Generalized Frobenius numbers: bounds and average behavior

by

Iskander Aliev (Cardiff), Lenny Fukshansky (Claremont, CA) and Martin Henk (Magdeburg)

1. Introduction. Let a be a positive integral n-dimensional primitive vector, i.e., $a=\left(a_{1}, \ldots, a_{n}\right)^{\top} \in \mathbb{Z}_{>0}^{n}$ with $\operatorname{gcd}(a):=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$, so that $a_{1}<\cdots<a_{n}$. For a positive integer s the s-Frobenius number $\mathrm{F}_{s}(a)$ is the largest number that cannot be represented in at least s different ways as a non-negative integral combination of the a_{i} 's, i.e.,

$$
\mathrm{F}_{s}(a)=\max \left\{b \in \mathbb{Z}: \#\left\{z \in \mathbb{Z}_{\geq 0}^{n}:\langle a, z\rangle=b\right\}<s\right\},
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product on \mathbb{R}^{n}.
This generalized Frobenius number has been introduced and studied by Beck and Robins [6, who showed, among other results, that for $n=2$,

$$
\begin{equation*}
\mathrm{F}_{s}(a)=s a_{1} a_{2}-\left(a_{1}+a_{2}\right) . \tag{1.1}
\end{equation*}
$$

In particular, this identity generalizes the well-known result in the setting of the (classical) Frobenius number which corresponds to $s=1$. The origin of this classical result is unclear, it was most likely known already to Sylvester (see, e.g., [22]). The literature on the Frobenius number $\mathrm{F}_{1}(a)$ is vast; for a comprehensive and extensive survey we refer the reader to the book of Ramírez Alfonsín [18.

Despite the exact formula in the case $n=2$, for general n only bounds on the Frobenius number $\mathrm{F}_{1}(a)$ are available. For instance, if $n \geq 3$, then

$$
\begin{equation*}
\left((n-1)!a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}-\left(a_{1}+\cdots+a_{n}\right)<\mathrm{F}_{1}(a) \leq 2 a_{n}\left[\frac{a_{1}}{n}\right]-a_{1} . \tag{1.2}
\end{equation*}
$$

Here the lower bound follows from a sharp lower bound due to Aliev and Gruber [1], and the upper bound is due to Erdős and Graham [8]. Hence, in the worst case scenario we have an upper bound of the order $|a|_{\infty}^{2}$ on the

[^0]Frobenius number with respect to the maximum norm of the input vector a. It is worth a mention that an upper bound on $\mathrm{F}_{1}(a)$, which is symmetric in all of the a_{i} 's has recently been produced by Fukshansky and Robins [9]. The quadratic order of the upper bound is known to be optimal (see, e.g., [8]) and in view of the lower bound which is at most of size $|a|_{\infty}^{n /(n-1)}$ it is quite natural to study the average behavior of $\mathrm{F}_{1}(a)$.

This research was initiated and strongly influenced by Arnold 4], 5], and due to recent results of Bourgain and Sinai [7], Aliev and Henk [2], Aliev, Henk and Hinrichs [3], Marklof [17], Li [16], Shchur, Sinai and Ustinov [20], Strömbergsson [21] and Ustinov [23] we have a pretty clear picture of "the average Frobenius number".

In order to describe some of these results, which are going to extend to the s-Frobenius number $\mathrm{F}_{s}(a)$, we need a bit more notation. Let

$$
\mathrm{G}(T)=\left\{a \in \mathbb{Z}_{>0}^{n}: \operatorname{gcd}(a)=1,|a|_{\infty} \leq T\right\}
$$

be the set of all possible input vectors of the Frobenius problem of size (in maximum norm) at most T. Aliev, Henk and Hinrichs [3] showed that

$$
\begin{equation*}
\sup _{T} \frac{\sum_{a \in \mathrm{G}(T)} \mathrm{F}_{1}(a) /\left(a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}}{\# \mathrm{G}(T)} \ll>_{n} 1 \tag{1.3}
\end{equation*}
$$

i.e., the expected size of $\mathrm{F}_{1}(a)$ is "close" to the size of its lower bound in (1.2); here and below, $<_{n}$ and $>_{n}$ denote the Vinogradov symbols with the constant depending on n only. Recently, Li [16] gave the bound

$$
\begin{equation*}
\operatorname{Prob}\left(\mathrm{F}_{1}(a) /\left(a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)} \geq D\right)<_{n} D^{-(n-1)} \tag{1.4}
\end{equation*}
$$

where $\operatorname{Prob}(\cdot)$ is meant with respect to the uniform distribution among all points in the set $\mathrm{G}(T)$. The bound $(\sqrt{1.4})$ is best possible due to an unpublished result of Marklof, and clearly implies (1.3).

