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1. Introduction. Study of the case of curves (Cassels, Tate) and of the
case of rational surfaces (Colliot-Thélène et Sansuc [CT/S81], where a more
precise conjecture is made for rational surfaces) has led to the following
conjecture for zero-cycles on arbitrary varieties over global fields (Kato and
Saito [K/S86], Saito [S89], Colliot-Thélène [CT95], [CT99]).

Conjecture 1.1. Let X be a smooth, projective, geometrically integral
variety over a global field k. If there exists a family {zv}v∈Ω of local zero-
cycles of degree 1 (here v runs through the set Ω of places of k) such that
for all A ∈ Br(X), ∑

v∈Ω
invv(A(zv)) = 0 ∈ Q/Z,

then there exists a zero-cycle of degree 1 on X. In other words, the Brauer–
Manin obstruction to the existence of a zero-cycle of degree 1 on X is the
only obstruction.

Over number fields, this conjecture has been established in special cases
in work of (alphabetical order, and various combinations) Colliot-Thélène,
Frossard, Salberger, Sansuc, Skorobogatov, Swinnerton-Dyer, Wittenberg
(see the introduction of [W10]). None of these results applies to smooth
surfaces of degree d at least 3 in 3-dimensional projective space—for d ≥ 5
these surfaces are of general type. In Section 2, we establish the conjec-
ture in the special case of a global field k = F(t) purely transcendental
over a finite field F and of smooth surfaces X ⊂ P3

k defined by an equation
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f + tg = 0, where f and g are two forms of arbitrary degree d over the
field F.

According to a conjecture of Colliot-Thélène and Sansuc [CT/S80], the
Brauer–Manin obstruction to the existence of a rational point on a smooth,
geometrically rational surface defined over a global field should be the only
obstruction. Such should in particular be the case for smooth cubic surfaces
in 3-dimensional projective space P3

k. In Section 3, we establish the conjec-
ture in the special case of a global field k = F(t) purely transcendental over
a finite field F and of smooth cubic surfaces X ⊂ P3

k defined by an equation
f + tg = 0, where f and g are two cubic forms over the field F. Simple
though they be, such surfaces may fail to obey the Hasse principle.

2. Zero-cycles of degree 1 on surfaces of arbitrary degre. The
following theorem is due to S. Saito [S89]. It says that if a strong integral
form of the Tate conjecture on 1-dimensional cycles is true, then the above
conjecture holds, at least if we stay away from the characteristic of the field.
For an alternative proof of Theorem 2.1, see [CT99, Prop. 3.2].

Theorem 2.1 (Saito). Let F be a finite field and C/F a smooth, projec-
tive, geometrically integral curve over F. Let k = F(C) be its function field.
Let X be a smooth, projective, geometrically integral F-variety of dimension
n and f : X → C a faithfully flat map whose generic fibre X/k is smooth
and geometrically integral. Assume:

(1) For each prime l 6= char(F), the cycle map

TX : CHn−1(X )⊗Zl → H2n−2
ét (X ,Zl(n− 1))

from the Chow group of dimension 1 cycles on X to étale cohomology
is onto.

(2) There exists a family {zv}v∈Ω of local zero-cycles of degree 1 (here v
runs through the set Ω of places of k) such that for all A ∈ Br(X),∑

v∈Ω
invv(A(zv)) = 0 ∈ Q/Z.

Then there exists a zero-cycle on X of degree a power of char(F).

In this statement, A(zv) is the element of the Brauer group of the local
field kv obtained by evaluation of A on the zero-cycle zv. The map invv :
Br(kv)→ Q/Z is the local invariant of class field theory.

Here is one case where assumption (1) in the previous theorem is fulfilled.

