Number of solutions in a box of a linear homogeneous equation in an Abelian group

by
Maciej Zakarczemny (Warszawa)

1. Introduction. K. Cwalina and T. Schoen [1] have recently proved the following conjecture of A. Schinzel [3]: the number of solutions of the congruence $a_{1} x_{1}+\cdots+a_{k} x_{k} \equiv 0(\bmod n)$ in the box $0 \leq x_{i} \leq b_{i}$, where b_{i} are positive integers, is at least $2^{1-n} \prod_{i=1}^{k}\left(b_{i}+1\right)$. Using a completely different method we shall prove the following more general statement, also conjectured by Schinzel ([3, p. 364]).

Theorem 1.1. For every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers b_{1}, \ldots, b_{k} the number of solutions of the equation $\sum_{i=1}^{k} a_{i} x_{i}=0$ in nonnegative integers $x_{i} \leq b_{i}$ is at least

$$
\begin{equation*}
2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{1.1}
\end{equation*}
$$

where $D(\Gamma)$ is the Davenport constant of Γ (see Definition 2.1 below).
2. Lemmas and definitions. Let Γ be a finite Abelian group, with multiplicative notation.

Definition 2.1. Define the Davenport constant $D(\Gamma)$ to be the smallest positive integer n such that, for any sequence g_{1}, \ldots, g_{n} of group elements, there exist indices

$$
1 \leq i_{1}<\cdots<i_{t} \leq n \quad \text { for which } \quad g_{i_{1}} \cdot \ldots \cdot g_{i_{t}}=1
$$

For a group with multiplicative notation, Theorem 1.1 has the form: for every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers b_{1}, \ldots, b_{k} the number of solutions of the equation $\prod_{i=1}^{k} a_{i}^{x_{i}}=1$ in

[^0]nonnegative integers $x_{i} \leq b_{i}$ is at least
\[

$$
\begin{equation*}
2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{2.1}
\end{equation*}
$$

\]

By the definition of the Davenport constant, we may find $g_{1}, \ldots, g_{D(\Gamma)-1} \in \Gamma$ such that any product of a nonempty subsequence of this sequence is not equal to 1 in Γ. As the number of solutions of the equation $\prod_{i=1}^{D(\Gamma)-1} g_{i}^{x_{i}}=1$, where $x_{i}=0$ or $x_{i}=1$, is equal to $1=2^{1-D(\Gamma)} \prod_{i=1}^{D(\Gamma)-1}(1+1)$, we obtain:

Remark 2.2. In Theorem 1.1, $2^{1-D(\Gamma)}$ is the best possible coefficient independent of a_{i}, b_{i} and depending only on Γ.

Lemma 2.3. For $n \geq 1$ we have the following identity in $\mathbb{Q}[x]$ and in $\mathbb{Q}[\Gamma]:$

$$
\begin{equation*}
1+x+x^{2}+\cdots+x^{n}=\sum_{j=0}^{n} 2^{j-n-1}\left(1+x^{j}\right)(1+x)^{n-j} \tag{2.2}
\end{equation*}
$$

Proof. We proceed by induction on n. For $n=1$ we have

$$
\sum_{j=0}^{1} 2^{j-1-1}\left(1+x^{j}\right)(1+x)^{1-j}=2^{-2}(1+1)(1+x)+2^{-1}(1+x)=1+x
$$

and the assertion is true.
Assume it is true for degrees less than n, where $n>1$. Then

$$
\begin{aligned}
1+x+x^{2}+\cdots & +x^{n}=\frac{1}{2}\left((1+x)\left(1+x+\cdots+x^{n-1}\right)+\left(1+x^{n}\right)\right) \\
& =\frac{1}{2}\left((1+x) \sum_{j=0}^{n-1} 2^{j-(n-1)-1}\left(1+x^{j}\right)(1+x)^{n-1-j}+\left(1+x^{n}\right)\right) \\
& =\sum_{j=0}^{n-1} 2^{j-n-1}\left(1+x^{j}\right)(1+x)^{n-j}+\frac{1}{2}\left(1+x^{n}\right) \\
& =\sum_{j=0}^{n} 2^{j-n-1}\left(1+x^{j}\right)(1+x)^{n-j}
\end{aligned}
$$

Definition 2.4. For an element $\sum_{g \in \Gamma} N_{g} g$ of the group ring $\mathbb{Q}[\Gamma]$ and a number $n \in \mathbb{Q}$ we write

$$
\sum_{g \in \Gamma} N_{g} g \succeq n \quad \text { iff } \quad N_{1} \geq n
$$

LEMMA 2.5. Theorem 1.1 in multiplicative notation is equivalent to the statement: for every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for
all positive integers b_{1}, \ldots, b_{k} we have

$$
\begin{equation*}
\prod_{i=1}^{k}\left(1+a_{i}+\cdots+a_{i}^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{2.3}
\end{equation*}
$$

where $D(\Gamma)$ is the Davenport constant of Γ.
Proof. Indeed, the number of solutions of the equation $\prod_{i=1}^{k} a_{i}^{x_{i}}=1$ in nonnegative integers $x_{i} \leq b_{i}$ is equal to N_{1}, where

$$
\prod_{i=1}^{k}\left(1+a_{i}+\cdots+a_{i}^{b_{i}}\right)=\sum_{g \in \Gamma} N_{g} g
$$

