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homogeneous equation in an Abelian group
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Maciej Zakarczemny (Warszawa)

1. Introduction. K. Cwalina and T. Schoen [1] have recently proved
the following conjecture of A. Schinzel [3]: the number of solutions of the
congruence a1x1 + · · · + akxk ≡ 0 (mod n) in the box 0 ≤ xi ≤ bi, where

bi are positive integers, is at least 21−n
∏k
i=1(bi + 1). Using a completely

different method we shall prove the following more general statement, also
conjectured by Schinzel ([3, p. 364]).

Theorem 1.1. For every finite Abelian group Γ , for all a1, . . . , ak ∈ Γ,
and for all positive integers b1, . . . , bk the number of solutions of the equation∑k

i=1 aixi = 0 in nonnegative integers xi ≤ bi is at least

(1.1) 21−D(Γ )
k∏
i=1

(bi + 1),

where D(Γ ) is the Davenport constant of Γ (see Definition 2.1 below).

2. Lemmas and definitions. Let Γ be a finite Abelian group, with
multiplicative notation.

Definition 2.1. Define the Davenport constant D(Γ ) to be the smallest
positive integer n such that, for any sequence g1, . . . , gn of group elements,
there exist indices

1 ≤ i1 < · · · < it ≤ n for which gi1 · . . . · git = 1.

For a group with multiplicative notation, Theorem 1.1 has the form: for
every finite Abelian group Γ , for all a1, . . . , ak ∈ Γ, and for all positive
integers b1, . . . , bk the number of solutions of the equation

∏k
i=1 a

xi
i = 1 in
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nonnegative integers xi ≤ bi is at least

(2.1) 21−D(Γ )
k∏
i=1

(bi + 1).

By the definition of the Davenport constant, we may find g1, . . . , gD(Γ )−1 ∈ Γ
such that any product of a nonempty subsequence of this sequence is not

equal to 1 in Γ . As the number of solutions of the equation
∏D(Γ )−1
i=1 gxii = 1,

where xi = 0 or xi = 1, is equal to 1 = 21−D(Γ )
∏D(Γ )−1
i=1 (1 + 1), we obtain:

Remark 2.2. In Theorem 1.1, 21−D(Γ ) is the best possible coefficient
independent of ai, bi and depending only on Γ.

Lemma 2.3. For n ≥ 1 we have the following identity in Q[x] and in
Q[Γ ]:

(2.2) 1 + x+ x2 + · · ·+ xn =
n∑
j=0

2j−n−1(1 + xj)(1 + x)n−j .

Proof. We proceed by induction on n. For n = 1 we have

1∑
j=0

2j−1−1(1 + xj)(1 + x)1−j = 2−2(1 + 1)(1 + x) + 2−1(1 + x) = 1 + x

and the assertion is true.

Assume it is true for degrees less than n, where n > 1. Then

1 + x+ x2 + · · ·+ xn =
1

2

(
(1 + x)(1 + x+ · · ·+ xn−1) + (1 + xn)

)
=

1

2

(
(1 + x)

n−1∑
j=0

2j−(n−1)−1(1 + xj)(1 + x)n−1−j + (1 + xn)
)

=

n−1∑
j=0

2j−n−1(1 + xj)(1 + x)n−j +
1

2
(1 + xn)

=
n∑
j=0

2j−n−1(1 + xj)(1 + x)n−j .

Definition 2.4. For an element
∑

g∈Γ Ngg of the group ring Q[Γ ] and
a number n ∈ Q we write∑

g∈Γ
Ngg � n iff N1 ≥ n.

Lemma 2.5. Theorem 1.1 in multiplicative notation is equivalent to the
statement: for every finite Abelian group Γ , for all a1, . . . , ak ∈ Γ , and for
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all positive integers b1, . . . , bk we have

(2.3)
k∏
i=1

(1 + ai + · · ·+ abii ) � 21−D(Γ )
k∏
i=1

(bi + 1),

where D(Γ ) is the Davenport constant of Γ .

Proof. Indeed, the number of solutions of the equation
∏k
i=1 a

xi
i = 1 in

nonnegative integers xi ≤ bi is equal to N1, where

k∏
i=1

(1 + ai + · · ·+ abii ) =
∑
g∈Γ

Ngg.

We have

N1 ≥ 21−D(Γ )
k∏
i=1

(bi + 1)

if and only if (2.3) holds.

Lemma 2.6. Let Γ be a finite Abelian group. For all a1, . . . , ak ∈ Γ we
have

(2.4) (1 + a1) · . . . · (1 + ak) � 21−D(Γ ) · 2k.

Proof. For the completeness of exposition we provide Olson’s proof [2].

We proceed by induction on k. For k ≤ D(Γ )− 1 we have

(1 + a1) · . . . · (1 + ak) � 1 ≥ 21−D(Γ ) · 2k

and the assertion is true.

Assume it is true for the number of factors less than k, where k >
D(Γ )− 1. Hence k ≥ D(Γ ). By the definition of the Davenport constant we
may assume, without loss of generality, that

a1 · . . . · at = 1 for some 1 ≤ t ≤ D(Γ ).

By the inductive assumption

t∏
i=2

(1 + a−1i )

k∏
i=t+1

(1 + ai) � 21−D(Γ ) · 2k−1,

k∏
i=2

(1 + ai) � 21−D(Γ ) · 2k−1.
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Hence
k∏
i=1

(1 + ai) =
k∏
i=2

(1 + ai) + a1

k∏
i=2

(1 + ai)

=

k∏
i=2

(1 + ai) + a1 · . . . · at
t∏
i=2

(1 + a−1i )

k∏
i=t+1

(1 + ai)

=
k∏
i=2

(1 + ai) +
t∏
i=2

(1 + a−1i )
k∏

i=t+1

(1 + ai)

� 21−D(Γ ) · 2k−1 + 21−D(Γ ) · 2k−1 = 21−D(Γ ) · 2k.

3. Proof of Theorem 1.1. By Lemma 2.5 it suffices to prove:

Theorem 3.1. For every finite Abelian group Γ , for all a1, . . . , ak ∈ Γ ,
and for all positive integers b1, . . . , bk we have

k∏
i=1

(1 + ai + · · ·+ abii ) � 21−D(Γ )
k∏
i=1

(bi + 1).

where D(Γ ) is the Davenport constant of Γ .

Proof. We use the identity (2.2) to get

P (a1, . . . , ak) =

k∏
i=1

(1 + ai + · · ·+ abii ) =

k∏
i=1

bi∑
j=0

2j−bi−1(1 + aji )(1 + ai)
bi−j .

Hence for a certain s we obtain

P (a1, . . . , ak) =
∑

1≤i≤s
viPi(a1, . . . , ak),

where vi are positive rational numbers and each Pi(a1, . . . , ak) has the form

(1 + c1) · . . . · (1 + cm),

where c1, . . . , cm ∈ Γ.
For Pi(a1, . . . , ak) we use Lemma 2.6 to get

Pi(a1, . . . , ak) � 21−D(Γ )Pi(1, . . . , 1), 1 ≤ i ≤ s.
Note that we use P, Pi in two different domains at the same time, in Q[Γ ]
and in Q[x].

It follows that P (a1, . . . , ak) � 21−D(Γ )P (1, . . . , 1). Thus

k∏
i=1

(1 + ai + · · ·+ abii ) � 21−D(Γ )
k∏
i=1

(bi + 1).
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