The main purpose of this paper is to extend the results stated above, i.e., $(1.2),(1.3)$ and (1.4), to the generalized Frobenius number $\mathrm{F}_{s}(a)$ in the following way:

Theorem 1.1. Let $n \geq 2, s \geq 1$. Then

$$
\begin{aligned}
& \mathrm{F}_{s}(a) \geq s^{1 /(n-1)}\left((n-1)!a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}-\left(a_{1}+\cdots+a_{n}\right) \\
& \mathrm{F}_{s}(a) \leq \mathrm{F}_{1}(a)+(s-1)^{1 /(n-1)}\left((n-1)!a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}
\end{aligned}
$$

Bounds with almost the same dependencies on s were recently obtained by Fukshansky and Schürmann [10]. Their lower bound, however, is only valid for sufficiently large s. Aliev and Gruber [1] applied the results of Schinzel [19] to obtain a sharp lower bound for the Frobenius number in terms of the covering radius of a simplex. The same approach can be used to obtain a sharp lower bound for the s-Frobenius number as well. We postpone a detailed discussion of these matters to a future paper.

As an almost immediate consequence of Theorem 1.1 we obtain:
Corollary 1.2. Let $n \geq 3, s \geq 1$. Then

$$
\begin{align*}
& \operatorname{Prob}\left(\mathrm{F}_{s}(a) /\left(s \cdot a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)} \geq D\right) \ll{ }_{n} D^{-(n-1)}, \tag{i}\\
& \sup _{T} \frac{\sum_{a \in \mathrm{G}(T)} \mathrm{F}_{s}(a) /\left(s \cdot a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}}{\# \mathrm{G}(T)} \ll>_{n} 1 . \tag{ii}
\end{align*}
$$

Hence in this generalized setting the average s-Frobenius number is of the size $\left(s \cdot a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}$, which again is the size of its lower bound as stated in Theorem 1.1.

The proof of Theorem 1.1 is based on a generalization of a result of Kannan which relates the classical Frobenius number to the covering radius of a certain simplex with respect to a certain lattice. In our setting we need a kind of generalized covering radius, whose definition as well as some properties and background information from the Geometry of Numbers will be given in Section 2, In Section 3 we will prove, analogously to the mentioned result of Kannan, an identity between $\mathrm{F}_{s}(a)$ and this generalized covering radius and will present a proof of Theorem 1.1. The last section contains a proof of Corollary 1.2
2. The s-covering radius. In what follows, let \mathcal{K}^{n} be the space of all full-dimensional convex bodies, i.e., closed bounded convex sets with nonempty interior in the n-dimensional Euclidean space \mathbb{R}^{n}. The volume of a set $X \subset \mathbb{R}^{n}$, i.e., its n-dimensional Lebesgue measure, is denoted by vol X. Moreover, we denote by \mathcal{L}^{n} the set of all n-dimensional lattices in \mathbb{R}^{n}, i.e., $\mathcal{L}^{n}=\left\{B \mathbb{Z}^{n}: B \in \mathbb{R}^{n \times n}, \operatorname{det} B \neq 0\right\}$. For $\Lambda=B \mathbb{Z}^{n} \in \mathcal{L}^{n}, \operatorname{det} \Lambda=|\operatorname{det} B|$ is called the determinant of the lattice Λ. Here we are interested in the following quantity:

Definition 2.1. Let $s \in \mathbb{N}, s \geq 1$. For $K \in \mathcal{K}^{n}$ and $\Lambda \in \mathcal{L}^{n}$ let

$$
\begin{array}{r}
\mu_{s}(K, \Lambda)=\min \left\{\mu>0: \text { for all } t \in \mathbb{R}^{n} \text { there exist } b_{1}, \ldots, b_{s} \in \Lambda\right. \\
\text { such that } \left.t \in b_{i}+\mu K \forall 1 \leq i \leq s\right\}
\end{array}
$$

be the smallest positive number μ such that any $t \in \mathbb{R}^{n}$ is covered by at least s lattice translates of μK. Then $\mu_{s}(K, \Lambda)$ is called the s-covering radius of K with respect to Λ.