Theorem 2.2. Let F be a finite field and l a prime, l 6= char(F). For a
smooth, projective, geometrically integral threefold X over F which is bira-
tional to P3

F , the cycle map TX : CH2(X )⊗ Zl → H4
ét(X ,Zl(2)) is onto.
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Proof. If X = P3
F, then CH2(X ) = Z and one easily checks that the cycle

map

TX : CH2(X )⊗ Zl → H4
ét(X ,Zl(2))

is simply the identity map Zl → Zl. Using the standard formulas for the com-
putation of Chow groups and of cohomology for a blow-up along a smooth
projective subvariety, as well as the vanishing of Brauer groups of smooth
projective curves over a finite field, one shows: For X a smooth projective
threefold, the cokernel of the above cycle map TX is invariant under blow-up
of smooth projective subvarieties on X .

By a result of Abhyankar [Abh66, Thm. 9.1.6], there exists a smooth
projective variety X ′ which is obtained from P3

F by a sequence of blow-
ups along smooth projective F-subvarieties, and which is equipped with a
birational F-morphism p : X ′ → X .

There are push-forward maps π∗ and pull-back maps π∗ both for Chow
groups and for étale cohomology, and for the birational map π we have
π∗ ◦ π∗ = id. Moreover these maps are compatible with the cycle class map.
Thus the cokernel of TX is a subgroup of the cokernel of TX ′ , hence is zero.

Combining Theorems 2.1 and 2.2, we get:

Theorem 2.3. Let F be a finite field and C/F a smooth, projective,
geometrically integral curve over F. Let k = F(C) be its function field. Let
X be a smooth, projective, geometrically integral F-variety of dimension n
and f : X → C a faithfully flat map whose generic fibre X/k is smooth and
geometrically integral. Assume:

(1) dimX = 3 and X is F-rational.
(2) There exists a family {zv}v∈Ω of local zero-cycles of degree 1 (here v

runs through the set Ω of places of k) such that for all A ∈ Br(X),∑
v∈Ω

invv(A(zv)) = 0 ∈ Q/Z.

Then there exists a zero-cycle on X of degree a power of char(F).

We may now prove the main result of this section.

Theorem 2.4. Let F be a finite field, let f, g be two nonproportional
homogeneous forms in 4 variables, of degree d prime to the characteristic
of F. Let k = F(t). Suppose the k-surface X ⊂ P3

k defined by f + tg = 0 is
smooth. If there is no Brauer–Manin obstruction to the Hasse principle for
zero-cycles of degree 1 on X, then:

(i) There exists a zero-cycle of degree 1 on the k-surface X.
(ii) There exists a zero-cycle of degree 1 on the F-curve Γ defined by

f = g = 0 in P3
F.
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Proof. Let X1 ⊂ P3
F ×F P1

F be the schematic closure of X ⊂ P3
F(t). The

F-variety X1 has an affine birational model with equation

φ(x, y, z) + tψ(x, y, z) = 0,

hence t is determined by x, y, z, thus X is F-birational to P3
F. Since X1 admits

a smooth projective model over F, a result of Cossart [Co92, Théorème,
p. 115] shows that there exists a smooth projective threefold X/F and an F-
birational morphism X → X1 which is an isomorphism over the smooth locus
of X1, hence in particular which induces an isomorphism over SpecF(t) ⊂ P1

F.
That is, the generic fibre of X → P1

F is k-isomorphic to X/k.
Statement (i) then follows from Thm. 2.3. Statement (ii) follows from (i)

as a special application of a result of Colliot-Thélène and Levine [CT/L10,
Théorème 1, p. 217].

Remark 2.5. Theorem 2.4 is of interest only in the case where the F-
curve Γ does not contain a geometrically integral component. Otherwise
the two statements immediately follow from the Weil estimates for the
number of points on geometrically integral curves. These estimates actu-
ally provide more: they show that if there exists such a component, then
on any field extension F′ of F of high enough degree, there exists an F′-
point on Γ , hence for any such field there exists an F′(t)-point on the F(t)-
surface X.

Remark 2.6. One could try to circumvent the cohomological machinery,
i.e. Theorems 2.1 and 2.2. For this, in each of the special cases where there
are zero-cycles of degree 1 everywhere locally on X but there is no zero-cycle
of degree 1 on the curve Γ , one should:

(i) Check that the Brauer group is not trivial, find generators.
(ii) Check that there is a Brauer–Manin obstruction.

Already when the common degree of f and g is 3, which we shall now more
particularly examine, this seems no easy enterprise.

