Linear polynomials in numbers of bounded degree

by
Wolfgang M. Schmidt (Boulder, CO)

1. Introduction. Given natural numbers n, Δ, a hypersurface of type $S(n, \Delta)$ will be a hypersurface in \mathbb{C}^{n} defined over the rationals, and of total degree at most Δ. Such a surface is the set of zeros of a nonzero polynomial with rational coefficients, and of total degree $\leq \Delta$.

Recently Philippon and Schlickewei [1] proved a result about simultaneous approximation by algebraic n-tuples of bounded degree. Their result is as follows.

Theorem A. Let n, d be natural numbers, and set

$$
\begin{align*}
c & =\frac{n+1}{n}((n+1)!)^{1 / n} \tag{1.1}\\
\Delta & =\left\lfloor((n+1)!d)^{1 / n}\right\rfloor \tag{1.2}
\end{align*}
$$

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in \mathbb{C}^{n} have algebraic components, and lie on no hypersurface of type $S(n, \Delta)$. Then given

$$
\begin{equation*}
B>c d^{(n+1) / n} \tag{1.3}
\end{equation*}
$$

there are only finitely many points $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with

$$
\begin{equation*}
\left[\mathbb{Q}\left(\beta_{1}, \ldots, \beta_{n}\right) ; \mathbb{Q}\right] \leq d \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\alpha_{i}-\beta_{i}\right|<H(\boldsymbol{\beta})^{-B} \quad(i=1, \ldots, n) \tag{1.5}
\end{equation*}
$$

where $H(\boldsymbol{\beta})$ is the absolute Weil height of the projective point $\left(1: \beta_{1}: \ldots: \beta_{n}\right)$.
We will recall the definition of this height in Section 2. In the case of simultaneous approximation by rational n-tuples, there is a "dual" result on linear forms. For Theorem A there appears to be no simple duality. We will only be able to prove the following.

[^0]By a hypersurface of type $S_{h}(n, d)$ we will understand a homogeneous hypersurface in \mathbb{C}^{n+1} defined over the rationals, and of degree at most d. Such a hypersurface is the zero set of a nonzero homogeneous polynomial $f\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ with rational coefficients, and of total degree at most d.

Theorem B. Suppose $\boldsymbol{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ has algebraic components, and does not lie on a surface of type $S_{h}(n, d)$. Then given

$$
\begin{equation*}
B>d\binom{d+n}{n}+d, \tag{1.6}
\end{equation*}
$$

there are only finitely many points $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with (1.4) and

$$
\begin{equation*}
\left|\alpha_{0}+\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}\right|<H(\boldsymbol{\beta})^{-B} . \tag{1.7}
\end{equation*}
$$

Note that the condition (1.6) is independent of the degree of $\mathbb{Q}\left(\alpha_{0}, \alpha_{1}\right.$, $\left.\ldots, \alpha_{n}\right)$. But there is little doubt that it is more restrictive than need be.

Corollary. Suppose $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ has algebraic components, and if $n>1$, does not lie on a hypersurface of type $S_{h}(n-1, d)$. Then given

$$
\begin{equation*}
B>d\binom{d+n-1}{n-1}+2 d, \tag{1.8}
\end{equation*}
$$

there are only finitely many $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with (1.4) and

$$
\begin{equation*}
\left|\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}\right|<H(\boldsymbol{\beta})^{-B} . \tag{1.9}
\end{equation*}
$$

2. Proofs. For a number field K, let $M(K)$ be the set of its places, and $M_{\infty}(K)$ the set of its archimedean places. For $v \in M(K)$ let $|\cdot|_{v}$ denote the absolute value induced by v normalized to extend the standard or a p-adic absolute value of \mathbb{Q}. Further if $D=\operatorname{deg} K$ and D_{v} is the local degree associated with v, set $\|\cdot\|_{v}=\left.|\cdot|\right|_{v} ^{D_{v} / D}$. When $\boldsymbol{\beta} \in K^{n}$, then we define

$$
H(\boldsymbol{\beta})=\prod_{v \in M(K)}\|\boldsymbol{\beta}\|_{v}
$$

where

$$
\|\boldsymbol{\beta}\|_{v}=\max \left(1,\left\|\beta_{1}\right\|_{v}, \ldots,\left\|\beta_{n}\right\|_{v}\right) .
$$

