progressions in a partition of integers, or in a dense subset of the first N integers, is among the oldest and most investigated questions of combinatorial number theory. We focus on the analogous problem for the first N squares.

Let $Q(N)$ denote the maximal cardinality of sets $A \subset\left\{1^{2}, 2^{2}, \ldots, N^{2}\right\}$ which do not contain any nontrivial three-term arithmetic progression. The most fundamental question about this quantity, which we are unable to answer, is definitely the following.

Problem. Is $Q(N)=o(N)$?
We do not even have a convincing heuristic argument for one answer or the other. The only reason why we may be inclined to expect a positive answer is that so far we failed to construct such a set with positive density.

We are going to show that $Q(N) / N$ cannot tend to 0 too fast, which probably means that if it does so at all, this will be difficult to confirm.

Theorem. For every sufficiently large N there is a set $A \subset\{1, \ldots, N\}$ such that the equation

$$
x^{2}+y^{2}=2 z^{2}
$$

has no solution with $x, y, z \in A$ other than the trivial solutions $x=y=z$, and

$$
|A|>c N / \sqrt{\log \log N}
$$

with a positive constant c.
We are slightly more confident about the partition version.

[^0]Conjecture. If we split the set of positive integers into finitely many parts, then the equation $x^{2}+y^{2}=2 z^{2}$ has a nontrivial solution with x, y, z being in the same part.
2. Proof. We call a solution of our favourite equation

$$
\begin{equation*}
x^{2}+y^{2}=2 z^{2} \tag{2.1}
\end{equation*}
$$

primitive if x, y, z are coprime. Clearly every nonzero solution can be written as $x=d x^{\prime}, y=d y^{\prime}, z=d z^{\prime}$, where $d=\operatorname{gcd}(x, y, z)$ and $x^{\prime}, y^{\prime}, z^{\prime}$ is a primitive solution. We will call this primitive solution $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ the stem of the solution (x, y, z).

Lemma 1. If x, y, z form a primitive solution of (2.1), then x, y consist exclusively of primes $p \equiv \pm 1(\bmod 8)$, and z consists exclusively of primes $p \equiv 1(\bmod 4)$.

This reformulates the well-known property of the quadratic character of 2 and -1 .

For an integer $j, 1 \leq j \leq 7$, let $\nu_{j}(n)$ denote the number of prime divisors p of n satisfying $p \equiv j(\bmod 8)$, counted with multiplicity. These are completely additive functions.

Lemma 2. Let x, y, z be a solution of (2.1). Write $x=d x^{\prime}, y=d y^{\prime}$, $z=d z^{\prime}$, where $d=\operatorname{gcd}(x, y, z)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is its stem. We have

$$
\begin{align*}
& \nu_{5}(x)-\nu_{5}(z)=-\nu_{5}\left(z^{\prime}\right) \tag{2.2}\\
& \nu_{7}(x)-\nu_{7}(z)=\nu_{7}\left(x^{\prime}\right) \tag{2.3}
\end{align*}
$$

Proof. Indeed, $\nu_{5}(x)=\nu_{5}(d)+\nu_{5}\left(x^{\prime}\right)=\nu_{5}(d)$ by the previous lemma and $\nu_{5}(z)=\nu_{5}(d)+\nu_{5}\left(z^{\prime}\right)$; by subtracting we get 2.2. Similarly $\nu_{7}(x)=$ $\nu_{7}(d)+\nu_{7}\left(x^{\prime}\right)$ and $\nu_{7}(z)=\nu_{7}(d)+\nu_{7}\left(z^{\prime}\right)=\nu_{7}(d)$; by subtracting we get (2.3).

Now we introduce the completely additive function

$$
\rho(n)=\nu_{5}(n)-\nu_{7}(n)
$$

Lemma 3. Let A be a set of integers with the property that $\rho(n)=k$ for all $n \in A$. Let $(x, y, z) \in A^{3}$ be a solution of (2.1) with stem $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. The three integers $x^{\prime}, y^{\prime}, z^{\prime}$ consist exclusively of primes $p \equiv 1(\bmod 8)$.

Proof. By subtracting (2.2) from (2.3) we obtain

$$
\rho(z)-\rho(x)=\nu_{7}\left(x^{\prime}\right)+\nu_{5}\left(z^{\prime}\right)
$$

By the symmetric role of x and y we also have

$$
\rho(z)-\rho(y)=\nu_{7}\left(y^{\prime}\right)+\nu_{5}\left(z^{\prime}\right)
$$

On the left hand side of each equation we have 0 and on the right hand side a sum of nonnegative numbers, hence the numbers on the right hand side all
vanish. Since Lemma 1 already excludes the classes 3 and $5(\bmod 8)$ for x^{\prime} and y^{\prime}, as well as the classes 3 and $7(\bmod 8)$ for z^{\prime}, only the class $1(\bmod 8)$ remains.