3. Rational points on cubic surfaces. The proof of the following
theorem is independent of the previous results.

Theorem 3.1. Let F be a finite field, let f, g be two nonproportional
cubic forms over F in 4 variables. Assume the characteristic of F is not 3.
Let k = F(t). Suppose the k-surface X ⊂ P3

k defined by f+ tg = 0 is smooth.
Let Γ ⊂ P3

F be the complete intersection curve defined by f = g = 0. The
following conditions are equivalent:

(i) There exists a k-rational point on the k-variety X.
(ii) There exists a zero-cycle of degree 1 on the k-variety X.

(iii) There exists a zero-cycle of degree 1 on the F-curve Γ .
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(iv) There exists a closed point of degree prime to 3 on the F-curve Γ .
(v) There exists a closed point of degree a power of 2 on the F-curve Γ .

Proof. That (i) implies (ii) is trivial. That (ii) implies (iii) is a special
case of [CT/L10]. Statements (iii) and (iv) are equivalent, since Γ is a curve
of degree 9. If (v) holds, then Γ has a point in a tower of quadratic extensions
of F, hence the cubic surface X has a point in a tower of quadratic extensions
of k. An extremely well known argument shows that if a cubic surface over
a field has a point in a separable quadratic extension of that field, then it
has a rational point: the line joining two conjugate points is defined over
the ground field, and either it is entirely contained in the cubic surface or it
meets it in a third, rational point. Iterating this remark, we see that X has
a rational point, i.e. (i) holds.

Let us prove that (iii) implies (v). To this end, one may replace F by its
maximal pro-2-extension F , which we now do. For an odd integer n, we let
Fn/F be the unique, cyclic, field extension of F of degree n.

For Z/L a variety over a field L, the index ind(Z) = ind(Z/L) is the gcd
of the L-degrees of closed points on Z. The index of an L-variety is equal
to the index of its reduced L-subvariety. The index of an L-variety which is
a finite union of L-varieties is the gcd of the indices of each of them. The
assumption made in (iii) is precisely that the index of the curve Γ is 1.

Since F has no quadratic or quartic extension, an effective zero-cycle
of degree 1, 2, 4 contains an F -rational point, and an effective zero-cycle of
degree 3, 6, 9 either contains an F -point or has index a multiple of 3.

If Γ contains a geometrically integral component, then Γ (F ) 6= ∅ (Weil
estimates, see Remark 2.5).

Suppose Γ does not contain a geometrically integral component. One
then easily checks that the degree 9 curve Γ can break up only in one of the
following ways:

9 = 3(1 + 1 + 1),

9 = 2(1 + 1 + 1) + (1 + 1 + 1),

9 = (2 + 2 + 2) + (1 + 1 + 1),

9 = (1 + 1 + 1) + (1 + 1 + 1) + (1 + 1 + 1),

9 = (1 + · · ·+ 1) (9 times),

9 = (3 + 3 + 3).

Here m(a+a+a) means the sum of three conjugate integral curves of degree
a over F with multiplicity m.

An integral curve of degree 2 over F is a smooth plane conic, contained
in a well-defined plane. An integral curve of degree 3 over F is either a plane
cubic or a smooth twisted cubic.
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Let the integral curve C ⊂ P3
F break up as (1 + 1 + 1). The singular

set consists of at most three points. Then either C(F ) 6= ∅ or 3 divides
ind(C).

Let the integral curve C ⊂ P3
F break up as (2 + 2 + 2). Each conic

is defined over F3. Two distinct smooth conics on f = 0 define two dis-
tinct planes, hence they intersect in at most two geometric points. Such
points must already be in F3. Thus any closed point in the singular locus
of C has degree 1 or 3. One concludes that either C(F ) 6= ∅ or 3 divides
ind(C).

Let the integral curve Γ ⊂ P3
F break up as (1 + · · ·+ 1) (9 times). The

nine lines are defined over F9, the degree 9 extension of F . So are their
intersection points. This implies that any singular closed point on Γ has
degree a power of 3. Thus Γ (F ) 6= ∅ or 3 divides ind(Γ ).

