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1. Introduction. Let a be a positive integral n-dimensional primitive
vector, i.e., a = (a1, . . . , an)ᵀ ∈ Zn

>0 with gcd(a) := gcd(a1, . . . , an) = 1, so
that a1 < · · · < an. For a positive integer s the s-Frobenius number Fs(a) is
the largest number that cannot be represented in at least s different ways
as a non-negative integral combination of the ai’s, i.e.,

Fs(a) = max{b ∈ Z : #{z ∈ Zn
≥0 : 〈a, z〉 = b} < s},

where 〈·, ·〉 denotes the standard inner product on Rn.
This generalized Frobenius number has been introduced and studied by

Beck and Robins [6], who showed, among other results, that for n = 2,

(1.1) Fs(a) = sa1a2 − (a1 + a2).

In particular, this identity generalizes the well-known result in the setting of
the (classical) Frobenius number which corresponds to s = 1. The origin of
this classical result is unclear, it was most likely known already to Sylvester
(see, e.g., [22]). The literature on the Frobenius number F1(a) is vast; for
a comprehensive and extensive survey we refer the reader to the book of
Ramı́rez Alfonśın [18].

Despite the exact formula in the case n = 2, for general n only bounds
on the Frobenius number F1(a) are available. For instance, if n ≥ 3, then

(1.2) ((n− 1)!a1 · . . . · an)1/(n−1)− (a1 + · · ·+ an) < F1(a) ≤ 2an

[
a1
n

]
− a1.

Here the lower bound follows from a sharp lower bound due to Aliev and
Gruber [1], and the upper bound is due to Erdős and Graham [8]. Hence,
in the worst case scenario we have an upper bound of the order |a|2∞ on the
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Frobenius number with respect to the maximum norm of the input vector a.
It is worth a mention that an upper bound on F1(a), which is symmetric
in all of the ai’s has recently been produced by Fukshansky and Robins [9].
The quadratic order of the upper bound is known to be optimal (see, e.g.,

[8]) and in view of the lower bound which is at most of size |a|n/(n−1)∞ it is
quite natural to study the average behavior of F1(a).

This research was initiated and strongly influenced by Arnold [4], [5], and
due to recent results of Bourgain and Sinai [7], Aliev and Henk [2], Aliev,
Henk and Hinrichs [3], Marklof [17], Li [16], Shchur, Sinai and Ustinov [20],
Strömbergsson [21] and Ustinov [23] we have a pretty clear picture of “the
average Frobenius number”.

In order to describe some of these results, which are going to extend to
the s-Frobenius number Fs(a), we need a bit more notation. Let

G(T ) = {a ∈ Zn
>0 : gcd(a) = 1, |a|∞ ≤ T}

be the set of all possible input vectors of the Frobenius problem of size (in
maximum norm) at most T . Aliev, Henk and Hinrichs [3] showed that

(1.3) sup
T

∑
a∈G(T ) F1(a)/(a1 · . . . · an)1/(n−1)

#G(T )
��n 1,

i.e., the expected size of F1(a) is “close” to the size of its lower bound
in (1.2); here and below, �n and �n denote the Vinogradov symbols with
the constant depending on n only. Recently, Li [16] gave the bound

(1.4) Prob(F1(a)/ (a1 · . . . · an)1/(n−1) ≥ D)�n D
−(n−1),

where Prob(·) is meant with respect to the uniform distribution among all
points in the set G(T ). The bound (1.4) is best possible due to an unpub-
lished result of Marklof, and clearly implies (1.3).

The main purpose of this paper is to extend the results stated above,
i.e., (1.2), (1.3) and (1.4), to the generalized Frobenius number Fs(a) in the
following way:

Theorem 1.1. Let n ≥ 2, s ≥ 1. Then

Fs(a) ≥ s1/(n−1)((n− 1)! a1 · . . . · an)1/(n−1) − (a1 + · · ·+ an),

Fs(a) ≤ F1(a) + (s− 1)1/(n−1)((n− 1)! a1 · . . . · an)1/(n−1).

