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1. Introduction. Ostmann [15] introduced the following definitions:

Definition 1.1. If C is a finite or infinite set of non-negative integers,
then it is said to be reducible if there are sets A, B of non-negative integers
with

(1.1) A+ B = C, |A|, |B| ≥ 2.

If there are no sets A, B with these properties, then C is said to be primitive.

Definition 1.2. Two sets A, B of non-negative integers are said to
be asymptotically equal if they are equal apart from a finite number of
exceptions, i.e., there is a number K such that

A ∩ [K,+∞) = B ∩ [K,+∞);

we then write A ∼ B.

Definition 1.3. An infinite set C of non-negative integers is said to be
totalprimitive if every C′ with C′ ∼ C is primitive.

Ostmann formulated the following conjecture:

Conjecture 1.4 (Ostmann [15]). The set P of prime numbers is total-
primitive.

Partial results in this direction have been proved by Hornfeck [14], Hof-
mann and Wolke [13], Elsholtz [4]–[6] and Puchta [16] (but Conjecture 1.4
is still unproved). In these papers the counting functions of sets A, B with
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A + B ∼ P (if there are such A, B at all) have been estimated, and using
estimates of this type Elsholtz also proved:

Theorem A (Elsholtz [5]). If P ′ ∼ P, then there are no sets A, B, C
of non-negative integers with

A+ B + C = P ′, |A|, |B|, |C| ≥ 2.

It is trivial that the set N = {12, 22, 32, . . . } of all squares is totalprimi-
tive (this follows from the fact that the limit of the gaps between the consec-
utive squares is infinite). Erdős conjectured that every set N ′ which can be
obtained from N by changing only o(x1/2) elements of it up to x is also total-
primitive. Sárközy and Szemerédi [19] have proved a slightly weaker result:

all the sets N ′ obtained by changing only o
(
x1/2 exp

(
−c log x

log log x

))
elements

of N up to x are totalprimitive.
One might wish to study the finite analogues of these problems. The most

natural question of this type is to consider the set of quadratic residues in Fp

and to look for additive decompositions of it. (We will identify Fp with the
set of residue classes modulo p and, as is customary, we will not distinguish
between residue classes and the integers representing them.)

Clearly, the definitions of reducibility and primitivity can be extended
to any additive group, thus the reducibility and primitivity of sets of residue
classes (or residues) modulo p can be defined in the same way as in Defini-
tion 1.1. We will also use the following terminology:

Definition 1.5. If A1, . . . ,Ak ⊂ Fp,

(1.2) A1 + · · ·+Ak = B
and

(1.3) |A1|, . . . , |Ak| ≥ 2,

then (1.2) will be called an (additive) k-decomposition of B; a k-decomposi-
tion will always mean a non-trivial one, that is, a decomposition satisfy-
ing (1.3). (Here we will be interested in 2-decompositions and 3-decomposi-
tions only.)

On the other hand, clearly the definition of totalprimitivity cannot be
adapted to finite sets, thus we will not use it.

There are many papers on the connection of sumsets and quadratic
residues [1]–[3], [7]–[9], [11], [12], [17]. A further problem of this type is
to study the reducibility of the set of quadratic residues modulo p. The
following conjecture seems to be very plausible:

Conjecture 1.6. Let p be a prime number and let Q = Q(p) denote
the set of quadratic residues modulo p. If p is large enough, then Q = Q(p)
is primitive, i.e., it has no (non-trivial) 2-decomposition.
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(Note that Q is a “large”, “dense” subset of Fp which makes this problem
very different from the case of squares mentioned above.) This paper is
devoted to the study of this problem. Here the situation is similar to the
case of Ostmann’s conjecture: Conjecture 1.6 seems to be beyond reach at
present. On the other hand, one can prove partial results similar to the
ones proved in the case of Ostmann’s conjecture. First in Section 2 we will
estimate the cardinalities of the subsets A, B occurring in a (non-trivial)
2-decomposition A + B = Q (if there is any). Then in Section 3 we will
apply these results to prove the Elsholtz-type result that Q has no (non-
trivial) 3-decomposition. (While here the nature of the results is similar to
the ones proved in connection with Ostmann’s conjecture, the methods used
are completely different: there sieve methods, in particular, the large sieve
and Gallagher’s larger sieve are used, while here Weil’s theorem will be the
crucial tool and we will also apply a theorem of Ruzsa.)