We have

$$
N_{1} \geq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

if and only if (2.3) holds.
Lemma 2.6. Let Γ be a finite Abelian group. For all $a_{1}, \ldots, a_{k} \in \Gamma$ we have

$$
\begin{equation*}
\left(1+a_{1}\right) \cdot \ldots \cdot\left(1+a_{k}\right) \succeq 2^{1-D(\Gamma)} \cdot 2^{k} \tag{2.4}
\end{equation*}
$$

Proof. For the completeness of exposition we provide Olson's proof [2].
We proceed by induction on k. For $k \leq D(\Gamma)-1$ we have

$$
\left(1+a_{1}\right) \cdot \ldots \cdot\left(1+a_{k}\right) \succeq 1 \geq 2^{1-D(\Gamma)} \cdot 2^{k}
$$

and the assertion is true.
Assume it is true for the number of factors less than k, where $k>$ $D(\Gamma)-1$. Hence $k \geq D(\Gamma)$. By the definition of the Davenport constant we may assume, without loss of generality, that

$$
a_{1} \cdot \ldots \cdot a_{t}=1 \quad \text { for some } 1 \leq t \leq D(\Gamma)
$$

By the inductive assumption

$$
\begin{aligned}
& \prod_{i=2}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right) \\
& \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1} \\
& \prod_{i=2}^{k}\left(1+a_{i}\right) \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\prod_{i=1}^{k}\left(1+a_{i}\right) & =\prod_{i=2}^{k}\left(1+a_{i}\right)+a_{1} \prod_{i=2}^{k}\left(1+a_{i}\right) \\
& =\prod_{i=2}^{k}\left(1+a_{i}\right)+a_{1} \cdot \ldots \cdot a_{t} \prod_{i=2}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right) \\
& =\prod_{i=2}^{k}\left(1+a_{i}\right)+\prod_{i=2}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right) \\
& \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1}+2^{1-D(\Gamma)} \cdot 2^{k-1}=2^{1-D(\Gamma)} \cdot 2^{k}
\end{aligned}
$$

3. Proof of Theorem 1.1. By Lemma 2.5 it suffices to prove:

Theorem 3.1. For every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers b_{1}, \ldots, b_{k} we have

$$
\prod_{i=1}^{k}\left(1+a_{i}+\cdots+a_{i}^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

where $D(\Gamma)$ is the Davenport constant of Γ.
Proof. We use the identity (2.2) to get

$$
P\left(a_{1}, \ldots, a_{k}\right)=\prod_{i=1}^{k}\left(1+a_{i}+\cdots+a_{i}^{b_{i}}\right)=\prod_{i=1}^{k} \sum_{j=0}^{b_{i}} 2^{j-b_{i}-1}\left(1+a_{i}^{j}\right)\left(1+a_{i}\right)^{b_{i}-j}
$$

Hence for a certain s we obtain

$$
P\left(a_{1}, \ldots, a_{k}\right)=\sum_{1 \leq i \leq s} v_{i} P_{i}\left(a_{1}, \ldots, a_{k}\right)
$$

where v_{i} are positive rational numbers and each $P_{i}\left(a_{1}, \ldots, a_{k}\right)$ has the form

$$
\left(1+c_{1}\right) \cdot \ldots \cdot\left(1+c_{m}\right)
$$

where $c_{1}, \ldots, c_{m} \in \Gamma$.
For $P_{i}\left(a_{1}, \ldots, a_{k}\right)$ we use Lemma 2.6 to get

$$
P_{i}\left(a_{1}, \ldots, a_{k}\right) \succeq 2^{1-D(\Gamma)} P_{i}(1, \ldots, 1), \quad 1 \leq i \leq s
$$

Note that we use P, P_{i} in two different domains at the same time, in $\mathbb{Q}[\Gamma]$ and in $\mathbb{Q}[x]$.

It follows that $P\left(a_{1}, \ldots, a_{k}\right) \succeq 2^{1-D(\Gamma)} P(1, \ldots, 1)$. Thus

$$
\prod_{i=1}^{k}\left(1+a_{i}+\cdots+a_{i}^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

Acknowledgements. Prof. A. Schinzel's help in the presentation of the above results is gratefully acknowledged. Thanks are also due to the referee for his comments.

References

[1] K. Cwalina and T. Schoen, The number of solutions of a homogeneous linear congruence, Acta Arith. 153 (2012), 271-279.
[2] J. E. Olson, A combinatorial problem on finite abelian groups, II, J. Number Theory 1 (1969), 195-199.
[3] A. Schinzel, The number of solutions of a linear homogeneous congruence, in: Diophantine Approximation: Festschrift for Wolfgang Schmidt (H.-P. Schlickewei et al., eds.), Developments Math. 16, Springer, 2008, 363-370.

Maciej Zakarczemny
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: M.Zakarczemny@impan.pl

Received on 17.2.2012
and in revised form on 27.6.2012

[^0]: 2010 Mathematics Subject Classification: Primary 11D79; Secondary 20K01.
 Key words and phrases: Abelian group, linear homogeneous equation, box, number of solutions.

