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1. Schinzel’s problem and our particular case. For f, g ∈ C[x],
Schinzel’s problem was to describe those cases when

(1.1) f(x)− g(y) factors nontrivially as a polynomial in two variables.

The topic is in [Sc71]; [Fr11] has many relevant references. With K a
number field, let OK be its ring of integers, ppp a prime ideal of OK , and OK/ppp
its residue class field. Davenport’s problem considered when, nontrivially,

(1.2) the ranges of f and g are identical on almost all OK/ppp.

The most trivial cases are where g(x) = f(ax + b) for some a, b ∈ Q̄,
the algebraic numbers. When K = Q, mostly that relation forces a, b∈K.
For example this holds when f is indecomposable (not a composite of lower
degree polynomials). With the indecomposability assumption, solutions to
Davenport’s and Schinzel’s problems were essentially the same (solved in
[Fr73, Thm. 1]; see [Fr11, Thm. 4.1]).

Cases where a, b are not in K are important to Davenport’s problem, but
not to Schinzel’s. Though Schinzel’s problem is our main focus, in §2.4 the
indecomposable case reappears in Prob. 1.3, our case of Schinzel’s problem.
The dihedral group, Dn, with n even, the example of §1.3, will aid a reader
unaccustomed to branch cycles. Compare our goals with the §1.4 conjecture.

1.1. Branch cycles. We start by assuming f = f1◦f2, and deg(fi) > 1,
i = 1, 2: f decomposes. For Schinzel’s problem (1.1) consider these extensions
of what is a trivial relation between f and g (allowing a switch of f and g):
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(1.3a) Composition reducibility: f1(x)− g(y) factors.
(1.3b) A particular case of composition reducibility: g = f1 ◦ g2.

[Fr87, Def. 2.1] calls an example of (1.1) newly reducible—nontriviality for
Schinzel’s problem—if the composite reducibility (1.3a) does not hold. We
call the corresponding (f, g) a Schinzel pair.

We here consider the problem left by R. Avanzi and U. Zannier [AZ03],
and the seconnd author [Gu10]. Consider those f for which there is a g =
α ◦ f , with α ∈ PGL2(C), satisfying an essential condition for possible
Schinzel pairs: The Galois closures of the covers f, g : P1

x → P1
z are the

same. Then, from those find (f, g) that are Schinzel pairs.

Let P1
z be the Riemann sphere, uniformized by the variable z. Any ra-

tional function f ∈ C(x) gives an analytic map (a cover) P1
x → P1

z. If the
degree of f is n, then branch points of f are the values of z over which there
are fewer than n distinct points. For example, z = ∞ is a branch point of
any polynomial f ∈ C[x] with deg(f) > 1, because only ∞ lies over ∞. We
denote the branch points of f by zzzf = {z1, . . . , zr}.

Refer to fX : X → P1
z, a compact Riemann surface cover, as Galois if the

automorphisms that commute with fX have cardinality deg(fX). We often
simplify fX to f if there will be no misunderstanding. The Galois closure
of f is the smallest Galois cover, f̂ : X̂ → P1

z, that factors through f . It

always exists. The group of automorphisms, Gf , of X̂ commuting with f̂ is
the (geometric) monodromy group of f .

The Galois correspondence associates to the cover fX a (faithful) coset
(or permutation) representation Tf : Gf → Sn. We labelG(Tf , 1) a subgroup
(up to conjugation by Gf ) defining the cosets. These are the elements of Gf
that fix the integer 1 in the representation Tf . Similarly, any cover f ′ :

X ′ → P1
z through which f̂ factors corresponds to a coset representation

(possibly not faithful) of Gf .

Whatever the branch points zzz, for any cover f : X → P1
z of compact

Riemann surfaces, these produce conjugacy classes C = C1, . . . ,Cr in the
geometric monodromy Gf ≤ Sn. Denote P1

z \ {zzz} by Uzzz. [Fr11, §5.3.2] ex-
plains using classical generators of the fundamental group of Uzzz. These
figure in why you can select respective representatives σi ∈ Ci, i = 1, . . . , r,
to have these properties:

(1.4a) Generation: 〈σi | i = 1, . . . , r〉 = Gf := G ≤ Sn.
(1.4b) Product-one: σ1 · · ·σr = 1.