Bounds with almost the same dependencies on s were recently obtained
by Fukshansky and Schürmann [10]. Their lower bound, however, is only
valid for sufficiently large s. Aliev and Gruber [1] applied the results of
Schinzel [19] to obtain a sharp lower bound for the Frobenius number in
terms of the covering radius of a simplex. The same approach can be used to
obtain a sharp lower bound for the s-Frobenius number as well. We postpone
a detailed discussion of these matters to a future paper.
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As an almost immediate consequence of Theorem 1.1 we obtain:

Corollary 1.2. Let n ≥ 3, s ≥ 1. Then

Prob(Fs(a)/(s · a1 · . . . · an)1/(n−1) ≥ D)�n D
−(n−1),(i)

sup
T

∑
a∈G(T ) Fs(a)/(s · a1 · . . . · an)1/(n−1)

#G(T )
��n 1.(ii)

Hence in this generalized setting the average s-Frobenius number is of
the size (s · a1 · . . . · an)1/(n−1), which again is the size of its lower bound as
stated in Theorem 1.1.

The proof of Theorem 1.1 is based on a generalization of a result of Kan-
nan which relates the classical Frobenius number to the covering radius of
a certain simplex with respect to a certain lattice. In our setting we need a
kind of generalized covering radius, whose definition as well as some prop-
erties and background information from the Geometry of Numbers will be
given in Section 2. In Section 3 we will prove, analogously to the mentioned
result of Kannan, an identity between Fs(a) and this generalized covering
radius and will present a proof of Theorem 1.1. The last section contains a
proof of Corollary 1.2.

2. The s-covering radius. In what follows, let Kn be the space of all
full-dimensional convex bodies, i.e., closed bounded convex sets with non-
empty interior in the n-dimensional Euclidean space Rn. The volume of a
set X ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by volX.
Moreover, we denote by Ln the set of all n-dimensional lattices in Rn, i.e.,
Ln = {BZn : B ∈ Rn×n, detB 6= 0}. For Λ = BZn ∈ Ln, detΛ = |detB|
is called the determinant of the lattice Λ. Here we are interested in the
following quantity:

Definition 2.1. Let s ∈ N, s ≥ 1. For K ∈ Kn and Λ ∈ Ln let

µs(K,Λ) = min{µ > 0 : for all t ∈ Rn there exist b1, . . . , bs ∈ Λ
such that t ∈ bi + µK ∀1 ≤ i ≤ s}

be the smallest positive number µ such that any t ∈ Rn is covered by at
least s lattice translates of µK. Then µs(K,Λ) is called the s-covering radius
of K with respect to Λ.

For s = 1 we get the well-known covering radius, for the information
about which we refer the reader to Gruber [11] and Gruber and Lekkerkerker
[12]. These books also serve as excellent sources for more information on
lattices and convex bodies in the context of Geometry of Numbers.

Note that the s-covering radius is different from the jth covering mini-
mum introduced by Kannan and Lovász [15]. We also remark that µs(K,Λ)
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may be described equivalently as the smallest positive number µ such that
any translate of µK contains at least s lattice points, i.e.,

(2.1) µs(K,Λ) = min{µ > 0 : #{(t+ µK) ∩ Λ} ≥ s for all t ∈ Rn}.

Lemma 2.2. Let s ∈ N, s ≥ 1, K ∈ Kn and let Λ ∈ Ln. Then

s1/n
(

detΛ

volK

)1/n

≤ µs(K,Λ) ≤ µ1(K,Λ) + (s− 1)1/n
(

detΛ

volK

)1/n

.

Proof. It suffices to prove these inequalities for the standard lattice Zn

of determinant 1; for brevity, we will just write µs instead of µs(K,Zn). The
lower bound just reflects the fact that each point of Rn is covered at least
s times by the lattice translates of Zn + µsK. A standard argument to see
this in a more precise way is the following.

