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1. Introduction. Let a be a positive integral n-dimensional primitive
vector, i.e., a = (a1,...,a,)7 € Z2 with ged(a) := ged(ay,...,a,) =1, so
that a1 < -+ < ay. For a positive integer s the s-Frobenius number Fs(a) is
the largest number that cannot be represented in at least s different ways
as a non-negative integral combination of the a;’s, i.e.,

Fs(a) = max{b € Z: #{z € Z3, : (a, z) = b} < s},

where (-,-) denotes the standard inner product on R™.
This generalized Frobenius number has been introduced and studied by
Beck and Robins [6], who showed, among other results, that for n = 2,

(1.1) Fs(a) = saraz — (a1 + a2).

In particular, this identity generalizes the well-known result in the setting of
the (classical) Frobenius number which corresponds to s = 1. The origin of
this classical result is unclear, it was most likely known already to Sylvester
(see, e.g., [22]). The literature on the Frobenius number Fi(a) is vast; for
a comprehensive and extensive survey we refer the reader to the book of
Ramirez Alfonsin [1§].

Despite the exact formula in the case n = 2, for general n only bounds
on the Frobenius number F(a) are available. For instance, if n > 3, then

(1.2) ((n—=Dlar-...-an) "V (a1 +--- +an) < Fi(a) < 2a, [Cﬂ —ar.

Here the lower bound follows from a sharp lower bound due to Aliev and
Gruber [I], and the upper bound is due to Erdés and Graham [§]. Hence,
in the worst case scenario we have an upper bound of the order |al?, on the
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Frobenius number with respect to the maximum norm of the input vector a.
It is worth a mention that an upper bound on Fj(a), which is symmetric
in all of the a;’s has recently been produced by Fukshansky and Robins [9].
The quadratic order of the upper bound is known to be optimal (see, e.g.,
[8]) and in view of the lower bound which is at most of size |a]g<{(n_1) it is
quite natural to study the average behavior of Fi(a).

This research was initiated and strongly influenced by Arnold [4], [5], and
due to recent results of Bourgain and Sinai [7], Aliev and Henk [2], Aliev,
Henk and Hinrichs [3], Marklof [I7], Li [16], Shchur, Sinai and Ustinov [20],
Strombergsson [21] and Ustinov [23] we have a pretty clear picture of “the
average Frobenius number”.

In order to describe some of these results, which are going to extend to

the s-Frobenius number F4(a), we need a bit more notation. Let
G(T) ={a€Z% : ged(a) =1, |alec < T}

be the set of all possible input vectors of the Frobenius problem of size (in
maximum norm) at most 7". Aliev, Henk and Hinrichs [3] showed that

sup ZaeG(T) Fi(a)/(ay - ... a,)"=1
T #G(T)
i.e., the expected size of Fi(a) is “close” to the size of its lower bound

in ([1.2)); here and below, <,, and >, denote the Vinogradov symbols with
the constant depending on n only. Recently, Li [16] gave the bound

(1.4) Prob(Fi(a)/(ay - ...- an)l/(”—l) > D) <y, p—(n=1),

where Prob(-) is meant with respect to the uniform distribution among all
points in the set G(T"). The bound is best possible due to an unpub-
lished result of Marklof, and clearly implies .

The main purpose of this paper is to extend the results stated above,

ie., (1.2)), (1.3) and (1.4)), to the generalized Frobenius number Fy(a) in the

following way:
THEOREM 1.1. Letn > 2, s > 1. Then
Fo(a) > sYD((n—Dlay - ... an)/™™D = (a1 4 - + ap),
Fs(a) < Fi(a)+ (s — 1)1/(7171)((71 —D0ay-...- an)l/("fl).

Bounds with almost the same dependencies on s were recently obtained
by Fukshansky and Schiirmann [I0]. Their lower bound, however, is only
valid for sufficiently large s. Aliev and Gruber [I] applied the results of
Schinzel [19] to obtain a sharp lower bound for the Frobenius number in
terms of the covering radius of a simplex. The same approach can be used to
obtain a sharp lower bound for the s-Frobenius number as well. We postpone
a detailed discussion of these matters to a future paper.