For fixed C, the set of σσσ satisfying (1.4) is the Nielsen class, Ni(G,C), of
(G,C). Equivalences on Nielsen classes correspond to equivalences between
covers.
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To get started we need only one: absolute equivalence. That means you
mod out on Nielsen classes by the action of the subgroup of Sn, NSn(G,C),
that normalizes G and permutes (with multiplicity) the conjugacy classes
in C. The absolute equivalence class of σσσ ∈ Ni(G,C) is

{ασσσα−1 | α ∈ NSn(G,C)}.
Denote these equivalence classes, running over σσσ ∈ Ni(G,C), by Ni(G,C)abs.

The index, ind(σ), of a permutation σ ∈ Sn is just n minus the number
of disjoint cycles in the permutation. Example: an n-cycle in Sn has index
n− 1, and an involution has index equal to the number of disjoint 2-cycles
in it. The genus, gX , of X given by fX with branch cycles in a given Nielsen
class is well defined. The Riemann–Hurwitz formula says

(1.5) 2(n+ gX − 1) =
r∑
i=1

ind(σi).

Two covers fi : Xi → P1
z are in the same absolute class if there is a

continuous (1-1) map ψ : X1 → X2 so that f1 = f2 ◦ ψ.
Further, the disjoint cycles of σi correspond to points of X lying over zi.

A disjoint cycle length is the ramification index of the point over zi. An
r-tuple, σσσ, satisfying (1.4) is a branch cycle description of f . [Fr11, App. A]
explains classical generators of the fundamental group of Uzzz and how from
them you get the following.

Proposition 1.1. There is a 1-1 correspondence between elements of
Ni(G,C)abs and absolute equivalence classes of covers f : X → P1

z in the
Nielsen class, with any fixed set of r distinct branch points zzz.

We refer to Prop. 1.1 as R(iemann’s)E(xistence)T(heorem) or RET. §2.1
uses special classical generators that work for our particular problem.

1.2. Reduced Galois equivalence. Denote the functions x 7→ ax+ b,
a ∈ C∗, b ∈ C, by A(C). If f, g ∈ C[x], and g(x) = α ◦ f ◦ β(x) (resp. f ◦ β),
α, β ∈ A(C), we say f and g are reduced (resp. affine) equivalent. Call
f ∈ C[x] cyclic if f is reduced equivalent to xdeg(f). Consider the following
for (f, g) reduced, but not affine equivalent:

(1.6a) f is not cyclic and f, g : P1
x → P1

z have the same Galois closures.
(1.6b) f is not a composition of some polynomial with a nontrivial cyclic

polynomial and f(x)− g(y) is newly reducible.

We say the polynomials f and g satisfying (1.6a) are reduced Galois
equivalent. With slight modification, the name makes sense for any pair of
covers f : Xf → P1

z, g : Xf → P1
z, if they have the same Galois closure covers.

As in §1.1 let Gf (Tf , 1) and Gf (Tg, 1) be the subgroups of Gf corresponding
to the covers f and g.
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For a cover represented by a noncyclic polynomial, there is a unique
branch cycle, σ∞ (attached to z = ∞), that has exactly one disjoint cycle
(of length n).

Proposition 1.2. If either of (1.6) holds, then translating f by a con-
stant, we may assume a = ζv = e2πi/v, v 6= 1, and that g = ζvf . Then a
acts as a permutation ua of the finite branch points of f .

If (1.6a) holds, then z 7→ az + b gives a cyclic cover µ : P1
z → P1

u with

group 〈a∗〉 = Z/v where the following holds: The composite covers µ ◦ f̂ and
µ◦ĝ are also the same and Galois. If σ∗∞ ∈ Gµ◦f̂ is a branch cycle over∞ for

µ ◦ f̂ , then we can take its natural image in 〈a∗〉 to be a∗, and σ∞ = (σ∗∞)v.

Denote by cAZ conjugation by σ∗∞. It has trivial action on σ∞ and no el-
ement of Sn represents cAZ. Up to conjugacy in Gf we can choose cAZ

to take Gf (Tf , 1) to Gf (Tg, 1). Identify Gµ◦f̂ with the union of Gf cosets⋃v−1
j=0(σ∗∞)jGf (Rem. 1.4).