Let P = [0, 1)n be the half-open cube of edge length 1, and for L ⊆ Rn

let χL : Rn → {0, 1} be its characteristic function, i.e., χL(x) = 1 if x ∈ L,
otherwise it is 0. Then with L = µsK we get

volL =
�

Rn

χL(x) dx =
�

Zn+P

χL(x) dx =
∑
z∈Zn

�

z+P

χL(x) dx(2.2)

=
∑
z∈Zn

�

P

χ−z+L(x) dx =
�

P

( ∑
z∈Zn

χ−z+L(x)
)
dx

≥
�

P

s dx = s.

Hence vol(µsK) ≥ s. Combining this observation with the homogeneity of
the volume we obtain the lower bound.

For the upper bound we may assume s ≥ 2, since there is nothing to
prove for s = 1. The first two lines of (2.2) also prove a well-known result
of van der Corput [12, p. 47], which in our setting of a convex body says: if
L ∈ Kn with volL ≥ s − 1 then there exists a t ∈ P such that t is covered
by at least s lattice translates of L. Hence for µ = ((s − 1)/volK)1/n we
know that there exist z1, . . . , zs ∈ Zn and a t ∈ P such that t ∈ zi + µK,
1 ≤ i ≤ s. Now given an arbitrary t ∈ Rn we know by the definition of the
covering radius µ1 that there exists a z ∈ Zn such that t − t ∈ z + µ1K.
Hence

t ∈ (z + zi) + (µ1 + µ)K, 1 ≤ i ≤ s,

and so µs ≤ µ1 + µ, which gives the upper bound.

It is also worth a mention that, as an immediate corollary of Lemma 2.2
and tools from the Geometry of Numbers, we can obtain upper bounds on
µs(K,Λ) for any s ≥ 1 in terms of successive minima of K with respect
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to Λ. Recall that the successive minima λi(K,Λ) of a convex body K ∈ Kn

with respect to a lattice Λ ∈ Ln are defined by

λi(K,Λ) = min{λ > 0 : dim(λ(K −K) ∩ Λ) ≥ i}, 1 ≤ i ≤ n.

Proposition 2.3. Let s ∈ N, s ≥ 1, K ∈ Kn and let Λ ∈ Ln. Then

µs(K,Λ) ≤
(

1 +
(n!)1/n

n
(s− 1)1/n

) n∑
i=1

λi(K,Λ).

Proof. It was pointed out by Kannan and Lovász [15, Lemma 2.4] that
Jarńık’s inequalities, relating the covering radius and the successive minima
of 0-symmetric convex bodies, are also valid for arbitrary bodies. Hence we
have

(2.3) µ1(K,Λ) ≤
n∑

i=1

λi(K,Λ).

On the other hand it is also well known that Minkowski’s theorems on
successive minima can also be extended to the family of arbitrary convex
bodies ([12, p. 59], [13]) and in particular, we have

(2.4) volK
n∏

i=1

λi(K,Λ) ≥ 1

n!
detΛ.

Applying (2.3) and (2.4) to the upper bound on µs(K,Λ) in Lemma 2.2
leads to

µs(K,Λ) ≤ µ1(K,Λ) + (s− 1)1/n
(

detΛ

volK

)1/n

≤
n∑

i=1

λi(K,Λ) + (s− 1)1/n
(
n!

n∏
i=1

λi(K,Λ)
)1/n

≤ (1 + ((n!)1/n/n)(s− 1)1/n)

n∑
i=1

λi(K,Λ),

by the arithmetic-geometric mean inequality.

Unfortunately, we are not aware of a nice generalization of Jarńık’s lower
bound (cf. [15, Lemma 2.4]) µ1(K,Λ) ≥ λn(K,Λ) to the s-covering radius.