Suppose $k=\mathbb{Q}\left(\beta_{1}, \ldots, \beta_{n}\right)$ is a number field of degree d. Let $x \mapsto x^{(i)}$ $(i=1, \ldots, d)$ be the embeddings of k into \mathbb{C}. When P is a subset of $\{1, \ldots, d\}$, put

$$
x^{(P)}=\prod_{i \in P} x^{(i)}
$$

This is understood to be 1 when P is empty. It will be convenient to set
$\beta_{0}=1$. Given $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$, we have

$$
\begin{equation*}
\prod_{i=1}^{d}\left(\alpha_{0} \beta_{0}^{(i)}+\cdots+\alpha_{n} \beta_{n}^{(i)}\right)=\sum_{\substack{j_{0}, \ldots, j_{n} \in \mathbb{Z}_{\geq 0} \\ j_{0}+\cdots+j_{n}=d}} \alpha_{0}^{j_{0}} \cdots \alpha_{n}^{j_{n}} q_{j_{0} \cdots j_{n}} \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
q_{j_{0} \cdots j_{n}}=\sum^{*} \beta_{0}^{\left(P_{0}\right)} \cdots \beta_{n}^{\left(P_{n}\right)} \tag{2.2}
\end{equation*}
$$

where \sum^{*} is the sum over all partitions of $\{1, \ldots, d\}$ into (not necessarily nonempty) subsets P_{0}, \ldots, P_{n} with $\left|P_{\ell}\right|=j_{\ell} \quad(\ell=0, \ldots, n)$. The numbers $q_{j_{0} \cdots j_{n}}$ are easily seen to be rational. The point \mathbf{q} with coordinates $q_{j_{0} \cdots j_{n}}$ (where $j_{0}+\cdots+j_{n}=d$) lies in \mathbb{Q}^{N} with $N=\binom{d+n}{n}$.

Lemma 2.1. $H(\mathbf{q}) \leq d!H(\boldsymbol{\beta})^{d}$.
Proof. Set $K=\mathbb{Q}\left(\boldsymbol{\beta}^{(1)}, \ldots, \boldsymbol{\beta}^{(d)}\right)=\mathbb{Q}\left(\beta_{0}^{(1)}, \ldots, \beta_{n}^{(1)}, \ldots, \beta_{0}^{(d)}, \ldots, \beta_{n}^{(d)}\right)$. For $v \in M(K)$,

$$
\left\|\beta_{\ell}^{\left(P_{\ell}\right)}\right\|_{v}=\prod_{i \in P_{\ell}}\left\|\beta_{\ell}^{(i)}\right\|_{v} \leq \prod_{i \in P_{\ell}}\left\|\boldsymbol{\beta}^{(i)}\right\|_{v}
$$

hence

$$
\left\|\beta_{0}^{\left(P_{0}\right)} \cdots \beta_{n}^{\left(P_{n}\right)}\right\|_{v} \leq \prod_{i=1}^{d}\left\|\boldsymbol{\beta}^{(i)}\right\|_{v}
$$

The sum \sum^{*} in (2.2) has $\leq d!$ summands, so that

$$
\begin{equation*}
\left\|q_{j_{0} \cdots j_{n}}\right\|_{v} \leq c_{v}^{D_{v} / D} \prod_{i=1}^{d}\left\|\boldsymbol{\beta}^{(i)}\right\|_{v} \tag{2.3}
\end{equation*}
$$

where $c_{v}=d$! when $v \in M_{\infty}(K)$, and $c_{v}=1$ otherwise.
The estimate (2.3) also holds for $\|\mathbf{q}\|_{v}$. We obtain

$$
H(\mathbf{q})=\prod_{v \in M(K)}\|\mathbf{q}\|_{v} \leq d!\prod_{i=1}^{d} \prod_{v \in M(K)}\left\|\boldsymbol{\beta}^{(i)}\right\|_{v}=d!\prod_{i=1}^{d} H\left(\boldsymbol{\beta}^{(i)}\right)=d!H(\boldsymbol{\beta})^{d}
$$

LEMmA 2.2. Suppose $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ has algebraic components and does not lie on a surface of type $S_{h}(n, d)$. Then given $B>d N+d$, the points $\boldsymbol{\beta}$ with (1.4) and (1.7) give rise to only finitely many points $\mathbf{q} \in \mathbb{Q}^{N}$ as described above.