About the proof of Proposition 1.2. This is a special case of [Fr11, Prop.
7.28]. It stems from [Fr73, Prop. 2], which says—under the newly reducible
assumption—that the Galois closures of f and g are the same. This general
result has no dependence on the form of f and g, except that their fiber
product is newly reducible. Since their Galois closures are the same, their
branch points are also identical.

As σ∞ is a power of σ∗∞, cAZ acts trivially on it. Since σ∗∞ normalizes
Gf , it might be in NSn(Gf ). Yet, as it centralizes σ∞, it would have to
be a power of σ∞ (for the calculation see [Fr70, Step 1, proof of Lem. 9]),
contrary to it having order v · n.

The covers f and g correspond to representations of G on cosets of
Gf (Tf , 1) and Gf (Tg, 1). They are conjugate in Gf if and only if f and g are
absolutely equivalent covers: the same as f and g being affine equivalent.
By assumption they are not. So no element of Sn represents cAZ. Choose
the conjugates Gf (Tf , 1) and Gf (Tg, 1) so that σ∗∞ conjugates one to the
other.

Problem 1.3. Characterize branch cycles σσσ (covers fX) satisfying either
of (1.6). For polynomials this includes gX = 0, but it makes sense without
restricting gX .

Remark 1.4 (cAZ leaves C invariant). The covers f and g in Prop. 1.2
have the same Galois closures. So, cAZ must permute the conjugacy classes
in C—preserving multiplicity—just like the elements of NSn(G,C).

Once we have identified the operator cAZ as in §1.3 or §2, we can form
Gµ◦f̂ by taking a formal element σ∗, and forming the union of the left cosets
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of Gf . Multiplying coset elements comes from this formula for σ′, σ′′ ∈ Gf :

(σ∗∞)j
′
σ′(σ∗∞)j

′′
σ′′ = (σ∗∞)j

′+j′′c−j
′′

AZ (σ′)σ′′.

Example 1.5. For f ∈ C[x] and a = −1 in Prop. 1.2, f and −f define
absolutely equivalent covers if and only if f is affine equivalent to an odd
f∗: f∗(−x) = −f∗(x). That happens for odd degree in the general case of
§1.3. Define the nth Chebyshev polynomial, Tn, from Tn(cos(θ)) being the
real part of (eiθ)n = eniθ. For n odd, Tn is odd since (−eiθ)n = −(eiθ)n.

1.3. Dihedral example, Dn, n even. Consider the semidirect product

Z/n×s A := An(A) with A ≤ (Z/n)∗.

Regard it as the group of 2× 2 matrices:

(1.7a)
{(

a b
0 1

)
| a ∈ A, b ∈ Z/n

}
. For A = {±1}, denote An(A) by Dn.

(1.7b) Each element of An(A) is a product
(
1 b
0 1

)(
a 0
0 1

)
.

[Fr11, §7.2.1] (entitled “Writing equations”) gives the modern—but discusses
the historical—view of the subgroups of An(A) playing the role of Gµ◦f̂ in

Prop. 1.2. The set of involutions (order 2 elements) in An(A) has the form

In(A) =
{(

a b
0 1

)
| a2 = 1 (a 6= 1) and b(a+ 1) = 0

}
.

Lemma 1.6. Assume 2 |n ≥ 4. Then the distinct conjugacy classes,
C−1,0 and C−1,1, with representations σ1 =

(−1 1
0 1

)
and σ2 =

(−1 0
0 1

)
, com-

prise In({±1}). An automorphism cn({±1}) of Dn is given by(
1 b
0 1

)
7→
(
1 b
0 1

)
and

(−1 b
0 1

)
7→
(−1 b−1

0 1

)
, b ∈ Z/n.

The lemma follows easily by computation, with cn({±1})2 the same as
conjugation by σ∞ =

(−1 −1
0 1

)
. Now with v = 2, ζv = −1, we describe D∗n so

that it fits the conclusion of Prop. 1.2 asGµ◦f . Use σi, i = 1, 2, from Lem. 1.6.
As generators, D∗n has σ1 and σ∗∞, the latter satisfying these conditions:

(1.8)
(σ∗∞)2 = σ∞ (σ∗∞ has order 2n),

(σ∗∞)k
(−1 0

0 1

)
(σ∗∞)−k =

(−1 −k
0 1

)
.