For $s=1$ we get the well-known covering radius, for the information about which we refer the reader to Gruber [11] and Gruber and Lekkerkerker [12]. These books also serve as excellent sources for more information on lattices and convex bodies in the context of Geometry of Numbers.

Note that the s-covering radius is different from the j th covering minimum introduced by Kannan and Lovász [15. We also remark that $\mu_{s}(K, \Lambda)$
may be described equivalently as the smallest positive number μ such that any translate of μK contains at least s lattice points, i.e.,

$$
\begin{equation*}
\mu_{s}(K, \Lambda)=\min \left\{\mu>0: \#\{(t+\mu K) \cap \Lambda\} \geq s \text { for all } t \in \mathbb{R}^{n}\right\} \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let $s \in \mathbb{N}, s \geq 1, K \in \mathcal{K}^{n}$ and let $\Lambda \in \mathcal{L}^{n}$. Then

$$
s^{1 / n}\left(\frac{\operatorname{det} \Lambda}{\operatorname{vol} K}\right)^{1 / n} \leq \mu_{s}(K, \Lambda) \leq \mu_{1}(K, \Lambda)+(s-1)^{1 / n}\left(\frac{\operatorname{det} \Lambda}{\operatorname{vol} K}\right)^{1 / n}
$$

Proof. It suffices to prove these inequalities for the standard lattice \mathbb{Z}^{n} of determinant 1 ; for brevity, we will just write μ_{s} instead of $\mu_{s}\left(K, \mathbb{Z}^{n}\right)$. The lower bound just reflects the fact that each point of \mathbb{R}^{n} is covered at least s times by the lattice translates of $\mathbb{Z}^{n}+\mu_{s} K$. A standard argument to see this in a more precise way is the following.

Let $P=[0,1)^{n}$ be the half-open cube of edge length 1 , and for $L \subseteq \mathbb{R}^{n}$ let $\chi_{L}: \mathbb{R}^{n} \rightarrow\{0,1\}$ be its characteristic function, i.e., $\chi_{L}(x)=1$ if $x \in L$, otherwise it is 0 . Then with $L=\mu_{s} K$ we get

$$
\begin{align*}
\operatorname{vol} L & =\int_{\mathbb{R}^{n}} \chi_{L}(x) d x=\int_{\mathbb{Z}^{n}+P} \chi_{L}(x) d x=\sum_{z \in \mathbb{Z}^{n}} \int_{z+P} \chi_{L}(x) d x \tag{2.2}\\
& =\sum_{z \in \mathbb{Z}^{n}} \int_{P} \chi_{-z+L}(x) d x=\int_{P}\left(\sum_{z \in \mathbb{Z}^{n}} \chi_{-z+L}(x)\right) d x \\
& \geq \int_{P} s d x=s .
\end{align*}
$$

Hence $\operatorname{vol}\left(\mu_{s} K\right) \geq s$. Combining this observation with the homogeneity of the volume we obtain the lower bound.

For the upper bound we may assume $s \geq 2$, since there is nothing to prove for $s=1$. The first two lines of (2.2) also prove a well-known result of van der Corput [12, p. 47], which in our setting of a convex body says: if $L \in \mathcal{K}^{n}$ with vol $L \geq s-1$ then there exists a $t \in P$ such that t is covered by at least s lattice translates of L. Hence for $\bar{\mu}=((s-1) / \operatorname{vol} K)^{1 / n}$ we know that there exist $z_{1}, \ldots, z_{s} \in \mathbb{Z}^{n}$ and a $\bar{t} \in P$ such that $\bar{t} \in z_{i}+\bar{\mu} K$, $1 \leq i \leq s$. Now given an arbitrary $t \in \mathbb{R}^{n}$ we know by the definition of the covering radius μ_{1} that there exists a $z \in \mathbb{Z}^{n}$ such that $t-\bar{t} \in z+\mu_{1} K$. Hence