(1.3) <> 1,
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As an almost immediate consequence of Theorem [I.1] we obtain:
COROLLARY 1.2. Letn >3, s> 1. Then
(i) Prob(Fy(a)/(s-ay - ... an)"/™ Y > D) <, D=1,

ZaGG(T) Fg(a)/(s-a1-...- an)l/(n_l)
" #G(T)
Hence in this generalized setting the average s-Frobenius number is of
the size (s-aj-...-a,)"/™Y, which again is the size of its lower bound as
stated in Theorem [T.1]

The proof of Theorem is based on a generalization of a result of Kan-
nan which relates the classical Frobenius number to the covering radius of
a certain simplex with respect to a certain lattice. In our setting we need a
kind of generalized covering radius, whose definition as well as some prop-
erties and background information from the Geometry of Numbers will be
given in Section [2| In Section [3| we will prove, analogously to the mentioned
result of Kannan, an identity between Fg(a) and this generalized covering
radius and will present a proof of Theorem [I.I} The last section contains a

proof of Corollary

(ii) <>, 1

2. The s-covering radius. In what follows, let K™ be the space of all
full-dimensional convex bodies, i.e., closed bounded convex sets with non-
empty interior in the n-dimensional Fuclidean space R™. The volume of a
set X C R", i.e., its n-dimensional Lebesgue measure, is denoted by vol X.
Moreover, we denote by L£" the set of all n-dimensional lattices in R”, i.e.,
L' ={B7Z": B € R™*", detB # 0}. For A = BZ" € L", det A = |det B
is called the determinant of the lattice A. Here we are interested in the
following quantity:

DEFINITION 2.1. Let s € N, s > 1. For K € K™ and A € L™ let

ws(K, A) =min{p > 0 : for all ¢ € R" there exist by,...,bs € A
such that t € b; + pK V1 <i < s}

be the smallest positive number u such that any ¢ € R" is covered by at
least s lattice translates of K. Then ug(K, A) is called the s-covering radius
of K with respect to A.

For s = 1 we get the well-known covering radius, for the information
about which we refer the reader to Gruber [11] and Gruber and Lekkerkerker
[12]. These books also serve as excellent sources for more information on
lattices and convex bodies in the context of Geometry of Numbers.

Note that the s-covering radius is different from the jth covering mini-
mum introduced by Kannan and Lovéasz [15]. We also remark that ps(K, A)
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may be described equivalently as the smallest positive number p such that
any translate of uK contains at least s lattice points, i.e.,

(2.1) ps(K, A) =min{p > 0: #{(t + pK)N A} > s for all t € R"}.
LEMMA 2.2. Let se N, s>1, K € K" and let A € L™. Then

det A\ /™ det A\ /"
(S i) < () + s (SR

Proof. 1t suffices to prove these inequalities for the standard lattice Z"
of determinant 1; for brevity, we will just write us instead of ps(K,Z™). The
lower bound just reflects the fact that each point of R™ is covered at least
s times by the lattice translates of Z" + usK. A standard argument to see
this in a more precise way is the following.

Let P = [0,1)" be the half-open cube of edge length 1, and for L C R"
let xz : R™ — {0, 1} be its characteristic function, i.e., xp(x) =1 if z € L,
otherwise it is 0. Then with L = us;K we get

(2.2) vol L = S xr(z)dx = S xr(x)de = Z S xr(z)dx
Rn Zn+P 2€L" z+P
:st—z—i-L dflf—g(ZX z+L )
2€Zn P 2€Zn
> S sdx = s.
P

Hence vol(us K) > s. Combining this observation with the homogeneity of
the volume we obtain the lower bound.

For the upper bound we may assume s > 2, since there is nothing to
prove for s = 1. The first two lines of also prove a well-known result
of van der Corput [12] p. 47], which in our setting of a convex body says: if
L € K™ with vol L > s — 1 then there exists a t € P such that t is covered
by at least s lattice translates of L. Hence for i = ((s — 1)/vol K)Y/™ we
know that there exist 21,...,2s € Z"™ and a t € P such that t € z; + uK,
1 < i <s. Now given an arbitrary ¢ € R”™ we know by the definition of the
covering radius p; that there exists a z € Z" such that t — ¢ € 2z + 11 K.
Hence

te(z4+z)+ (um+pkK, 1<i<s,
and so pus < uy + I, which gives the upper bound. =
It is also worth a mention that, as an immediate corollary of Lemma

and tools from the Geometry of Numbers, we can obtain upper bounds on
ps(K, A) for any s > 1 in terms of successive minima of K with respect
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to A. Recall that the successive minima \;(K, A) of a convex body K € K"
with respect to a lattice A € L™ are defined by
MNi(K,A) =min{A > 0:dim(MK —K)nA) >i}, 1<i<n.
PROPOSITION 2.3. Let se N, s> 1, K € K" and let A € L™. Then

ps(K, A) < <1 e jll/n 1/”> Z)\ K, A).