3. Frobenius number and covering radius. For a given primitive
positive vector a = (a1, . . . , an)ᵀ ∈ Zn

>0 let

Sa = {x ∈ Rn−1
≥0 : a1x1 + · · ·+ an−1 xn−1 ≤ 1}

be the (n−1)-dimensional simplex with vertices 0, (1/ai)ei where ei is the ith
unit vector in Rn−1, 1 ≤ i ≤ n− 1. Furthermore, we consider the following
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sublattice of Zn−1:

Λa = {z ∈ Zn−1 : a1z1 + · · ·+ an−1zn−1 ≡ 0 mod an}.

This simplex and lattice were introduced by Kannan in his studies of the
Frobenius number [14], where he proved the following beautiful identity:

µ1(Sa, Λa) = F1(a) + a1 + · · ·+ an.

Here we just extend his arguments to the s-Frobenius number. We start
with the following lemma about an “integral version” of µs(Sa, Λa).

Lemma 3.1. Let n ≥ 2, s ≥ 1, and let

µs(Sa, Λa;Zn−1) = min{ρ > 0 : #{(z + ρSa) ∩ Λa} ≥ s ∀z ∈ Zn−1}.

Then

µs(Sa, Λa;Zn−1) = Fs(a) + an.

Proof. To simplify the notation, for each y ∈ Rn let ỹ = (y1, . . . , yn−1)
ᵀ

be the vector consisting of the first n − 1 coordinates of y. Further, let
µs = µs(Sa, Λa;Zn−1) and Fs = Fs(a).

First we show that µs ≤ Fs + an. To this end, let z ∈ Zn−1 and let
k ∈ {1, . . . , an} be such that ãᵀ z ≡ −(Fs + k) mod an. By the definition
of Fs we can find b1, . . . , bs ∈ Zn

≥0 with aᵀbi = Fs + k, 1 ≤ i ≤ s. Hence

we have found s different lattice vectors z + b̃i ∈ Λa, 1 ≤ i ≤ s, and since
b̃i ∈ (Fs + k)Sa we obtain

z + b̃i ∈ z + (Fs + an)Sa, 1 ≤ i ≤ s.

Hence µs ≤ Fs + an, and it remains to show the reverse inequality.

Since gcd(a) = 1, we can find a z ∈ Zn−1 with ãᵀz ≡ Fs mod an. Now
suppose that for a 0 < γ < Fs + an we can find g1, . . . , gs ∈ Λa such that
gi ∈ z + γ Sa. Since ãᵀ(gi − z) ≡ Fs mod an and ãᵀ(gi − z) ≤ γ < Fs + an,
we conclude that there exist non-negative integers mi with

ãᵀ(gi − z) = Fs −mi an, 1 ≤ i ≤ s.

Since gi ∈ z + γ Sa, we conclude that (gi − z) is a vector with non-negative
integer coordinates, and so ãᵀ(gi − z) + mi an, 1 ≤ i ≤ s, are s different
non-negative integral representations of Fs, which contradicts the definition
of Fs. This proves that µs ≥ Fs+an, and completes the proof of the lemma.

The next theorem is the promised canonical extension of Kannan’s The-
orem 2.5 in [14] for the classical Frobenius number.

Theorem 3.2. Let n ≥ 2, s ≥ 1. Then

µs(Sa, Λa) = Fs(a) + a1 + · · ·+ an.
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Proof. We keep the notation of Lemma 3.1 and its proof, and in addition
we set µs = µs(Sa, Λa). In view of Lemma 3.1, we have to show that

(3.1) µs = µs + (a1 + · · ·+ an−1).

First we verify the inequality µs ≤ µs + a1 + · · ·+ an−1. Since the (n− 1)-
dimensional closed cube P = [0, 1]n−1 of edge length 1 is contained in
(a1 + · · ·+ an−1)Sa, we have

Rn−1 = Zn−1 + (a1 + · · ·+ an−1)Sa.

Hence, in view of (2.1), it suffices to verify that for each z ∈ Zn−1,

#{(z + µsSa) ∩ Λa} ≥ s,

which follows by the definition of µs.