$$
t \in\left(z+z_{i}\right)+\left(\mu_{1}+\bar{\mu}\right) K, \quad 1 \leq i \leq s
$$

and so $\mu_{s} \leq \mu_{1}+\bar{\mu}$, which gives the upper bound.
It is also worth a mention that, as an immediate corollary of Lemma 2.2 and tools from the Geometry of Numbers, we can obtain upper bounds on $\mu_{s}(K, \Lambda)$ for any $s \geq 1$ in terms of successive minima of K with respect
to Λ. Recall that the successive minima $\lambda_{i}(K, \Lambda)$ of a convex body $K \in \mathcal{K}^{n}$ with respect to a lattice $\Lambda \in \mathcal{L}^{n}$ are defined by

$$
\lambda_{i}(K, \Lambda)=\min \{\lambda>0: \operatorname{dim}(\lambda(K-K) \cap \Lambda) \geq i\}, \quad 1 \leq i \leq n .
$$

Proposition 2.3. Let $s \in \mathbb{N}, s \geq 1, K \in \mathcal{K}^{n}$ and let $\Lambda \in \mathcal{L}^{n}$. Then

$$
\mu_{s}(K, \Lambda) \leq\left(1+\frac{(n!)^{1 / n}}{n}(s-1)^{1 / n}\right) \sum_{i=1}^{n} \lambda_{i}(K, \Lambda) .
$$

Proof. It was pointed out by Kannan and Lovász [15, Lemma 2.4] that Jarník's inequalities, relating the covering radius and the successive minima of 0 -symmetric convex bodies, are also valid for arbitrary bodies. Hence we have

$$
\begin{equation*}
\mu_{1}(K, \Lambda) \leq \sum_{i=1}^{n} \lambda_{i}(K, \Lambda) . \tag{2.3}
\end{equation*}
$$

On the other hand it is also well known that Minkowski's theorems on successive minima can also be extended to the family of arbitrary convex bodies ([12, p. 59], [13]) and in particular, we have

$$
\begin{equation*}
\operatorname{vol} K \prod_{i=1}^{n} \lambda_{i}(K, \Lambda) \geq \frac{1}{n!} \operatorname{det} \Lambda \tag{2.4}
\end{equation*}
$$

Applying (2.3) and (2.4) to the upper bound on $\mu_{s}(K, \Lambda)$ in Lemma 2.2 leads to

$$
\begin{aligned}
\mu_{s}(K, \Lambda) & \leq \mu_{1}(K, \Lambda)+(s-1)^{1 / n}\left(\frac{\operatorname{det} \Lambda}{\operatorname{vol} K}\right)^{1 / n} \\
& \leq \sum_{i=1}^{n} \lambda_{i}(K, \Lambda)+(s-1)^{1 / n}\left(n!\prod_{i=1}^{n} \lambda_{i}(K, \Lambda)\right)^{1 / n} \\
& \leq\left(1+\left((n!)^{1 / n} / n\right)(s-1)^{1 / n}\right) \sum_{i=1}^{n} \lambda_{i}(K, \Lambda)
\end{aligned}
$$

by the arithmetic-geometric mean inequality.
Unfortunately, we are not aware of a nice generalization of Jarník's lower bound (cf. [15, Lemma 2.4]) $\mu_{1}(K, \Lambda) \geq \lambda_{n}(K, \Lambda)$ to the s-covering radius.
3. Frobenius number and covering radius. For a given primitive positive vector $a=\left(a_{1}, \ldots, a_{n}\right)^{\top} \in \mathbb{Z}_{>0}^{n}$ let

$$
S_{a}=\left\{x \in \mathbb{R}_{\geq 0}^{n-1}: a_{1} x_{1}+\cdots+a_{n-1} x_{n-1} \leq 1\right\}
$$

be the ($n-1$)-dimensional simplex with vertices $0,\left(1 / a_{i}\right) e_{i}$ where e_{i} is the i th unit vector in $\mathbb{R}^{n-1}, 1 \leq i \leq n-1$. Furthermore, we consider the following
sublattice of \mathbb{Z}^{n-1} :

$$
\Lambda_{a}=\left\{z \in \mathbb{Z}^{n-1}: a_{1} z_{1}+\cdots+a_{n-1} z_{n-1} \equiv 0 \bmod a_{n}\right\}
$$