Proof. It was pointed out by Kannan and Lovasz [15, Lemma 2.4] that
Jarnik’s inequalities, relating the covering radius and the successive minima
of O-symmetric convex bodies, are also valid for arbitrary bodies. Hence we
have

n

i=1
On the other hand it is also well known that Minkowski’s theorems on
successive minima can also be extended to the family of arbitrary convex
bodies ([12, p. 59], [13]) and in particular, we have

u 1
(2.4) vol K [[Ai(K, 4) > — det A.

i=1

Applying (2.3) and (2.4) to the upper bound on ps(K,A) in Lemma
leads to

det A\ /™
vol K

US(Ka A) < MI(K?A) + (8 — 1)1/n<
<3N A+ =0 (ot [tk )
i=1 ;

< (L+ ()™ /n)(s — 1)1/ ZA (K, A),

by the arithmetic-geometric mean inequality. =

Unfortunately, we are not aware of a nice generalization of Jarnik’s lower
bound (cf. [15, Lemma 2.4]) p1 (K, A) > N\, (K, A) to the s-covering radius.

3. Frobenius number and covering radius. For a given primitive
positive vector a = (a1,...,a,)7 € Z let

Sa = {x € RTZLBl ca 1+t apo1 a1 < 1}

be the (n—1)-dimensional simplex with vertices 0, (1/a;)e; where e; is the ith
unit vector in R"~!, 1 <4 < n — 1. Furthermore, we consider the following
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sublattice of Z"~ 1
Ay =1z € Z a1z 4+ 4 an—12n—1 = 0 mod an}.

This simplex and lattice were introduced by Kannan in his studies of the
Frobenius number [14], where he proved the following beautiful identity:

Ml(SaaAa) = Fl(a) +a+---+ap.

Here we just extend his arguments to the s-Frobenius number. We start
with the following lemma about an “integral version” of (S, Aqg).

LEMMA 3.1. Letn > 2, s > 1, and let
trs(Sa, Aa; Z" Y = min{p > 0 : #{(z + pSa) N A} > s V2 € Z" 1.

Then
s(Sas Aa;anl) = Fs(a) + an.

Proof. To simplify the notation, for each y € R™ let ¥ = (y1,...,Yn—1)7
be the vector consisting of the first n — 1 coordinates of y. Further, let
s = jts(Sa, Aq; Z"1) and Fy = Fy(a).

First we show that @w; < Fs 4 a,. To this end, let z € 7" 1 and let
k € {1,...,a,} be such that aT 2 = —(Fs + k) mod a,. By the definition
of Fy we can find by1,...,bs € Z%, with aTh; = Fs +k, 1 < ¢ < s. Hence
we have found s different lattice vectors z + b; € Ag, 1 < i < s, and since
b; € (Fs + k) S, we obtain

z+l)~i€z—|—(Fs+an)Sa, 1<i<s.
Hence 7z < Fg 4 ay, and it remains to show the reverse inequality.

Since ged(a) = 1, we can find a z € Z"! with a7z = Fg mod a,,. Now
suppose that for a 0 < v < Fs + a, we can find ¢1,...,9s € A, such that
gi € 2+ 7S, Since aT(g; — z) = Fs mod a,, and aT(g; — 2) < v < Fs + ay,
we conclude that there exist non-negative integers m; with

a'(gi—z)=Fs—mja,, 1<i<s.

Since g; € z + v Sy, we conclude that (g; — z) is a vector with non-negative
integer coordinates, and so aT(g; — z) + m;an,, 1 < i < s, are s different
non-negative integral representations of F, which contradicts the definition
of Fs. This proves that ; > Fs+a,, and completes the proof of the lemma. =

The next theorem is the promised canonical extension of Kannan’s The-
orem 2.5 in [14] for the classical Frobenius number.

