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Linear recurrences as sums of squares
by

MARIUSZ SKALBA (Warszawa)

There is a beautiful theorem of Pourchet [4] stating that any rational
polynomial in one variable that assumes only positive values can be written
as a sum of five squares of rational polynomials. We provide here analogous
theorems for linear recurrences of the second and third order with distinct
eigenvalues. By a rational recurrence sequence we mean a linear recurrence
sequence all of whose terms are rational and the coefficients of the recurrence
relation are also rational. By analogy to the above result of Pourchet we have
the following two theorems.

THEOREM 1. Consider the rational recurrence sequence
Tp = aTp_1 +bTn_o with a,b,r1,19 € Q

for n € Z. Assume additionally that the roots of x> — ax — b are distinct.
If x, > 0 for all n € Z then there exist rational recurrence sequences
Gy bny Cn, dpy, € such that for allm € Z,

Tn = a2 + b2+ 4 d?+ e

THEOREM 2. The sequence z,, = 4" 4+ 7 is not the sum of four squares
of rational sequences of order less than 3.

The last theorem concerns recurrence sequences of the third order.
THEOREM 3. Let z, be a sequence defined by

Zn = azZp_1+bzpn_o+czp_3  with a,b,c, z1,29,23 € Q

for n € Z. Assume that z, is non-degenerate and that f(z) = x> — ax® —

bx — c is irreducible. Denote its roots by «, 3,7 and consider the explicit
representation

Zn = A + WA + O™
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with A, W, 2 € Q(a, 5,7). Then zy, is a sum of finitely many squares of real
recurrence sequences if and only if all numbers o, 8,v, A, W, {2 are positive.
In this case six squares of rational recurrence sequences are sufficient.

It should be emphasized that there is a big difference between second
order and third order recurrence sequences regarding their representability
as sums of squares. The following example shows that in the latter case the
condition z, > 0 for all n € Z is not sufficient for representability as the
sum of finitely many squares.

Let the sequence (z,) be given by the recurrence

Zn43 = 92nt2 — 62p41 + 2
with initial conditions
2’0:2, 21:1, Z2:4.

The roots «, 3,7 of the characteristic polynomial f(z) = 2% — 522 + 62 — 1
are

a =~ 0.198062, [~ 1.55496, ~ = 3.24698
and the explicit representation is
20 = (2= a)2 = o™ +[(2 = B)2 — 18"+ [(2 = 7)2 — 3"
FEasy numerical calculations yield

min z, ~ 0.892786 at npyin ~ 0.747701.
neR

Hence a fortiori
zn >0 forallneZ.

Because (2—3)? —1 ~ —0.80194 < 0 we infer by Theorem 3 that z, is not a
sum of squares of finitely many real recurrence sequences! This resembles the
counterexample to Hilbert’s XVII problem given in 1967 by Motzkin [3]: the
polynomial g(x,y) = 1—322y?+22y* +2%y? assumes only positive values for
x,y € R but is not the sum of finitely many squares of real polynomials. So
in the case of exponential polynomials the counterexample does exist even
in the one variable case!
For the proof of our theorems we will need five lemmas.

LEMMA 1. For any a,b € QT there exist c,d, f, g € Q satisfying
alb—c?) =d® + f2 + 42
Proof. Any positive definite quadratic form with rational coefficients and

four variables assumes all positive rational values (|1, Chapter 1, §7.4]), hence
there exist d, f, g,c € Q such that

d+ 2+ ¢* + ac® = ab.
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LEMMA 2. If f(z) = az® + br +c € Qz], a > 0, A =b? — dac < 0 then
there exist a;,b; € Q fori=1,...,5 such that
5
fl@) = (aw+b;)*.
i=1
Proof. By Lemma 1 there exist rational numbers g, «, 8,y satisfying
1[-A
[_92} —a? 4 52 42
4a

4a
Hence
z  b\? 2 2 2 2
=da| =+ —
f(x) a[<2—|—4a> +a”+ 3 —i—’y}%—g
By Lagrange’s theorem 4a is a sum of four rational squares and by Euler’s
identity we obtain the desired representation of f(x).