This simplex and lattice were introduced by Kannan in his studies of the Frobenius number [14], where he proved the following beautiful identity:

$$
\mu_{1}\left(S_{a}, \Lambda_{a}\right)=\mathrm{F}_{1}(a)+a_{1}+\cdots+a_{n}
$$

Here we just extend his arguments to the s-Frobenius number. We start with the following lemma about an "integral version" of $\mu_{s}\left(S_{a}, \Lambda_{a}\right)$.

Lemma 3.1. Let $n \geq 2, s \geq 1$, and let

$$
\mu_{s}\left(S_{a}, \Lambda_{a} ; \mathbb{Z}^{n-1}\right)=\min \left\{\rho>0: \#\left\{\left(z+\rho S_{a}\right) \cap \Lambda_{a}\right\} \geq s \forall z \in \mathbb{Z}^{n-1}\right\}
$$

Then

$$
\mu_{s}\left(S_{a}, \Lambda_{a} ; \mathbb{Z}^{n-1}\right)=\mathrm{F}_{s}(a)+a_{n}
$$

Proof. To simplify the notation, for each $y \in \mathbb{R}^{n}$ let $\tilde{y}=\left(y_{1}, \ldots, y_{n-1}\right)^{\top}$ be the vector consisting of the first $n-1$ coordinates of y. Further, let $\overline{\mu_{s}}=\mu_{s}\left(S_{a}, \Lambda_{a} ; \mathbb{Z}^{n-1}\right)$ and $\mathrm{F}_{s}=\mathrm{F}_{s}(a)$.

First we show that $\overline{\mu_{s}} \leq \mathrm{F}_{s}+a_{n}$. To this end, let $z \in \mathbb{Z}^{n-1}$ and let $k \in\left\{1, \ldots, a_{n}\right\}$ be such that $\tilde{a}^{\top} z \equiv-\left(\mathrm{F}_{s}+k\right) \bmod a_{n}$. By the definition of F_{s} we can find $b_{1}, \ldots, b_{s} \in \mathbb{Z}_{\geq 0}^{n}$ with $a^{\top} b_{i}=\mathrm{F}_{s}+k, 1 \leq i \leq s$. Hence $\underset{\sim}{w}$ whe have found s different lattice vectors $z+\tilde{b}_{i} \in \Lambda_{a}, 1 \leq i \leq s$, and since $\tilde{b}_{i} \in\left(\mathrm{~F}_{s}+k\right) S_{a}$ we obtain

$$
z+\tilde{b}_{i} \in z+\left(\mathrm{F}_{s}+a_{n}\right) S_{a}, \quad 1 \leq i \leq s
$$

Hence $\overline{\mu_{s}} \leq \mathrm{F}_{s}+a_{n}$, and it remains to show the reverse inequality.
Since $\operatorname{gcd}(a)=1$, we can find a $z \in \mathbb{Z}^{n-1}$ with $\tilde{a}^{\top} z \equiv \mathrm{~F}_{s} \bmod a_{n}$. Now suppose that for a $0<\gamma<\mathrm{F}_{s}+a_{n}$ we can find $g_{1}, \ldots, g_{s} \in \Lambda_{a}$ such that $g_{i} \in z+\gamma S_{a}$. Since $\tilde{a}^{\top}\left(g_{i}-z\right) \equiv \mathrm{F}_{s} \bmod a_{n}$ and $\tilde{a}^{\top}\left(g_{i}-z\right) \leq \gamma<\mathrm{F}_{s}+a_{n}$, we conclude that there exist non-negative integers m_{i} with

$$
\tilde{a}^{\top}\left(g_{i}-z\right)=\mathrm{F}_{s}-m_{i} a_{n}, \quad 1 \leq i \leq s
$$

Since $g_{i} \in z+\gamma S_{a}$, we conclude that $\left(g_{i}-z\right)$ is a vector with non-negative integer coordinates, and so $\tilde{a}^{\top}\left(g_{i}-z\right)+m_{i} a_{n}, 1 \leq i \leq s$, are s different non-negative integral representations of F_{s}, which contradicts the definition of F_{s}. This proves that $\overline{\mu_{s}} \geq \mathrm{F}_{s}+a_{n}$, and completes the proof of the lemma.