Denote the representation from permutations in (1.9) by Tf . It comes from
acting on (left) cosets of 〈σ2〉. Another representation, Tg, comes from cosets
of 〈σ1〉.

The corresponding cover—given by a degree n Chebyshev polynomial—
appears in Prop. 1.2 with r = 3 and A = {±1}. Assume that 2 |n ≥ 4.
With the elements acting as permutations—from the left—on the integers
{0, 1, . . . , n− 1} modulo n, we have

(1.9)

σ1 = (1 n)(2 n− 1) · · · (n/2 n/2 + 1),

σ2 = (1 n− 1)(2 n− 2) · · · (n/2− 1 n/2 + 1),

σ∞ := σ3 = (1 2 . . . n− 1 n)−1 =
(
1 −1
0 1

)
.
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We now apply RET (Prop. 1.1) to (1.9) to produce a polynomial pair
(f, g) with these properties for any even n ≥ 4:

(1.10a) all irreducible factors of f(x)−g(y) have degree 2; but in this case
(1.10b) (1.1) is newly reducible only for n = 4.

For finite branch points take any pair (z′,−z′). For simplicity we will set
z′ = 1. As in §1.1, f (resp. g) corresponds to the permutation representation
Tf (resp. Tg).

The respective indices of the σi s in (1.9) are n/2, n/2−1, and n−1. Plug
these into (1.5) and conclude that the genus of the cover—call it f—is 0.
Similarly for a cover g from Tg. Now use this characterization: f : X → P1

z is
absolutely equivalent to a polynomial cover if X has genus 0, and precisely
one point lies over z =∞.

RET and the Galois correspondence give the following:

(1.11a) The irreducible factors of f(x)−g(y) correspond 1-1 to the orbits
of G(Tg, 1) in Tf (on the cosets of Dn(Tf , 1)), all length 2.

(1.11b) The representation Tµ◦f corresponding to µ ◦ f : X → P1
u, having

monodromy D∗n, is on the 2n cosets of D∗n(Tf , 1).
(1.11c) Composing cAZ (as in §2.4) in Prop. 1.2 with Tµ◦f is equivalent

to Tµ◦g.

Finally, Dn maps to Dn/2, with a compatible representation on the cosets
of 〈σ1〉. Then f is a composite of degree 2 and n/2 polynomials. When
n/2 = n′ is odd, use Ex. 1.5 to see that the replacement for (1.11) (as in
[Fr11, Lem. 7.4]) has a factor of degree 1, and the rest of degree 2. So, unless
deg(f) = 4, f is not newly reducible.

We use the principle “dragging a cover by its branch points” ([Fr11,
§6.1]) to produce a new cover from f : X → P1

z with the same branch cycles,
but finite branch points placed at any distinct points in C. We require ζv
to permute the finite branch points. Example: for the orbit condition (2.2),

we may assume f has finite branch points ζjv , j = 1, . . . , v. Then µ ◦ f has
branch points 0, 1 and ∞.

Problem 1.7. As in (1.11c), compute branch cycles, σ∗0, σ
∗
1, σ
∗
∞ for µ◦f .

Hints for Problem 1.7. Take the branch cycle for ∞ as σ∗∞ using (3.5).
The shape of the branch cycle for σ∗1 is a product of (n+ n− 2)/2 = n− 1
disjoint 2-cycles, from juxtaposing contributions of σ1 and σ2; and σ∗0 is a
product of n disjoint v-cycles.

The Nielsen class Ni(Dn,C)abs with the three conjugacy classes rep-
resented in (1.9) has six elements, indicated by the order of those conju-
gacy classes in a representing 3-tuple. This is common when r = 3, but for
r ≥ 4, the braid group enters, as used in [Fr11, §6.4] to dramatic effect. So,
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here inspection can produce the desired σ∗0, σ
∗
1, σ
∗
∞ satisfying generation and

product-one in (1.4).

For, however, a general polynomial f with only the knowledge that ua in
Prop. 1.2 permutes the branch points, solving this problem requires classical
generators (as in §2) for the covers f and µ ◦ f , and then a relation between
these as in §3.1.

1.4. The conjecture of [Gu10]. Our tentative conjecture is that §1.3
(with n = 4) gives the only case of Schinzel pairs of the form (f, ζvf). As
the argument of [Fr70, p. 47] shows, this is true if and only if σ∞ generates
a normal subgroup in G.