Proof. We may suppose that $x^{(1)}=x$ for $x \in k$. Then

$$
H(\boldsymbol{\beta}) \geq \prod_{u \in M_{\infty}(\mathbb{K})}\|\boldsymbol{\beta}\|_{u}=\prod_{i=1}^{d}\left|\boldsymbol{\beta}^{(i)}\right|^{1 / d} \geq \prod_{i=2}^{d}\left|\boldsymbol{\beta}^{(i)}\right|^{1 / d}
$$

where $\left|\boldsymbol{\beta}^{(i)}\right|=\max \left(1,\left|\beta_{1}^{(i)}\right|, \ldots,\left|\beta_{n}^{(i)}\right|\right)$. We clearly have

$$
\left|\alpha_{0}+\alpha_{1} \beta_{1}^{(i)}+\cdots+\alpha_{n} \beta_{n}^{(i)}\right| \leq c(\boldsymbol{\alpha})\left|\boldsymbol{\beta}^{(i)}\right|
$$

in particular for $i=2, \ldots, d$. In conjunction with (1.7), this yields

$$
\left|\prod_{i=1}^{d}\left(\alpha_{0}+\alpha_{1} \beta_{1}^{(i)}+\cdots+\alpha_{n} \beta_{n}^{(i)}\right)\right|<c(\boldsymbol{\alpha})^{d-1} H(\boldsymbol{\beta})^{-B+d}
$$

and therefore, by virtue of (2.1) and Lemma 2.1,

$$
\begin{equation*}
\left|\sum_{j_{0}+\cdots+j_{n}=d} \alpha_{0}^{j_{0}} \cdots \alpha_{n}^{j_{n}} q_{j_{0} \cdots j_{n}}\right|<c(\boldsymbol{\alpha})^{d-1} d^{B-d} H(\mathbf{q})^{-(B-d) / d} \tag{2.4}
\end{equation*}
$$

Before proceeding further, consider an inequality

$$
\begin{equation*}
\left|\alpha_{1} q_{1}+\cdots+\alpha_{N} q_{N}\right|<H(q)^{-C} \tag{2.5}
\end{equation*}
$$

where $\mathbf{q}=\left(q_{1}, \ldots, q_{N}\right) \in \mathbb{Q}^{N} \backslash\{\mathbf{0}\}$. Say $q_{i}:=a_{i} / b$ with $\operatorname{gcd}\left(b, a_{1}, \ldots, a_{N}\right)$ $=1$, so that $H(\mathbf{q})=\max \left(|b|,\left|a_{1}\right|, \ldots,\left|a_{N}\right|\right)$. Then (2.5) gives

$$
\left|\alpha_{1} a_{1}+\cdots+\alpha_{N} a_{N}\right|<|b| H(\mathbf{q})^{-C} \leq H(\mathbf{q})^{1-C} \leq \max \left(\left|a_{1}\right|, \ldots,\left|a_{N}\right|\right)^{1-C}
$$

provided $C \geq 1$. If $\alpha_{1}, \ldots, \alpha_{N}$ are algebraic and linearly independent over \mathbb{Q}, it follows from the Subspace Theorem that if $C>N$, then there are only finitely many such $\left(a_{1}, \ldots, a_{N}\right)$. Given a_{1}, \ldots, a_{N}, the left hand side of (2.5) becomes $|a / b|$ with $a=\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{N}$, and the right hand side for large $|b|$ becomes $|b|^{-C}$. Therefore $|b|$ is bounded, and (2.5) has only finitely many solutions.

Now $\boldsymbol{\alpha}$ as in Theorem B and Lemma 2.2 has the numbers $\alpha_{0}^{j_{0}} \cdots \alpha_{n}^{j_{n}}$ with $j_{0}+\cdots+j_{n}=d$ linearly independent over \mathbb{Q}. Returning to (2.4), we may conclude that when $B>d N+d$, hence $(B-d) / d>N$, then (2.4) leads to finitely many points $\mathbf{q}\left(^{1}\right)$.