LEMMA 3. Consider k pairwise distinct, non-zero elements v1, ...,V of
an infinite field K and k polynomials fi(n),..., fr(n) € K[n]. If

k
ij(“)’yjn =0 foralln€Z
=1

then fj(n) =0 forj=1,... k.

Proof. Assuming that a counterexample exists, choose it in such a way
that & > 1 is smallest possible and also min; <;<x{deg f;} is smallest possible.
Assume without loss of generality that deg f; is this smallest degree. From

deg(v1fi(n+1) —y1fi(n)) < deg fi
and the identity

k
fin+1) = i)yl + > [ifi(n+1) = fi(n)f =0
j=2
we infer that v1fi(n + 1) — y1f1(n) = 0. If k were greater than 1 then we
would have
Y2fa(n+1) =1 fo(n) =0,
which would lead to 9 = 1, a contradiction. But £ = 1 is also impossible.

LEMMA 4 (Mordell [2]). Let F(x1,x2,23) = Zij:l dijx;xj be a positive
definite quadratic form with rational coefficients. Then there exist a;,b;, c; €
Q fori=1,...,6 such that

6

F(z1,39,73) = Y (aiw1 + g + civs)”.
i—1
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LEMMA 5. Let H be a finitely generated subgroup of R* containing mul-
tiplicatively independent numbers o, ..., op. For any B1,...,8 € RT not
necessarily distinct there exists a homomorphism ¢ : H — R such that
d(oj) =B forj=1,... k.

Proof of Theorem 1. Let us consider two cases regarding the eigenvalues
of x,,.

First consider the case when both roots a and § of 22 —ax —b are rational.
We have the explicit formula

.fn:AOén"i_Bﬁn with A,B,Oé,,BEQ
If « = —f then
on = (A+ B)(a")? and  zan41 = (A — B)a(a")?

and again by Lagrange’s theorem we infer that both subsequences z9, and
ZTon+1 are sums of four squares of rational recurrence sequences. Hence the
whole sequence x,, is also the sum of squares of four rational recurrence
sequences.
If & # —f then all numbers A, B, «, 8 are positive, because z,, > 0 for
all n € Z. If we apply Lemma 2 to f(x) = A2z? + B we obtain
5
Ton = Y _(a;a” + b;3")%.
i=1
Similarly, applying Lemma 2 to f(z) = Aax? 4+ B, we get
5
Ton+1 = Z(Cian + dzﬁn)2
i=1
Now we consider the case when

2! —ar—b=(r—)(x—7) with (Q(7):Q)=2.

We will work with the explicit formula

T, =ay" +ay"  with a € Q(v).
Let d be an integer such that Q(y) = Q(v/d) and write v = & + §v/d with
€,0 € Q. Then

A" = A, + B,Vd
where A,, B, are also rational recurrence sequences (with the same recur-
rence relation as ). The explicit formula for x9, can now be rewritten
as
Ton = Ay, + Bn\/a)2 + a(A, — Bn\/&)%

Putting o = h + kv/d with h, k € Q we obtain finally

Ton = 2h(A% + dB2%) + 4kd A, B,.
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Because z,, > 0 for all n € Z we infer first that d > 0 and further that
«, @, y,7 are all positive as well. Now we verify easily that

f(x) = 2ha® + dkdx + 2hd
satisfies the assumptions of Lemma 2, namely
2h=a+a>0 and A= -16daa < 0.

Hence Lemma 2 gives the representation
5
Tan = Z(azAn + biBn)z-
i=1
Using the explicit formula
Tont1 = ay(An + Bn\/cfi)2 + ay(A4, — BpVd)?

and reasoning along the same lines we obtain a similar representation for
Ton+1-

Proof of Theorem 2. Let us assume that
(1) a2+ +E+d2=4"+7 forallneZ
with rational recurrence sequences a,, by, ¢, d,. A crucial observation is that
all the eigenvalues v appearing in a,, by, ¢,, d, have modulus 1 or 2. This
can be established as follows.