2. 2-decompositions of Q. We will prove

Theorem 2.1. If p is a prime large enough and

(2.1) U + V = Q
is a (non-trivial) 2-decomposition of Q = Q(p), then

min{|U|, |V|} > 1

3

p1/2

log p
,(2.2)

max{|U|, |V|} < p1/2 log p.(2.3)

Proof. We may assume that

(2.4) (2 ≤) |U| ≤ |V|.
Let

(2.5) U = {u1, . . . , uk} with 0 ≤ u1 < · · · < uk < p,

for i = 1, . . . , k define u′i by u′i = ui − u1 and let

U ′ = {u′1, . . . , u′k} (= U − {u1})
where u′1 = 0, and set

V ′ = V + {u1}.
Then clearly (2.1) also holds with U ′ and V ′ in place of U and V, and we
have |U ′| = |U|, |V ′| = |V| and 0 ∈ U ′; thus it suffices to prove the theorem
when we have

(2.6) u1 = 0

in (2.5).
By (2.4) and (2.5) we have

(2.7) 2 ≤ |U| = k ≤ |V|.
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Now we will prove several lemmas.

Lemma 2.2. With the notation and assumptions above we have

(2.8) k 6= 2.

Proof. Assume that contrary to (2.8) we have

(2.9) k = 2.

Then by (2.1) and (2.6),

(2.10) {0, u2}+ V = Q.

Let γ denote the quadratic character of Fp so that

γ(n) =


(
n

p

)
for n 6= 0,

0 for n = 0

(
(
n
p

)
denotes the Legendre symbol). We will prove that there is a

(2.11) q ∈ Q

with

γ(q + u2) = −1,(2.12)

γ(q − u2) = −1.(2.13)

Let R denote the set of q’s satisfying (2.11)–(2.13), and write

f(x) = (γ(x) + 1)(γ(x+ u2)− 1)(γ(x− u2)− 1).

Then clearly

f(x) = 8 for x ∈ R,(2.14)

f(x) = 0 for x /∈ R, x(x+ u2)(x− u2) 6= 0,(2.15)

|f(x)| ≤ 4 for x /∈ R, x(x+ u2)(x− u2) = 0(2.16)

and

(2.17) |{x : x ∈ Fp, x(x+ u2)(x− u2) = 0}| ≤ 3.

It follows from (2.14)–(2.17) that∣∣∣∣18 ∑
x∈Fp

f(x)

∣∣∣∣ =

∣∣∣∣18 ∑
x∈R

f(x) +
1

8

∑
x∈Fp\R

f(x)

∣∣∣∣(2.18)

=

∣∣∣∣|R|+ 1

8

∑
x∈Fp\R

x(x+u2)(x−u2)=0

f(x)

∣∣∣∣
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≤ |R|+ 1

8

∑
x∈Fp\R

x(x+u2)(x−u2)=0

|f(x)|

≤ |R|+ 1

2

∣∣{x : x ∈ Fp, x(x+ u2)(x− u2) = 0}
∣∣ ≤ |R|+ 3

2
.

On the other hand, by using the multiplicativity of γ we get

1

8

∑
x∈Fp

f(x) =
1

8

∑
x∈Fp

(γ(x) + 1)(γ(x+ u2)− 1)(γ(x− u2)− 1)(2.19)

=
1

8
p+

1

8

7∑
i=1

εi
∑
x∈Fp

γ(fi(x))

where ε1 = ε4 = ε7 = +1, ε2 = ε3 = ε5 = ε6 = −1, and f1(x), . . . , f7(x)
denote the polynomials

(2.20)
x, x+u2, x−u2, (x+u2)(x−u2), x(x−u2), x(x+u2), x(x+u2)(x−u2).
It follows from (2.19) that

(2.21)

∣∣∣∣18 ∑
x∈Fp

f(x)

∣∣∣∣ ≥ 1

8
p− 1

8

7∑
i=1

∣∣∣∣∑
x∈Fp

γ(fi(x))

∣∣∣∣.
Here the inner sum can be estimated by Weil’s theorem:

Lemma 2.3. Let χ be a multiplicative character of order d > 1 of Fp.
Assume that g(x) ∈ Fp[x] has s distinct zeros in the algebraic closure of Fp

and it is not a constant multiple of the dth power of a polynomial over Fp.
Then ∣∣∣∑

x∈Fp

χ(g(x))
∣∣∣ ≤ (s− 1)p1/2.