Now suppose µs < µs + a1 + · · · + an−1. By Lemma 3.1, there exists a
z ∈ Zn−1 such that for any subset Is ⊂ Λa of cardinality at least s there
exists a b ∈ Is with (z − b) /∈ int(µsSa), where int(·) denotes the interior of
a set. Let u ∈ Zn−1 be the vector with all coordinates equal to 1. By our
assumption, there exist at least s lattice points bi ∈ Λa, 1 ≤ i ≤ s, such
that (z + u) ∈ bi + int((µs + a1 + · · ·+ an−1)Sa). Then this is certainly also
true for any sufficiently small positive ε and the point z + (1 − ε)u. Thus,
for 1 ≤ i ≤ s,

µs + a1 + · · ·+ an−1 > ãᵀ(z + (1− ε)u− bi)
= ãᵀ(z − bi) + (1− ε)(a1 + · · ·+ an−1).

Since ε is an arbitrary sufficiently small positive real number, we conclude
that ãᵀ(z− bi) < µs, 1 ≤ i ≤ s. On the other hand, we have z+ (1− ε)u− bi
≥ 0, which implies z− bi ≥ 0, 1 ≤ i ≤ s. In other words, the s lattice points
b1, . . . , bs lie in the interior of z + µs Sa, which contradicts the definition
of µs.

We remark that in the case n = 2, Sa is just the segment [0, 1/a1] and
Λa is the set of all integral multiplies of a2, i.e., Λa = Za2. Hence, in this
special case,

µs(Sa, Λa) = sa1a2,

which gives, via Theorem 3.2, another proof of (1.1).

Proof of Theorem 1.1. First we observe that detΛa = an. This follows,
for instance, from the fact that there are at most an residue classes of the
sublattice Λa with respect to Zn−1, and since gcd(a) = 1 we have exactly an
distinct residue classes. Next we note for the ((n− 1)-dimensional) volume
of Sa that

volSa =
1

(n− 1)!

1

a1 · . . . · an−1
,
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so that detΛa/volSa = (n− 1)!a1 · . . . · an. Hence Lemma 2.2 and Theorem
3.2 give the desired bounds.

4. Average behavior. It will be convenient to define

Xs(a) =
Fs(a)

(s · a1 · . . . · an)1/(n−1)

for each a ∈ G(T ). We start with

Proof of Corollary 1.2. For (i), we observe that by (1.4) we may assume
s ≥ 2 and by the upper bound of Theorem 1.1 we have

(4.1) Xs(a) ≤ s−1/(n−1)X1(a) + cn,

for a dimensional constant cn = ((n − 1)!)1/(n−1). Hence, (1.4) implies for,
say, D ≥ 2cn,

Prob(Xs(a) ≥ D)�n
1

s
(D − cn)−(n−1) ≤ D−(n−1).

Now, in view of (1.3), inequality (4.1) also implies that

1

#G(T )

∑
a∈G(T )

Xs(a) ≤ s−1/(n−1)
(

1

#G(T )

∑
a∈G(T )

X1(a)

)
+ cn �n 1.

In order to show that the left hand side is also bounded from below by a
constant depending only on n, we use the lower bound of Theorem 1.1 and
obtain

1

#G(T )

∑
a∈G(T )

Xs(a) > cn − s−1/(n−1)
1

#G(T )

∑
a∈G(T )

a1 + · · ·+ an

(a1 · . . . · an)1/(n−1)
.

The latter sum has already been investigated in [3], where the proof of
Proposition 1 shows precisely that

1

#G(T )

∑
a∈G(T )

a1 + · · ·+ an

(a1 · . . . · an)1/(n−1)
≤ Cn T

−1/(n−1)

for another constant Cn depending only on n. Hence, for sufficiently large T
we obtain

1

#G(T )

∑
a∈G(T )

Xs(a)�n 1,

which completes the proof of (ii).
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