Precisely: The conjugation σiσ∞σ
−1
i = σk∞ by a finite branch cycle im-

plies σi has the same index as multiplication by k ∈ (Z/n)∗ on Z/n. Possibili-
ties for a genus 0 cover (using (1.5)) show that f is equivalent to a Chebyshev
(or cyclic) polynomial, with well understood branch cycles. Then, the Nielsen
class—according to §1.3—must be Ni(D4,C)abs with C = C−1,0∪C−1,1∪C∞,
as in Lem. 1.6.

2. The group formulation of conditions (1.6). A conclusion from
Prop. 1.2 is that (as in the last hint to Prob. 1.7)

(2.1) zzzf = ζvzzzf = zzzg.

Consider any polynomial f satisfying (2.1), and one further condition:

(2.2) ua has one orbit on finite branch points: r − 1 = v.

That is, zzzf are the vertices of a regular v-gon on a circle around the origin.

§2.1 sets up the procedure for computing branch cycles for ζvf from those
of f . §2.2 then characterizes possible branch cycles when you add (1.6a), the
Galois closure assumption for the pair (f, ζvf). §2.3 notes that we can adjust
the method to handle Prop. 1.2 without condition (2.2).

2.1. The effect of ua on branch cycles when (2.1) holds. Let A0
r−1

consist of all distinct r − 1-tuples in C. Assume (2.2). Then, given branch
cycles for f relative to classical generators of π1(Uzzzf , z0), it makes sense to
compute branch cycles for ζvf relative to the same classical generators.

Since we have assumed that z = 0 is not a branch point, we can use
it as a basepoint, and the paths of the Appendix where r − 1 = 6—listed
as σ̄1, . . . , σ̄r−1, σ̄∞. We can compose a cover f : X → P1

z with any α ∈
PGL2(C). We make an increasing sequence of assumptions, starting with:

(2.3) Suppose α(zzzf ) = zzzf , that is, α permutes the branch points.

We only do the next lemma for the case we use in the rest of the paper,
and with the classical generators σ̄1, . . . , σ̄r = σ̄σσ of the Appendix.
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Lemma 2.1. We can explicitly compute the effect of α on an explicit set
of classical generators to find branch cycles for α ◦ f from branch cycles
for f . Assume α is multiplication by ζv under assumption (2.2) and σσσ are
branch cycles for f relative to σ̄σσ above. Then, relative to σ̄σσ, branch cycles
for ζvf are

(2.4) (σ2, . . . , σr−1, σ1, σ
−1
1 σrσ1).

Proof. Rotation through an angle of 2π/v sends σ̄i to σ̄′i = σ̄i+1, i =
1, . . . , r − 2, and σ̄r−1 to σ̄′r−1 = σ̄1. Similarly, σ̄r (on the meridian halfway
between σ̄r and σ̄1) rotates to the meridian halfway between σ̄1 and σ̄2.

Here is the deal! The branch cycles for α◦f relative to σ̄σσ′ are σσσ, the same
as those for f computed relative to the σ̄1, . . . , σ̄r. Write σ̄1, . . . , σ̄r—up to
isotopy—as words in σ̄′1, . . . , σ̄

′
r. Then, plug σσσ in to get the branch cycles for

α ◦ f . To do that we only need to express σr by the following formula. Up
to isotopy

(2.5) σ̄1σ̄
′
r = σ̄rσ̄1.

Explanation: The left side deforms on Uzzzf —without moving z0, or touching
any points of the paths outside of σ̄r, σ̄1, σ̄

′
r—to a “circle” based at z0 around

z1 and∞. This is homotopic to a deformation of the right side of (2.5) that
does the same.

2.2. Adding the Galois closure condition. Suppose we have (G,C),
with two (faithful) permutation representations Ti : G → Sni , i = 1, 2.
(Our example will have n1 = n2 = n.) Then, we have two absolute Nielsen
classes: Ni(G,C)abs,i, i = 1, 2. Assume, too, we have representative classes

iσσσ ∈ Ni(G,C)abs,i, and, as in Prop. 1.1, these define covers fi : Xi → P1
z,

i = 1, 2, with branch points zzz, relative to specific classical generators.
We must add inner equivalence to absolute equivalence on Nielsen classes

(§1.1), Ni(G,C)in := Ni(G,C)/G, to formulate the criterion that the fi s
have the same Galois closure covers. That is, mod out by just G acting
inside NSn(G,C).