Proof. This is a special case of Weil’s theorem [21] (see also [20, p. 43]).

We have u2 6= u1 = 0, and if p > 2, then also −u2 6= u2. Thus none of the
polynomials in (2.20) has a multiple zero, so that Lemma 2.3 can be applied
with γ and fi(x) (i = 1, . . . , 7) in place of χ and g, respectively. Then from
(2.21) we get

(2.22)

∣∣∣∣18 ∑
x∈Fp

f(x)

∣∣∣∣ ≥ 1

8
p− 1

8

7∑
i=1

2p1/2 =
1

8
p− 7

4
p1/2.

It follows from (2.18) and (2.22) that

|R|+ 3

2
≥
∣∣∣∣18 ∑

x∈Fp

f(x)

∣∣∣∣ ≥ 1

8
p− 7

4
p1/2,
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whence

|R| ≥ 1

8
p− 7

4
p1/2 − 3

2
> 0

for p large enough (for p ≥ 17). Thus, indeed, there is a q satisfying (2.11)–
(2.13). By (2.10) and (2.11) for this q we have

q ∈ Q = {0, u2}+ V.

It follows that there is a v ∈ V such that either

(2.23) q = 0 + v

or

(2.24) q = u2 + v.

If (2.23) holds then we also have

u2 + q = u2 + v ∈ U + V = Q,

which contradicts (2.12), while if (2.24) holds, then

q − u2 = v = 0 + v ∈ U + V = Q,

which contradicts (2.13). Thus our indirect assumption (2.9) leads to a con-
tradiction, which completes the proof of Lemma 2.2.

Lemma 2.4. If ` ∈ N, ` < p, S = {s1, . . . , s`} ⊂ Fp, T ⊂ Fp and

(2.25) S + T ⊂ Q,

then

(2.26) |T | < p

2`
+
`

2
p1/2.

We remark that by a theorem of Erdős and Shapiro [8] it follows from
(2.25) that |S| |T | = O(p). However, this information is not enough to handle
the case when the sum S + T is “unbalanced”, i.e., |S| or |T | is small.

Proof of Lemma 2.4. Let h(x) = 1
2`

∏`
i=1(γ(x+ si) + 1). Then clearly

(2.27) h(x) ≥ 0 for all x ∈ Fp.

Moreover, by (2.25), γ(t+ si) = +1 for all t ∈ T and i = 1, . . . , `, so that

(2.28) h(t) = 1 for all t ∈ T .

It follows from (2.27) and (2.28) that

(2.29)
∑
x∈Fp

h(x) ≥
∑
t∈T

h(t) = |T |.
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On the other hand, by the multiplicativity of γ we have

2`
∑
x∈Fp

h(x) = p+
∑
x∈Fp

∑̀
j=1

∑
1≤i1<···<ij≤`

γ((x+ si1) . . . (x+ sij ))

≤ p+
∑̀
j=1

∑
1≤i1<···<ij≤`

∣∣∣∑
x∈Fp

γ((x+ si1) . . . (x+ sij ))
∣∣∣.

Since si1 , . . . , sij are pairwise distinct, each of the innermost sums can be
estimated by Lemma 2.3 (with γ in place of χ). Then we get

2`
∑
x∈Fp

h(x) ≤ p+
∑̀
j=1

∑
1≤i1<···<ij≤`

(j − 1)p1/2

= p+ p1/2
∑̀
j=1

(
`

j

)
(j − 1) < p+ p1/2

∑̀
j=1

(
`

j

)
j = p+ `2`−1p1/2,

whence

(2.30)
∑
x∈Fp

h(x) <
p

2`
+
`

2
p1/2.

Now (2.26) follows from (2.29) and (2.30).

Lemma 2.5. If p is large enough then we cannot have

(2.31) 3 ≤ k = |U| ≤
[

log p

log 2

]
+ 1.

Proof. Assume that contrary to the statement, (2.31) holds. Then using
Lemma 2.4 with ` = k, S = U , T = V (so that (2.25) holds by (2.1)) we get

(2.32) |V| < p

2k
+
k

2
p1/2.

Moreover, it follows from (2.1) by a trivial counting argument that

|U| |V| = |{(u, v) : u ∈ U , v ∈ V}| ≥ |U + V| = |Q| = p− 1

2
,

whence

(2.33) |V| ≥ p− 1

2|U|
=
p− 1

2k
.