The next theorem is the promised canonical extension of Kannan's Theorem 2.5 in [14] for the classical Frobenius number.

Theorem 3.2. Let $n \geq 2, s \geq 1$. Then

$$
\mu_{s}\left(S_{a}, \Lambda_{a}\right)=\mathrm{F}_{s}(a)+a_{1}+\cdots+a_{n}
$$

Proof. We keep the notation of Lemma 3.1 and its proof, and in addition we set $\mu_{s}=\mu_{s}\left(S_{a}, \Lambda_{a}\right)$. In view of Lemma 3.1, we have to show that

$$
\begin{equation*}
\mu_{s}=\overline{\mu_{s}}+\left(a_{1}+\cdots+a_{n-1}\right) \tag{3.1}
\end{equation*}
$$

First we verify the inequality $\mu_{s} \leq \overline{\mu_{s}}+a_{1}+\cdots+a_{n-1}$. Since the $(n-1)-$ dimensional closed cube $\bar{P}=[0,1]^{n-1}$ of edge length 1 is contained in $\left(a_{1}+\cdots+a_{n-1}\right) S_{a}$, we have

$$
\mathbb{R}^{n-1}=\mathbb{Z}^{n-1}+\left(a_{1}+\cdots+a_{n-1}\right) S_{a}
$$

Hence, in view of (2.1), it suffices to verify that for each $z \in \mathbb{Z}^{n-1}$,

$$
\#\left\{\left(z+\overline{\mu_{s}} S_{a}\right) \cap \Lambda_{a}\right\} \geq s
$$

which follows by the definition of $\overline{\mu_{s}}$.
Now suppose $\mu_{s}<\overline{\mu_{s}}+a_{1}+\cdots+a_{n-1}$. By Lemma 3.1, there exists a $z \in \mathbb{Z}^{n-1}$ such that for any subset $I_{s} \subset \Lambda_{a}$ of cardinality at least s there exists a $b \in I_{s}$ with $(z-b) \notin \operatorname{int}\left(\overline{\mu_{s}} S_{a}\right)$, where $\operatorname{int}(\cdot)$ denotes the interior of a set. Let $u \in \mathbb{Z}^{n-1}$ be the vector with all coordinates equal to 1 . By our assumption, there exist at least s lattice points $b_{i} \in \Lambda_{a}, 1 \leq i \leq s$, such that $(z+u) \in b_{i}+\operatorname{int}\left(\left(\overline{\mu_{s}}+a_{1}+\cdots+a_{n-1}\right) S_{a}\right)$. Then this is certainly also true for any sufficiently small positive ϵ and the point $z+(1-\epsilon) u$. Thus, for $1 \leq i \leq s$,

$$
\begin{aligned}
\overline{\mu_{s}}+a_{1}+\cdots+a_{n-1} & >\tilde{a}^{\top}\left(z+(1-\epsilon) u-b_{i}\right) \\
& =\tilde{a}^{\top}\left(z-b_{i}\right)+(1-\epsilon)\left(a_{1}+\cdots+a_{n-1}\right)
\end{aligned}
$$

Since ϵ is an arbitrary sufficiently small positive real number, we conclude that $\tilde{a}^{\top}\left(z-b_{i}\right)<\overline{\mu_{s}}, 1 \leq i \leq s$. On the other hand, we have $z+(1-\epsilon) u-b_{i}$ ≥ 0, which implies $z-b_{i} \geq 0,1 \leq i \leq s$. In other words, the s lattice points b_{1}, \ldots, b_{s} lie in the interior of $z+\overline{\mu_{s}} S_{a}$, which contradicts the definition of $\overline{\mu_{s}}$.