Let the integral curve Γ ⊂ P3
F break up as (3 + 3 + 3), and assume that

this corresponds to a decomposition as three conjugate plane cubics. Each
of these is defined over F3. The intersection number of two of these cubics
is 3. The points of intersection of two such curves are thus defined over F9.
We conclude that the singular locus of Γ splits over F9. This implies that
the degree of any closed point in that locus is a power of 3. Thus either
Γ (F ) 6= ∅ or 3 divides ind(Γ ).

Let the curve Γ ⊂ P3
F break up as (3 + 3 + 3), and assume that Γ

breaks up as the sum of three conjugate twisted cubics. The curve Γ lies on
the smooth cubic surface X over F (t) defined by f + tg = 0. Each twisted
curve is defined over F3. Let σ be a generator of Gal(F3(t)/F (t)). Write
Γ = C + σ(C) + σ2(C) on XF3(t). Using intersection theory on the smooth
surface XF3(t), which is invariant under the action of Gal(F3(t)/F (t)), and
letting H be the class of a plane section, we find

27 = (3H.3H) = (Γ.Γ ) = 3(C.C) + 6(C.σ(C)).

The curve C is a twisted cubic, hence a smooth curve of genus 0 on the
smooth cubic surface X, whose canonical bundle K is given by −H. The
formula for the arithmetic genus of a curve on a surface, namely

2(pa(C)− 1) = (C.C) + (C.K),

gives (C.C) = 1. This implies (C.σ(C)) = 4, hence (σ(C).σ2(C)) = 4 and
(σ2(C).C) = 4. Since each of these twisted cubics is defined over F3 and
since F3 has no field extension of degree 2 or 4, this implies that the points
of intersection of any two of these twisted cubics are defined over F9. We
conclude that the singular locus of Γ splits over F9. This implies that the
degree of any closed point in that locus is a power of 3. Thus either Γ (F ) 6= ∅
or 3 divides ind(Γ ).
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In all cases we have proved: Either Γ (F ) 6= ∅ or 3 divides ind(Γ ). The
assumption ind(Γ ) = 1 now implies Γ (F ) 6= ∅.

Remark 3.2. If the order q of the finite field F is large enough and
f + tg = 0 is solvable in F(t), a variant of the proof for the equivalence of
(iv) and (v) shows that f + tg = 0 has a solution in polynomials of degree
at most 5. This raises the interesting general question whether there are
integers N(d) with the following property: Suppose that G(X0, . . . , X4, t)
is a polynomial defined over F, homogeneous of degree 3 in the Xi and of
degree d in t; if G = 0 is solvable in F(t), then it has a solution in polynomials
of degree at most N(d).

We may now prove:

Theorem 3.3. Let F be a finite field, let f, g be two nonproportional
cubic forms in 4 variables. Assume the characteristic of F is not 3. Let
k = F(t). Suppose the cubic surface X ⊂ P3

k over k defined by f + tg = 0 is
smooth. If there is no Brauer–Manin obstruction to the Hasse principle for
rational points on X, then there exists a k-rational point on X.

Proof. Combine Theorems 2.4 and 3.1.

Remark 3.4. Again, it would be nice to avoid the cohomological ma-
chinery, i.e. Theorems 2.1 and 2.2. When X has no rational points over
F(t) but points in all the completions of F(t), one should exhibit an explicit
Brauer–Manin obstruction for X. For this purpose, it would probably be
helpful to use [SD93]. Down to earth computations, which we shall not in-
sert here, have led to the following result. If a smooth cubic surface X given
by f + tg = 0 is a counterexample to the Hasse principle over F(t), then,
after replacing F by its maximal pro-2-extension F , the following holds:
When going over to the algebraic closure of F , the curve Γ in the proof
of Theorem 3.1 breaks up as a sum of nine conjugate lines, or a sum of
three twisted cubics, or a sum of three conjugate conics plus a sum of three
coplanar conjugate lines; when using the word “conjugate” we mean that
the Galois action is transitive. Only in these three cases may we expect a
Brauer–Manin obstruction.
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