Each of the sequences a,,, b,, ¢y, d,, is of one of the forms:

(a) ay™ + ay™ with vy € R, # 0,

(b) a1 + a2y where ai, az,v1,72 € R* and |y1| > |2],

(¢) a1y with oy, 71 € R*,

(d) (an + b)y"™ where a,b € R,a® + b*> > 0,7 € R,

(e) 0.
We could assume that |y1]| > |72| in case (b), because in case |y1| = |y2| we
would restrict our analysis to even n and then we would be in case (c) or (e).
Let us now list the squares of the above expressions:
(V)" + 20 ()" + a* (37",
ai (V)" + 2a10a(7172)" + a3 (13)",

2.2n

a1,
(an +b)*(v*)",
0.

Assume now to the contrary that some eigenvalues p appearing in some of
Ay b,y O,y dy satisty |p| & {1,2}. Let v be one with the largest modulus. Then
the resulting coefficients of (|y|?)™ on both sides of equality (1) are equal (by
Lemma 3), hence vanish. But this coefficient on the left hand side is a sum
of some expressions of the form
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2al?,
af (assuming |y| = 7)),

a3,
(an + b)?,

all positive, and therefore the relevant sum must be empty. This contra-
dicts the assumption that + does appear among eigenvalues of some of
Qp,y by, Cny diy.

Now that we have proved the crucial observation, we turn to the proof
proper and consider six non-trivial cases.

CASE 1: All eigenvalues appearing in the relevant sequences are real. By
the above, such an eigenvalue v must satisfy v € {1, —1,2, —2}. If we restict
our attention to even n we can write as

4
Z(ann + bj)2 =4"4+7 with aj, bj € Q.
j=1
By Lemma [3] this is equivalent to the system of equations

4
Zi:l a? =1,
2 _
Zi:l bj =7,
Zj:l ajbj = 0,

in rational numbers a;,b;. By Euler’s identity we obtain

4 4 4

2

7= (Za?) (Zb?) = (zajbj) +2Hu? 0P =17 0 400
j=1 j=1 Jj=1

with rational ¢,u,v. But this contradicts the very well known fact that 7 is

not the sum of three squares of rational numbers.

In the remaining cases we consider only n divisible by 4; in case v = 72
we can then replace (ay™ + ay")? by (a2" + b)? with a,b € Q (and ab = 0):

(7™ +a37%)2 = (@ +@)2(r")% = ((a +@)A™)? with A € {1,2}.
CASE 2: We have the representation
(a1y™ + a7")? + (Y™ + @™ + (a2™ + b)* + (2" + d)* = 4" + 7

with a,b,c,d € Q and v € R, aj,as € Q(7). If 2 = 4% then we are in
Case 1. If ¥2 # 42 then by Lemma 3,

a?+a3=0 and ab+cd=0,
hence
(a® + 24" + (b% 4+ d?) 4+ (2N (a1) + 2N (az))(NH)" = 4" 4 7.

Now we distinguish two subcases.



Linear recurrences as sums of squares 213

e N+ = 4. Then b 4 d? = 7, which is impossible.
e Nv=1. Now

a2+ =1, 2Naj+2Nas+b*+d>=T7.

a? = —a2 implies that Q(y) = Q(i), a1 = € + 6i with ¢,6 € Q and Naj =
Nag = €2 + §2. Hence

7= (2€)% 4 (26)% + b* + d°.

Further

v+ d* = (0* + d*)(a® + %) = (be — ad)?
and finally

7= (2€)% + (26)* + (bc — ad)?,
which is the desired contradiction.
CASE 3: We have the representation
3
(a2 +0)* +> (ajy" +ai")? =4"+7
j=1

where a,b € Q and v € R, oy, a2, a3 € Q(v). We will show that this case
never holds. Assuming v? # 52 we get

(2) A2 +a3+ai=0 and 2ab=0
and the representation takes the form
(2Nag +2Nag + 2Nas)(NY)"™ + a?4™ +b? = 4™ + 7.
e a = 0 gives Ny = 4 and further b?> = 7, an obvious nonsense.
e b =0 gives Ny = 1, which leads to
2Naq +2Nag +2Nag =1T.
But this is not possible by the following reasoning. Let d € N be such that

Q(v) = Q(v/—d). Then o = a; + bj/—d for j = 1,2,3 with rational a;, b;.
Comparing the real parts of the two sides of the first equation of gives

3
> (aF —db3) =0.
j=1
Taking into account that
3 3
> N(ay)=> (aF +db3)
j=1 J=1

we obtain again an impossible equation

4a? + 4a3 + 402 =17.
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CASE 4: We have the representation
(1Y +a17")? + (a2 +ao7")? + (B1p" + 517")* + (B2p" + B2p")? = 4" + 7
with v,p € R, Ny =1, Np = 4. If ¥ = 42 then we are in Case 2. If 42 # 42
then
2Naj; +2Nay =7 and of +a =0,
which results in Q(a1) = Q(a2) = Q(i), Nag = Nag = 2 +n? with rational
e,7n. Finally (2¢)? + (21)? = 7, which is impossible.