We remark that in the case $n=2, S_{a}$ is just the segment $\left[0,1 / a_{1}\right]$ and Λ_{a} is the set of all integral multiplies of a_{2}, i.e., $\Lambda_{a}=\mathbb{Z} a_{2}$. Hence, in this special case,

$$
\mu_{s}\left(S_{a}, \Lambda_{a}\right)=s a_{1} a_{2}
$$

which gives, via Theorem 3.2, another proof of (1.1).
Proof of Theorem 1.1. First we observe that $\operatorname{det} \Lambda_{a}=a_{n}$. This follows, for instance, from the fact that there are at most a_{n} residue classes of the sublattice Λ_{a} with respect to \mathbb{Z}^{n-1}, and since $\operatorname{gcd}(a)=1$ we have exactly a_{n} distinct residue classes. Next we note for the ($(n-1)$-dimensional) volume of S_{a} that

$$
\operatorname{vol} S_{a}=\frac{1}{(n-1)!} \frac{1}{a_{1} \cdot \ldots \cdot a_{n-1}}
$$

so that det $\Lambda_{a} / \operatorname{vol} S_{a}=(n-1)!a_{1} \cdot \ldots \cdot a_{n}$. Hence Lemma 2.2 and Theorem 3.2 give the desired bounds.
4. Average behavior. It will be convenient to define

$$
X_{s}(a)=\frac{\mathrm{F}_{s}(a)}{\left(s \cdot a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}}
$$

for each $a \in \mathrm{G}(T)$. We start with
Proof of Corollary 1.2. For (i), we observe that by (1.4) we may assume $s \geq 2$ and by the upper bound of Theorem 1.1 we have

$$
\begin{equation*}
X_{s}(a) \leq s^{-1 /(n-1)} X_{1}(a)+\mathrm{c}_{n}, \tag{4.1}
\end{equation*}
$$

for a dimensional constant $\mathrm{c}_{n}=((n-1)!)^{1 /(n-1)}$. Hence, (1.4) implies for, say, $D \geq 2 \mathrm{c}_{n}$,

$$
\operatorname{Prob}\left(X_{s}(a) \geq D\right)<_{n} \frac{1}{s}\left(D-\mathrm{c}_{n}\right)^{-(n-1)} \leq D^{-(n-1)} .
$$

Now, in view of (1.3), inequality (4.1) also implies that

$$
\frac{1}{\# \mathrm{G}(T)} \sum_{a \in \mathrm{G}(T)} X_{s}(a) \leq s^{-1 /(n-1)}\left(\frac{1}{\# \mathrm{G}(T)} \sum_{a \in \mathrm{G}(T)} X_{1}(a)\right)+\mathrm{c}_{n}<_{n} 1 .
$$

In order to show that the left hand side is also bounded from below by a constant depending only on n, we use the lower bound of Theorem 1.1 and obtain

$$
\frac{1}{\# \mathrm{G}(T)} \sum_{a \in \mathrm{G}(T)} X_{s}(a)>\mathrm{c}_{n}-s^{-1 /(n-1)} \frac{1}{\# \mathrm{G}(T)} \sum_{a \in \mathrm{G}(T)} \frac{a_{1}+\cdots+a_{n}}{\left(a_{1} \cdot \cdots \cdot a_{n}\right)^{1 /(n-1)}}
$$

The latter sum has already been investigated in [3], where the proof of Proposition 1 shows precisely that

$$
\frac{1}{\# \mathrm{G}(T)} \sum_{a \in \mathrm{G}(T)} \frac{a_{1}+\cdots+a_{n}}{\left(a_{1} \cdot \ldots \cdot a_{n}\right)^{1 /(n-1)}} \leq \mathrm{C}_{n} T^{-1 /(n-1)}
$$

for another constant C_{n} depending only on n. Hence, for sufficiently large T we obtain

$$
\frac{1}{\# \mathrm{G}(T)} \sum_{a \in \mathrm{G}(T)} X_{s}(a) \gg_{n} 1,
$$

which completes the proof of (ii).
Acknowledgements. We would like to thank Matthias Henze, Eva Linke and Carsten Thiel for helpful comments.