THEOREM 3.2. Letn > 2, s > 1. Then

ﬂs(SaaAa) = Fs(a) +a1+ -+ ap.
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Proof. We keep the notation of Lemma [3.]and its proof, and in addition
we set f1s = fs(Sq, Aq). In view of Lemma we have to show that

(31) M8:E+(a1+"'+an71)'
First we verify the inequality ps < Tis + a1 + -+ + ap—1. Since the (n —1)-
dimensional closed cube P = [0,1]""! of edge length 1 is contained in

(a1 + -+ an—1)Sq, we have
R =7Z"1 4 (ay 4+ +an_1)S,.
Hence, in view of (2.1)), it suffices to verify that for each z € Z" 1,

#{(z +ES@) N Aa} > s,

which follows by the definition of ;.

Now suppose ps < s +ay + -+ + ap—1. By Lemma there exists a
z € Z" ! such that for any subset I, C A, of cardinality at least s there
exists a b € Iy with (z — b) ¢ int(@5S,), where int(-) denotes the interior of
a set. Let u € Z"! be the vector with all coordinates equal to 1. By our
assumption, there exist at least s lattice points b; € A,, 1 < i < s, such
that (z 4+ u) € b; +int((fts + a1 + - - - + an—1)Ss). Then this is certainly also
true for any sufficiently small positive € and the point z + (1 — €)u. Thus,
for 1 <i<s,

fs+ar+--+ap_1 >a"(z+ (1 —€eu—1b)
=a'(z—b)+(1—¢€)(ar+--+an_1)-

Since € is an arbitrary sufficiently small positive real number, we conclude
that a™(z —b;) < 15, 1 <14 < s. On the other hand, we have z+ (1 —€)u —b;
> 0, which implies z — b; > 0, 1 <7 < s. In other words, the s lattice points
bi,...,bs lie in the interior of z + fu5.S,, which contradicts the definition
of lig. m

We remark that in the case n = 2, S, is just the segment [0,1/a1] and
Ag is the set of all integral multiplies of as, i.e., A, = Zao. Hence, in this
special case,

fs(Sas Aa) = saraz,
which gives, via Theorem another proof of (|1.1)).

Proof of Theorem [I.1. First we observe that det A, = a,. This follows,
for instance, from the fact that there are at most a,, residue classes of the
sublattice A, with respect to Z"~!, and since ged(a) = 1 we have exactly a,,
distinct residue classes. Next we note for the ((n — 1)-dimensional) volume
of S, that

1 1

1S, =
Voloa (n—l)!al-...-an_l’
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so that det A,/vol S = (n —1)lay - ... ay. Hence Lemma [2.2) and Theorem
B.2] give the desired bounds. =

4. Average behavior. It will be convenient to define
Fs(a)

(s-ay-... ap)t/(n=1)

for each a € G(T'). We start with

Proof of Corollary[1.9 For (i), we observe that by (1.4) we may assume
s > 2 and by the upper bound of Theorem [I.1] we have

(4.1) Xs(a) < 3_1/(”_1)X1(a) + cp,

for a dimensional constant ¢, = ((n — 1)!)Y/(=1_ Hence, (T.4) implies for,
say, D > 2c¢,,

Xs(a) =

Prob(X,(a) > D) <y (D — )~V < p=(n-1).
S

Now, in view of (1.3]), inequality (4.1)) also implies that

- a) < s~ M=) 1 a ¢
er) > Xila) < <#G(T) > X )>+ n <n 1.

a€G(T) a€G(T)

In order to show that the left hand side is also bounded from below by a
constant depending only on n, we use the lower bound of Theorem and
obtain

1 1 /(n— 1 ar+ - +ap
S o)z MOy
#G(T) a€G(T) #G(T) a€G(T) (ar - an) /070

The latter sum has already been investigated in [3], where the proof of
Proposition 1 shows precisely that

1 ay+---+ap 1 /(-
§ : <C, T V1
. . 1/(n—1) — 1
#G(T) eeris (ay ... ay)t/ (=1

for another constant C,, depending only on n. Hence, for sufficiently large T’
we obtain

1
#G(T)

Z Xs(a) >n 1,

aeG(T)

which completes the proof of (ii). m
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