Proof of Theorem B. Let ℓ, t with $1 \leq \ell \leq n$ and $1 \leq t \leq d$ be given. Set $j_{0}=d-t, j_{\ell}=t$, and $j_{m}=0$ for $m \notin\{0, \ell\}$. Then

$$
q_{\ell t}:=q_{j_{0} \cdots j_{n}}=\sum^{*} 1^{\left(P_{0}\right)} \beta_{\ell}^{\left(P_{\ell}\right)}
$$

where the sum \sum^{*} is over the partitions of $\{1, \ldots, d\}$ into sets P_{0}, P_{ℓ} with $\left|P_{0}\right|=d-t,\left|P_{\ell}\right|=t$. Therefore

$$
q_{\ell t}=\sum \beta_{\ell}^{\left(u_{1}\right)} \cdots \beta_{\ell}^{\left(u_{t}\right)}=s_{t}\left(\beta_{\ell}^{(1)}, \ldots, \beta_{\ell}^{(d)}\right)
$$

with the sum over the subsets $\left\{u_{1}, \ldots, u_{t}\right\}$ of $\{1, \ldots, d\}$, and s_{t} the t th elementary symmetric polynomial. Therefore the symmetric polynomials in

[^1]$\beta_{\ell}^{(1)}, \ldots, \beta_{\ell}^{(d)}$ are determined by \mathbf{q}. For given \mathbf{q}, there are at most d possibilities for $\beta_{\ell}(\ell=1, \ldots, n)$, hence at most d^{n} possibilities for $\boldsymbol{\beta}$. Theorem B now is a consequence of Lemma 2.2 .

Proof of the Corollary. We may suppose that $\beta_{1} \neq 0$. Assume first that $n=1$. Since $H\left(\beta_{1}\right)=H\left(1 / \beta_{1}\right) \geq 1 /\left|\beta_{1}\right|^{1 / d},(1.9)$ gives $H\left(\beta_{1}\right)^{-B} \geq\left|\alpha_{1} \beta_{1}\right| \geq$ $\left|\alpha_{1}\right| H\left(\beta_{1}\right)^{-d}$. Therefore $H\left(\beta_{1}\right)$ is bounded, and there are only finitely many choices for β_{1}.

When $n>1$, write $\beta_{\ell}=\beta_{1} \gamma_{\ell}(\ell=2, \ldots, n)$. Since $H(\boldsymbol{\beta}) \geq H\left(\beta_{1}\right) \geq$ $1 /\left|\beta_{1}\right|^{1 / d}$, (1.9) yields

$$
\begin{equation*}
\left|\alpha_{1}+\alpha_{2} \gamma_{2}+\cdots+\alpha_{n} \gamma_{n}\right| \leq\left|\beta_{1}\right|^{-1} H(\boldsymbol{\beta})^{-B} \leq H(\boldsymbol{\beta})^{d-B} . \tag{2.6}
\end{equation*}
$$

By (1.8), and by the case $n-1$ of Theorem B , there are only finitely many $\gamma_{2}, \ldots, \gamma_{n}$ with (2.6). Given $\gamma_{2}, \ldots, \gamma_{n}$, set $\gamma=\alpha_{1}+\alpha_{2} \gamma_{2}+\cdots+\alpha_{n} \gamma_{n}$, so that (1.9) becomes $\left|\gamma \beta_{1}\right|<H(\beta)^{-B}$. Here $\gamma \neq 0$, for otherwise we have $\prod_{i=1}^{d}\left(\alpha_{1}+\alpha_{2} \gamma_{2}^{(i)}+\cdots+\alpha_{n} \gamma_{n}^{(i)}\right)=0$, and $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ lies on a hypersurface of type $S_{h}(n-1, d)$. By the case $n=1$, with γ in place of α_{1}, we obtain only finitely many choices for β_{1}. The Corollary follows.

References

[1] P. Philippon and H. P. Schlickewei, Simultaneous approximation to algebraic numbers by algebraic numbers of bounded degree, to appear.

Wolfgang M. Schmidt
Department of Mathematics
University of Colorado
Boulder, CO 80309-0395, U.S.A.
E-mail: schmidt@euclid.colorado.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11J68.
 Key words and phrases: diophantine approximation, bounded degree.

[^1]: $\left({ }^{1}\right)$ The components of \mathbf{q} satisfy certain polynomial equations independent of $\boldsymbol{\beta}$. Therefore presumably a better result than the one given by the Subspace Theorem should apply.