References

[1] I. M. Aliev and P. M. Gruber, An optimal lower bound for the Frobenius problem, J. Number Theory 123 (2007), 71-79.
[2] I. M. Aliev and M. Henk, Integer knapsacks: Average behavior of the Frobenius numbers, Math. Oper. Res. 34 (2009), 698-705.
[3] I. M. Aliev, M. Henk and A. Hinrichs, Expected Frobenius numbers, J. Combin. Theory Ser. A 118 (2011), 525-531.
[4] V. I. Arnold, Weak asymptotics for the numbers of solutions of Diophantine problems, Funct. Anal. Appl. 33 (1999), 292-293; transl. from: Funktsional. Anal. i Prilozhen. 33 (1999), no. 4, 65-66.
[5] V. I. Arnold, Geometry and growth rate of Frobenius numbers of additive semigroups, Math. Phys. Anal. Geom. 9 (2006), 95-108.
[6] M. Beck and S. Robins, A formula related to the Frobenius problem in two dimensions, in: Number Theory (New York, 2003), Springer, New York, 2004, 17-23.
[7] J. Bourgain and Ya. G. Sinai, Limit behaviour of large Frobenius numbers, Russian Math. Surveys 62 (2007), 713-725; transl. from: Uspekhi Mat. Nauk 62 (2007), no. 4, 77-90.
[8] P. Erdős and R. L. Graham, On a linear Diophantine problem of Frobenius, Acta Arith. 21 (1972), 399-408.
[9] L. Fukshansky and S. Robins, Frobenius problem and the covering radius of a lattice, Discrete Comput. Geom. 37 (2007), 471-483.
[10] L. Fukshansky and A. Schürmann, Bounds on generalized Frobenius numbers, Eur. J. Combin. 32 (2011), 361-368.
[11] P. M. Gruber, Convex and Discrete Geometry, Springer, Berlin, 2007.
[12] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, 2nd ed., NorthHolland, Amsterdam, 1987.
[13] M. Henze, Symmetry and lattice point inequalities, Ph.D. dissertation, Magdeburg Univ., in preparation.
[14] R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992), 161-177.
[15] R. Kannan and L. Lovász, Covering minima and lattice-point-free convex bodies, Ann. of Math. (2) 128 (1988), 577-602.
[16] H. Li, Effective limit distribution of the Frobenius numbers, arXiv:1101.3021v1.
[17] J. Marklof, The asymptotic distribution of Frobenius numbers, Invent. Math. 181 (2010), 179-207.
[18] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford Lecture Ser. Math. Appl. 30, Oxford Univ. Press, Oxford, 2005.
[19] A. Schinzel, A property of polynomials with an application to Siegel's lemma, Monatsh. Math. 137 (2002), 239-251.
[20] V. Shchur, Ya. Sinai and A. Ustinov, Limiting distribution of Frobenius numbers for $n=3$, J. Number Theory 129 (2009), 2778-2789.
[21] A. Strömbergsson, On the limit distribution of Frobenius numbers, Acta Arith. 152 (2012), 81-107.
[22] J. J. Sylvester, Problem 7382, Educational Times 37 (1884), 26.
[23] A. V. Ustinov, On the distribution of Frobenius numbers with three arguments, Izv. Math. 74 (2010), 1023-1049; transl. from: Izv. Ross. Akad. Nauk Ser. Mat. 74 (2010), no. 5, 145-170.

Iskander Aliev
School of Mathematics
and Wales Institute of
Mathematical and Computational Sciences
Cardiff University
Senghennydd Road
Cardiff, Wales, UK
E-mail: alievi@cf.ac.uk
Martin Henk
Fakultät für Mathematik
Otto-von-Guericke-Universität Magdeburg
Universitätsplatz 2
D-39106 Magdeburg, Germany
E-mail: martin.henk@ovgu.de

Lenny Fukshansky
Department of Mathematics
Claremont McKenna College
850 Columbia Avenue
Claremont, CA 91711, U.S.A.
E-mail: lenny@cmc.edu

Received on 4.5.2011
and in revised form on 14.6.2011

[^0]: 2010 Mathematics Subject Classification: 11D07, 11H06, 52C07, 11D45.
 Key words and phrases: Frobenius number, successive minima, inhomogeneous minimum, covering radius, distribution of lattices.