[Fr11, §B.2.1] uses examples to show how absolute and inner classes
relate—starting from the canonical maps ψin,abs : Ni(G,C)in → Ni(G,C)abs

—to the main ingredient of [FV91, Main Thm.]. The following is a natural
addendum.

Proposition 2.2. The covers f1 and f2 have the same Galois closures
if there exists σσσ ∈ Ni(G,C)in for which ψin,abs,i(σσσ) = iσσσ, i = 1, 2. The fol-
lowing characterizes there being a polynomial f in Ni(G,C)abs with g = ζvf
satisfying (1.6a) (Galois closure condition), with branch points zzz satisfying
the one-orbit condition (2.2):

(2.6a) G has an automorphism, conjugation by σ∗∞, as in Prop. 1.2, with



Schinzel covers 35

(2.6b) σσσ ∈ Ni(G,C)abs of genus 0 (à la (1.5)), r−1 = v, and (2.4) holds.

There is an analog for more general orbits of ζv. See §2.3.

We note two points about the §1.3 example. First: We checked separately
that we got reduciblity (for all n). Then, that it gave newly reducible, so a
Schinzel pair (as in (1.6b)) just in the case n = 4. Still, both came directly
from branch cycles. It is easy to generalize those conditions to apply to
Prop. 2.2.

Second: In §1.3 conjugation by σ∗∞ permutes two distinct conjugacy
classes. §2.4 shows we must have something like that to get Schinzel pairs.

2.3. Characterizing the f in Prop. 1.2 in general. Although more
intricate, we can generalize (2.4) to any number of orbits for multiplication
by ζv on branch points. It is possible that with more than one orbit, we might
have the origin as a branch point. We hope to complete the one orbit case
of this paper in a later publication. There we will treat the generalization
of (2.4).

2.4. Equivalent representations. We continue the 2nd observation
at the end of §2.2. Assume in Prop. 1.2 that σ∗∞ = σ∗ satisfies the following
condition:

(2.7) Conjugation, cσ∗ , by σ∗ preserves all conjugacy classes.

Indeed, we aim at generality for future use. Assume a finite group G has an
outer automorphism γ (in place of cσ∗) preserving classes—the conclusion
of (2.7).

Then, Prop. 2.4 shows f could not possibly give new Schinzel pairs.
Applied to the conditions of Prop. 2.2 it does produce a variables separated
factorization f(x)−g(y), but this is not newly reducible: (1.3a) holds. It still
may contribute to Davenport’s problem (1.2) where, if the range values are
assumed with the same multiplicities, the representations Tf and Tg satisfy
the conclusion of Lem. 2.3.

Applying any automorphism γ to any permutation representation T :
G→ Sn sends it to another representation:

Tγ : σ 7→ T ◦ γ(σ), σ ∈ G.
Denote the stabilizer of an integer in T by G(T, 1) and the number of fixed
integers of T (σ) by tr(T (σ)), its trace.

Lemma 2.3. Consider a representation T : G→ Sn. Assume γ preserves
classes. Then tr(T (σ)) = tr(Tγ(σ)) for all σ ∈ G.

Proof. We are comparing the cosets of G(T, 1) fixed by σ (multiplying
on the left) with the cosets fixed by γ(σ). Since conjugation by γ preserves
the conjugacy class of σ, we see that γ(σ) = σ′σ(σ′)−1 for some σ′ ∈ G.
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The fixed cosets of σ′σ(σ′)−1 are the same as the fixed cosets of σ on the
conjugates of those cosets by σ′. But, if T (σ′)(1) = k, then σ′ conjugates
those cosets to the cosets of G(T, k). Now, σ fixes exactly the same number
of G(T, 1) cosets as it fixes of G(T, k) cosets. We are done.

Suppose we start with a fixed faithful transitive permutation represen-
tation Tf , coming from a cover of nonsingular curves f : Xf → Y (over C).
Apply the Galois correspondence. It gives a 1-1 correspondence between
(nonsingular) covers f ′ : X ′ → Y through which f factors, up to absolute
equivalence, and groups G(T, 1) ≤ G′ ≤ G. Each G′ corresponds to a sys-
tem of imprimitivity of the permutation representation. This generalizes the
notion of composition factors of a polynomial (or rational function).