CASE 5: We have
3

(Bp™ + Bp™)? + ) (9" + a5")? = 4" + 7
j=1
with p,v & R satisfying {Np, Ny} = {1,4}. If p?> = p? then we are in Case 3.
If p? # p? then the terms with p?™ on the left hand side will not cancel out.

CASE 6: We have

(" +ay")? = 4"+ 7

NE

j=1
with v € R, Ny € {1,4}. If ¥2 = 42 then we are in Case 1. If 42 # 42 then

2?21 04? =0 and

4
7 = (23 Joy )
j=1

which is clearly impossible.

Proof of Theorem 3. First consider the case when «, 8,7, A, ¥, {2 are all
positive. We consider only the case of even indices. Let A,,, By, C,, be rational
recurrence sequences defined implicitly by

a" = A, + Bpa + Cpa?,

B" = A, + BpB + Cpff?,

" = Ap + Bpy + Coy*.
We can write

zon = A(A, + Bpa + Cra®)? + W(A, + BB + Cp )
+ 2(An + By + Cny?)?
= G(An, Bn,Ch)

where G is a real quadratic form in A,, By, Cy. Obviously G is rational and
positive definite. Therefore we can apply Lemma [ to obtain the desired

representation of zo, as a sum of six squares. The proof for zo,y1 is very
similar.
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We proceed with the case of positive eigenvalues «, 3,y but now at least
one of A, W, (2 is negative. Without loss of generality let @« < 8 < ~. If 2 <0
or A < 0 then there exists n € Z (positive or negative) such that z, < 0,
hence the representation of z, as a sum of squares is trivially impossible.

Let us now consider the most interesting case when A > 0,¥ < 0, {2 > 0.
We emphasize that in this case it can happen that z, > 0 for all real n but,
as we will prove, z, is not a sum of squares of finitely many real recurrence
sequences.

(1)

Assume to the contrary that there exist real recurrence sequences t,, ', . . .,

t&K) satisfying the identity

K .
®) Soi =
j=1
(K)

Let E be the set of the moduli of all eigenvalues appearing in t( ) ceoy ity
and put H = («a, 3,7, E). By elementary Galois theory we infer that

oFBlym =1 with k,l,meZ

implies k =1 = m and afy = 1 or k +1+4+ m = 0. The latter is possible
only for k =1 = m = 0 because z, is non-degenerate. So, in any case we can
apply Lemma 5| for at; = o, as = 7y to obtain a homomorphism ¢ : H — R™
such that

d@)=¢, ¢(7)=e and ¢(B)=1/e".

Ift, = Z] 1 fi(n)y} is one of the sequences ¢t 4 then we define

Zf] (¢ '”)m)n‘

The crucial observation is that @(t% )) are also real and that the identity
goes into

K . 1\"

Z@(tﬁf))Q = Ac" + 2" + £!7<2> .
€

j=1

But the above cannot be true for ¢ > 0 sufficiently small and n = 1. So we
have obtained the desired contradiction.

Now consider the case when all eigenvalues «, 5,7 are real but not all
are positive. If not all A, ¥, {2 are positive then we consider the sequence
Uy = 29, and the previous case applies. If all A, ¥, {2 are positive we put
Vp = zont1 = Aa(a?)™ + ¥B(B%)" + 27v(7?)"™ and the previous case applies
again.

Finally let « € R, v = B ¢ R. If |a| # |3] then by an easy reasoning
zn, < 0 for infinitely many n € Z. The case |a| = |B| = |v| is not possible
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because it would lead to o® = afy € Q, while z, is assumed to be non-
degenerate.
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