By the Turán-Kubilius inequality we know that for most $n \leq N$ the values of $\rho(n)$ fall into an interval of length $O(\sqrt{\log \log N})$, so if we could exclude primitive solutions arising from primes in the congruence class $1(\bmod 8)$ without much loss, we would be done. In what follows we achieve this.

Lemma 4. Let (x, y, z) be a primitive solution of (2.1) with $x>z>y$. There are coprime positive integers u, v of opposite parity such that

$$
x=u^{2}-v^{2}+2 u v, \quad y=\left|u^{2}-v^{2}-2 u v\right|, \quad z=u^{2}+v^{2} .
$$

Proof. By looking at the residues modulo 4 we see that x, y, z must all be odd. We can now rewrite equation (2.1) as

$$
\left(\frac{x+y}{2}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}=z^{2}
$$

and apply the familiar parametric representation of Pythagorean triples.
Let $W \subset \mathbb{N}^{2}$ be the set of pairs (u, v) which generate a triplet (x, y, z) in the representation described in Lemma 4 such that x, y, z consist exclusively of primes $p \equiv 1(\bmod 8)$.

Lemma 5.

$$
\left|W \cap[1, N]^{2}\right|=O\left(N^{2}(\log N)^{-3 / 2}\right)
$$

Proof. For a fixed value of u write

$$
W_{u}=\{v: 1 \leq v \leq N,(u, v) \in W\} .
$$

First we estimate $\left|W_{u}\right|$.
Let p be an odd prime, $p \not \equiv 1,3(\bmod 8)$. We show that certain residue classes modulo p are missing from W_{u}.

If $p \mid u$, then the class of 0 is missing by coprimality and we cannot claim anything more.

Assume now $p \nmid u, p \equiv 5(\bmod 8)$. Let i be the solution of the congruence

$$
i^{2} \equiv-1(\bmod p)
$$

The assumption that $p \nmid z=u^{2}+v^{2}$ can be rewritten as

$$
v \not \equiv \pm i u(\bmod p),
$$

which yields two excluded residue classes.
Assume next $p \nmid u, p \equiv 7(\bmod 8)$. Let i be the solution of the congruence

$$
i^{2} \equiv 2(\bmod p) .
$$

The assumption that

$$
p \nmid x=u^{2}-v^{2}+2 u v=2 u^{2}-(u-v)^{2}
$$

can be rewritten as

$$
v \not \equiv(\pm i+1) u(\bmod p),
$$

which yields two excluded residue classes.
The assumption that

$$
p \nmid \pm y=u^{2}-v^{2}-2 u v=2 u^{2}-(u+v)^{2}
$$

can be rewritten as

$$
v \not \equiv(\pm i-1) u(\bmod p),
$$

and it yields another two excluded residue classes. It is easily seen that these four classes are distinct, so altogether we have four excluded classes.

By a familiar sieve estimate (e.g. Theorem 2.2 in Halberstam and Richert's book [2]) we obtain

$$
\begin{aligned}
& \left|W_{u}\right|<c_{1} N \prod_{p \mid u}\left(1-\frac{1}{p}\right) \prod_{p \nmid u, p \equiv 5(\bmod 8), p<\sqrt{N}}\left(1-\frac{2}{p}\right) \\
& \quad \times \prod_{p \nmid u, p \equiv 7(\bmod 8), p<\sqrt{N}}\left(1-\frac{4}{p}\right) \\
& \leq c_{1} N f(u) \prod_{p \equiv 5(\bmod 8), p<\sqrt{N}}\left(1-\frac{2}{p}\right) \prod_{p \equiv 7(\bmod 8), p<\sqrt{N}}\left(1-\frac{4}{p}\right),
\end{aligned}
$$

where

$$
f(u)=\prod_{p \mid u, p \equiv 5(\bmod 8)} \frac{p-1}{p-2} \prod_{p \mid u, p \equiv 7(\bmod 8)} \frac{p-1}{p-4} .
$$

By using Dirichlet's classical estimate

$$
\sum_{p \leq x, p \equiv j(\bmod 8)} \frac{1}{p}=\frac{1}{4} \log \log x+O(1)
$$

for $j=5$ and 7 we get

$$
\left|W_{u}\right|<c_{2} f(u) N(\log N)^{-3 / 2} .
$$

Our function $f(u)$ is unbounded, but it is bounded in mean:

$$
\sum_{u \leq N} f(u)<c_{3} N .
$$

Estimates for sums of multiplicative functions that include the above one can be found in many places, for instance Corollary 5.1 in Tenenbaum's book [6. This implies the claim of the lemma.