It follows from (2.32) and (2.33) that

p− 1

2k
≤ |V| < p

2k
+
k

2
p1/2,

so that

(2.34) p

(
1

k
− 1

2k−1

)
< kp1/2 +

1

k
.
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It can be shown by induction that 2k−1 ≥ 4k/3 for k = 3, 4, . . . . Thus it
follows from (2.34) that

p

(
1

k
− 3

4k

)
< 2kp1/2,

whence

p1/2 < 8k2,

which contradicts (2.31) for large p and completes the proof.

Now we are ready to prove the upper bound (2.3) in Theorem 2.1. By
Lemmas 2.3 and 2.5 (and since (2.1) is a non-trivial decomposition of Q, so

that k > 1) we have k >
[ log p
log 2

]
+ 1. Thus writing ` =

[ log p
log 2

]
+ 1 we have

k > `, so that

{u1, . . . , u`} ⊂ {u1, . . . , uk} = U ,
whence, by (2.1),

{u1, . . . , u`}+ V ⊂ U + V = Q.
Thus we may apply Lemma 2.4 with S = {u1, . . . , u`} and T = V. We
obtain, for p large enough,

|V| < p

2`
+
`

2
p1/2 <

p

2(log p)/log 2
+

1

2

(
log p

log 2
+ 1

)
p1/2 < p1/2 log p,

which, together with (2.4), proves the upper bound (2.3).

Finally, it follows from (2.3) and (2.33) for large p that

|U| ≥ p− 1

2|V|
>

p− 1

2p1/2 log p
>

1

3

p1/2

log p
,

which proves (2.2) and completes the proof of Theorem 2.1.

3. 3-decompositions of Q. Now we prove the following consequence
of Theorem 2.1:

Theorem 3.1. If p is a prime large enough then Q has no (non-trivial)
3-decomposition

(3.1) A+ B + C = Q.

Proof. Assume that contrary to the statement, (3.1) holds. We may
rewrite (3.1) as

A+ (B + C) = Q,
which is a non-trivial 2-decomposition of Q. Thus for p large enough it
follows from Theorem 2.1 that

(3.2) |B + C| < p1/2 log p,



Additive decompositions of the set of quadratic residues 49

and in the same way we get

|A+ C| < p1/2 log p,(3.3)

|A+ B| < p1/2 log p.(3.4)

We will need the following result of Ruzsa:

Lemma 3.2. Let X , Y, Z be finite sets in a commutative group. Then
we have

|X + Y + Z|2 ≤ |X + Y| |Y + Z| |X + Z|.
Proof. This is Theorem 5.1 in [18] (see also [10]).

Now, A, B, C are subsets of the additive group of Z/pZ, thus by Lemma
3.2 and (3.2)–(3.4) we have

(3.5) |A+ B + C|2 ≤ |A+ B| |B + C| |A+ C| < p3/2(log p)3.

On the other hand, it follows from (3.1) that

|A+ B + C|2 = |Q|2 =

(
p− 1

2

)2

=

(
1

4
+ o(1)

)
p2.

For p large enough this contradicts (3.5), which completes the proof of The-
orem 3.1.

4. Remarks. Let Q denote the set of quadratic non-residues modulo p.
Since Q can be obtained from Q by multiplying it by a quadratic non-
residue, it is easy to see that the statements of both Theorems 2.1 and 3.1
also hold with Q in place of Q.

Let Q+ = Q+(p) denote the set of squares modulo p, so that Q+ =
Q∪ {0}. Then we have

(4.1) Q+(5) = {0, 1, 4} = {0, 1}+ {0, 4},
so that Q+(5) possesses a non-trivial 2-decomposition, while clearly Q(5) =
{1, 4} does not have such a decomposition. This shows that Q(p) and Q+(p)
may behave in a slightly different way. The proofs above can be easily
adapted to show that our results also hold with Q+ in place of Q for p
large enough. These facts suggest that, indeed, p must be large enough in
Theorems 2.1 and 3.1. However, I have not been able to find an example of
type (4.1) with Q in place of Q+.

Since both Weil’s theorem and Ruzsa’s Lemma 3.2 can also be used in
finite fields, Theorems 2.1 and 3.1 can be extended to finite fields. On the
other hand, the study of problems of this type can be much more complicated
in Z/mZ, even the nature of the phenomena may change. In particular, for
composite moduli one cannot use Weil’s theorem; it might be of some interest
to study how to replace it, and how far one can get in this way.
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