Proposition 2.4. Assume γ and T as above, with g : Xg → Y cor-
responding to Tγ. Then the (normalization of the) fiber product Xf ×Y Xg

is reducible. This applies to the permutation representation T ′ attached to
any G′ with G(T, 1) < G′ < G. In particular, if T is not primitive, then
Xf ×Y Xg is not newly reducible.

So, if (f, g) is a polynomial pair from Prop. 1.2, with G = Gf , γ = cσ∗∞,
then f(x)− g(y) is reducible (as in (1.1)), but not newly reducible.

Proof. [Fr11, §2.3] discusses Galois theory and fiber products. Including
that we naturally form the Galois closure of a degree n cover from a compo-
nent of the fiber product of the cover with itself, taken n times. Thus, the
two topics go together: use of normalization (which for curves means the re-
sults are nonsingular), and how this generalizes the case of two polynomials
(f, g) as in the last statement.

This paper’s case (over the complexes) is easier than in [Fr11], over any
characteristic zero field. The point is to have Galois theory turn statements
relating two covers into statements comparing two permutation representa-
tions. For example, consider this statement: Xf ×Y Xg is reducible, which
[Fr11, §2.1] shows generalizes saying (1.1). The translation is that

(2.8) Gf (Tg, 1) has more than one orbit in the representation Tf .

This exactly generalizes (1.11a) in §1.3, except we computed directly that
all orbits there had length 2 (for n > 2). Here, a short argument from group
theory applies: [Fr73, Lem. 3] and assiduously redone in [Fr11, Rem. 4.3],
titled “Davenport without f indecomposable.” It says (2.8) follows from the
weaker condition

(2.9) tr(Tf (σ)) > 0 if and only if tr(Tg(σ)) > 0 for all σ ∈ G.

Similarly, consider how we figured that only for n = 4 would the §1.3 ex-
ample be newly reducible. In our general case we assumed T is not primitive.
So, there is a representation T ′ on the cosets of a group properly between
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G(T, 1) and G. According to Lem. 2.3, this produces the two representations
T ′ and T ′γ to which we can apply the reducibility result above. We only need,
in the last sentence, where (f, g) are polynomials, the fact that f decom-
poses under the hypotheses of Prop. 1.2. This is in the paragraphs above
[Fr11, Rem. 7.7, at the end of §7.2.3] (called “Ritt I”) where we revamped
how [AZ03] treated the indecomposable case.

3. Searching for (G,C) that give Schinzel pairs. These short com-
ments suggest tools for dealing with what remains unsolved here, or with
related problems. §3.1 and §3.2 are additions to the wreath product com-
ments of [Fr11, §7.2.4]. §3.2 focuses on our main case: Gµ = Z/v.

3.1. Comments on [Ba02]. Suppose we have any sequence of covers

X
f−→ P1

x
µ−→ P1

u.

[BF86] and [Tr93] provide results for more general problems where the target
of f is not necessarily genus 0. Simplifying, however, for our special case is
the work of [Ba02, Chap. V], called “Nielsen graphs.”

(3.1) From branch cycles for µ ◦ f (relative to its base’s classical genera-
tors), we can compute branch cycles for f .

In the other direction, branch cycles for f and µ give information on
branch cycles for µ ◦ f . We naturally identify the monodromy group Gµ◦f
with a subgroup of the wreath product Gf oGµ of Gf and Gµ, a completely
general statement.

For general µ of degree v, Gf o Gµ is naturally the semidirect product
(Gf )v×sGµ. Suppose Gµ ≤ Sv. Denote the ith copy of Gf in (Gf )v by Gf,i,
i = 1, . . . , v. Then, here is the action of γ ∈ Gµ:

(σ1, . . . , σv) ∈ (Gf )v 7→ (σ(1)γ , . . . , σ(v)γ).

It permutes the coordinates of (Gf )v according to the permutation effect
of γ.

Suppose f and µ are both polynomial covers. By [Fr70, Lem. 15], Gµ◦f
will be the full wreath product under the following conditions:

(3.2) The images of the finite branch points of f under µ are all distinct
and also distinct from the (finite) branch points of µ.