Lemma 6.

$$
\sum_{(u, v) \in W} \frac{1}{u^{2}+v^{2}}<\infty
$$

Proof. This follows from the previous lemma by partial summation.
Lemma 7. Let V be a set of positive integers and let B be the set of those positive integers that are not divisible by any element of V. The set B has an asymptotic density and it is at least

$$
\prod_{v \in V}\left(1-\frac{1}{v}\right)
$$

This is the Heilbronn-Rohrbach inequality (see e.g. [3]).
Proof of the Theorem. Let B be the set of integers which are not divisible by any number of the form $u^{2}+v^{2},(u, v) \in W$. By the previous lemma this set has a positive asymptotic density, say c_{3}. Now put

$$
A_{k}=\{n \in B: n \leq N, \rho(n)=k\}
$$

with a suitable k. We claim that
(i) equation (2.1) has no nontrivial solution in any A_{k},
(ii) for a suitable k (depending on N) we have

$$
\left|A_{k}\right|>c N / \sqrt{\log \log N}
$$

These claims together clearly imply the Theorem.
For claim (i), suppose on the contrary that there is a solution x, y, z with stem $x^{\prime}, y^{\prime}, z^{\prime}$. By Lemma 3 these latter three integers consist only of primes $\equiv 1(\bmod 8)$. Hence they are generated by some $(u, v) \in W$ and we would have

$$
u^{2}+v^{2}=z^{\prime} \mid z \in A_{k} \subset B
$$

a contradiction with the definition of B.
To show claim (ii), recall that the Turán-Kubilius inequality tells us

$$
\sum_{n=1}^{N}(\rho(n)-m)^{2}<c_{4} N \sum_{p^{k} \leq N} p^{-k} \rho\left(p^{k}\right)^{2}<c_{5} N \log \log N
$$

where

$$
m=\sum_{p \leq N} \rho(p) / p
$$

In particular, with a well-chosen c_{6} there are $<\left(c_{3} / 2\right) N$ integers up to N such that

$$
|\rho(n)-m| \geq c_{6} \sqrt{\log \log N}
$$

Omit these from B; the rest still has $>\left(c_{3} / 2\right) N$ elements up to N, and for some of the at most $2 c_{6} \sqrt{\log \log N}$ possible values of $\rho(n)$ at least one will appear $c N / \sqrt{\log \log N}$ times.
3. Concluding remarks. Besides three-term progressions, characterized by the equation $x+y=2 z$, one can consider the more general arith-metic-mean equation

$$
x_{1}+\cdots+x_{k}=k y
$$

Let $Q_{k}(N)$ denote the maximal cardinality of sets $A \subset\left\{1^{2}, 2^{2}, \ldots, N^{2}\right\}$ which do not contain any nontrivial solution of this equation (so that $Q(N)$ $=Q_{2}(N)$). It is not difficult (though not quite obvious) to show $Q_{k}(N)=$ $o(N)$ for $k \geq 6$. Ben Green outlined to the authors a method that would prove this claim for $k=4$, with the possibility of giving an effective estimate. This seems to be a limit to analytic methods.

It is not easy to estimate this quantity from below either. Let $R_{k}(N)$ denote the maximal cardinality of sets $A \subset[1, N]$ which do not contain any nontrivial solution of this equation. By a general theorem of Komlós, Sulyok and Szemerédi [4] (see also [5]) we know that $Q_{k}(n) \gtrsim R_{k}(n)$. The best known lower estimate of $R_{k}(N)$ is

$$
R_{k}(N) \gtrsim N \exp \left(-c_{k} \sqrt{\log N}\right)
$$

Behrend's bound [1] with obvious changes. Can one do any better?
Problem. Is

$$
Q_{3}(N) \gtrsim N(\log N)^{-c}
$$

with some constant c ?
While it is unlikely that the asymptotic behaviour of these quantities will be known in the near future, still it may be possible to compare them.

Problem. Given an integer $k \geq 2$, is there another integer l such that

$$
Q_{l}(N) \lesssim R_{k}(N) ?
$$

Acknowledgements. The authors were supported by ERC-AdG grant no. 228005 and Hungarian National Foundation for Scientific Research (OTKA) grants no. K67676, K72731, K81658 and PD72264.

References

[1] F. A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Acad. Sci. USA 32 (1946), 331-332.
[2] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[3] H. Halberstam and K. F. Roth, Sequences, Clarendon Press, Oxford, 1966; 2nd ed., Springer, New York, 1983.
[4] J. Komlós, M. Sulyok and E. Szemerédi, Linear problems in combinatorial number theory, Acta Math. Acad. Sci. Hungar. 26 (1975), 113-121.
[5] I. Z. Ruzsa, Solving a linear equation in a set of integers II, Acta Arith. 72 (1995), 385-397.
[6] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, Cambridge, 1995.

Katalin Gyarmati
Algebra and Number Theory Department
Eötvös Loránd University
H-1117 Budapest, Hungary
E-mail: gykati@cs.elte.hu

Imre Z. Ruzsa
Alfréd Rényi Institute of Mathematics Pf. 127, H-1364 Budapest, Hungary

E-mail: ruzsa@renyi.hu

Received on 23.7.2011
and in revised form on 24.2.2012

[^0]: 2010 Mathematics Subject Classification: Primary 11B50, 11B75, 11P70.
 Key words and phrases: arithmetic progression.