If the conditions of [Fr70, Lem. 15] do not hold, then Gµ◦f may be a
proper subgroup of Gf oGµ, but still satisfying these conditions:

(3.3) Gµ◦f maps surjectively onto Gµ, and its intersection with (Gf )v

projects surjectively onto each Gf,i, i = 1, . . . , v.
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3.2. The case Gµ = Z/v. To simplify notation we use a superscript
∗-notation for elements in Gµ◦f := G∗. Our basic assumptions will be:

(3.4a) µ(z) = zv is a cyclic cover of degree v > 1.
(3.4b) f is in a genus 0 Nielsen class, totally ramified over z =∞.
(3.4c) the finite branch points of f fall into s orbits of (exact) length v

under multiplication by e2πi/v.

From (3.4c), C has r − 1 = s · v conjugacy classes in it corresponding to
finite branch points. From (3.4a), the branch points in each e2πi/v orbit go
to the same value of u under µ. Finally, from (3.4b), µ ◦ f totally ramifies
over ∞, corresponding to a branch cycle σ∗∞ that has order n · v = n∗.

A description of branch cycles for the cover µ ◦ f includes a branch
cycle at ∞, given by an n · v-cycle σ∗. We now set up notation for σ∗.
Identify v copies of {1, . . . , n} as {1i, . . . , ni}, the integers on which Gf,i acts,
i = 1, . . . , v. With no loss of generality, up to renaming the letters—using
the fact that (σ∗∞)v = σ∞—we can take σ∗∞ as

(3.5) (11 12 . . . 1d 21 . . . 2d . . . n− 11 . . . n− 1d n1 . . . nd).

Then σ∞ generates the intersection of 〈σ∗∞〉 with (Gf )v.

In our situation, as in Prop. 1.2, the actual Gµ◦f̂ := Gf∗ is the smallest

subgroup of the full wreath product, Gf o Z/v = (Gf )v ×s Z/v, satisfying
the wreath conditions (3.3).

3.3. New nonpolynomial Schinzel pairs. Prop. 2.4 produces general
fiber products of covers that may not have genus 0. With its extra hypothe-
sis, however, these are not newly reducible. To expand our understanding of
Schinzel pairs we might drop the condition they come from polynomials or
even that they come from genus 0 covers. Yet, they produce new fiber prod-
ucts, from a pair of covers f : X → P1

z and g = ζvf , for which f(x) − g(y)
is newly reducible.

Ex. 3.1 uses genus 0 covers, given by rational functions, rather than
polynomials. Again v = 2, but ζ2 = −1 has two orbits on four finite branch
points.

Example 3.1. Here r = 4. Use the “dragging a cover by its branch
points” principle of §1.3 to place the branch points at −1, −2, +2, +1 to cor-
respond to branch cycles (σ1, σ2, σ2, σ1) as given in (1.9). The Nielsen class
here contains the two conjugacy classes labeled C−1,0,C−1,1, both twice, but
it does not include an n-cycle. The group is still Dn; the Galois closure has
genus 1 (not 0 as in §1.3).

Many—as a function of n—covers in the Nielsen class correspond to
different branch cycles. Yet, only two give a g = −f with the same Galois
closure. To be precise we must give classical generators replacing those of
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the Appendix. They are almost the same “lolly-pop” paths from the origin
through −1, −2, +2, +1 except that you cannot allow the lolly-pop that
passes around −2 to go through −1. Instead, take a little blip to the right
around −1 before continuing onto the rest of the lolly-pop. Similarly for the
lolly-pop through +2, a little blip to the left around +1.

Now we suggest how to get new groups, but with covers of genus > 0.

Problem 3.2. Extend the automorphism cn of Lem. 1.6 to other sub-
groups of A(n) to produce new, newly reducible fiber products analogous to
the case of n = 4 of §1.3.

Appendix. Regular polygon classical generators. The paths
δiσ
∗
i δ
−1
i (including that with subscript r = ∞, going around ∞) in Fig. 1

satisfy all the conditions of classical generators based at z0 = 0. Our no-
tation is compatible with that of [Fr11, App. B.1], except we here use very
regular paths, with punctures (except at ∞) arranged on a regular 6-gon.

↖
δ1

δ2↑

←δ∞

←σ∗1

σ∗2
↗

σ∗6
↗

σ∗∞
↗

0

z1

z2

z3z4

z5

z6

∞

Fig. 1. r = 7, with 6 branch points on a regular polygon
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