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Ákos Pintér (Debrecen)

To Professor Andrzej Schinzel on his 75th birthday

1. Introduction. Let m be a fixed integer with m ≥ 3 and denote by

Pyrm(x) = 1
6x(x+ 1)((m− 2)x+ 5−m)

the mth order pyramidal number. These combinatorial numbers play an im-
portant role in number theory and discrete mathematics. They have several
interesting properties (see e.g. Dickson [9] and Conway and Guy [7]). In the
classical cases m = 3 and m = 4, we have

Pyr3(x) = 1
6x(x+ 1)(x+ 2) =

(
x+ 2

3

)
,

Pyr4(x) = 1
6x(x+ 1)(2x+ 1) = 12 + 22 + · · ·+ x2.

These numbers are related by 4Pyr4(x) = Pyr3(2x).
It was an old and hard problem to find all power values of the above

polynomials of third degree. The corresponding equation has been resolved
for squares by Watson [26], and for arbitrary powers by Győry [16] and
Bennett, Győry and Pintér [5], respectively. For x > 2, the only square
values are given by

(
48+2
3

)
= 1402 and 12 +22 + · · ·+242 = 702, respectively.

The purpose of this paper is to study the power values of pyramidal
numbers of higher order, that is, to extend the results mentioned above to
larger values of m. In Part I we deal with square values. The problem is
then equivalent to finding the integer points on the elliptic curves

(1) Em : y2 = 1
6x(x+ 1)((m− 2)x+ 5−m)

for positive integers m ≥ 3, m 6= 5. For this reason, we exclude the case
m = 5 throughout the paper. For a fixed m, it is rather straightforward
to determine all the integer points on Em. For 3 ≤ m ≤ 100, m 6= 5, we
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give all integer solutions of (1) (cf. Proposition 1). The main result of our
paper is the resolution, for a conjecturally infinite sequence of integers m,
of the elliptic diophantine equation (1) (cf. Theorem 2). In the forthcoming
second part of this paper some explicit results on the higher power values of
Pyrm(x) will be presented. In that case the proofs require totally different
methods.

2. Preliminary observations and calculations. By the substitution
X = 6(m−2)x, Y = 36(m−2)y, we obtain from (1) the following Weierstrass
form:

(2) E′m : Y 2 = X3 + 18X2 + 36(m− 2)(5−m)X.

There are three rational points on Em of order 2, namely

A = (0, 0), B = (−1, 0), C =

(
m− 5

m− 2
, 0

)
,

and also another obvious rational point P = (1, 1). It is easy to show, using
the Lutz–Nagell theorem, that P cannot be of finite order. Namely, the
point 2P ′ on E′m does not have integer coordinates (the first coordinate is
m2 − 7m+ 49/4).

Furthermore, we have

P +A =

(
−m− 5

m− 2
,
m− 5

m− 2

)
, P +B =

(
− 3m

2(m− 2)
,− 2m− 7

4(m− 2)

)
,

P + C =

(
2m− 10

3
,
(m− 5)(2m− 7)

9

)
.

Therefore, we always have the following integer points on Em:

(3) (0, 0), (−1, 0), (1, 1),

and if m ≡ 2 (mod 3), then also

(4)

(
2m− 10

3
,
(m− 5)(2m− 7)

9

)
.

Using the subroutine IntegralPoints of the program package MAGMA
and the subroutine integral points of the program package SAGE, we
were able to find all integer points on Em for all m ≤ 100. These subroutines
use the elliptic logarithm method (introduced in [14] and [24], see also [23, 6])
for solving elliptic equations.

Proposition 1. Apart from the points listed in (3) and (4), in the range
3 ≤ m ≤ 100, m 6= 5, all integer points (m,x, y) on Em are:

(3,−2, 0), (3, 2, 2), (3, 48, 140), (4, 24, 70), (7, 6, 14), (7, 49, 315), (11, 1681, 84419),

(13, 24, 160), (15, 2, 4), (15, 242, 5544), (16, 49, 525), (20, 49, 595), (24, 2, 5),

(24, 1681, 131979), (28, 23, 230), (29, 8, 48), (33, 7, 42), (35, 2, 6), (35, 49, 805), (41, 4, 20),
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(41, 49, 875), (45, 120, 3520), (48, 2, 7), (52, 96, 2716), (53, 1681, 200941), (62, 49, 1085),

(63, 2, 8), (63, 16, 204), (68, 24, 390), (68, 343, 21070), (68, 57121, 45278311), (70, 6, 49),

(70, 49, 1155), (73, 833, 82705), (74, 8, 78), (75, 10, 110), (76, 289, 17255),

(76, 3479, 720650), (80, 2, 9), (80, 1681, 248501), (89, 7, 70), (91, 4, 30), (91, 6, 56),

(97, 49, 1365), (98, 8, 90), (99, 2, 10), (99, 57121, 54891369).

This provides all square values of pyramidal numbers for 3 ≤ m ≤ 100,
m 6= 5. In particular, it gives the square values of Pyr3(x) and Pyr4(x)
mentioned in the Introduction.

Notice that many integer points on Em have x-coordinate 2. Indeed, for
any m of the form y2−1, (m,x, y) = (y2−1, 2, y) is an integer point on Em.
Further, there are several points on Em with x-coordinates 49 and 1681. We
will give an explanation for this fact later.

It is not hard to show, using [20, Main Theorem 1], that Em(Q)tors '
Z/2Z ⊕ Z/2Z. However, it is much harder to predict the behavior of the
ranks of Em(Q). In what follows, we deal with the case rank(Em(Q)) = 1.
We first make some preliminary remarks.

Let us consider the following elliptic curve E over Q(T ):

E : y2 = x3 + 18x2 + 36(T − 2)(5− T )x.

The discriminant of E is D = 746496(T − 5)2(2T − 7)2(T − 2)2. We can
compute rankC(T ) E using Shioda’s formula [21, Corollary 5.3]:

rankC(T ) E = rank NS(E ,C)− 2−
∑
s

(ms − 1).

Here NS(E ,C) is the Néron–Severi group of E over C, and the sum ranges
over all singular fibers of the pencil Et, with ms the number of irreducible
components of the fiber, which can be easily determined from Kodaira types
of singular fibers (in our case they are I∗0, I2, I2, I2). Since E is a rational
surface, we have rank NS(E ,C) = 10. Therefore,

rankC(T ) E = 10− 2− 4− 1− 1− 1 = 1.

Since we already know that rankQ(T ) E ≥ 1 (because the point P is of infinite
order), we conclude that rankQ(T ) E = 1.

Standard conjectures on the distribution of ranks in families of elliptic
curves suggest that 50% of curves in the family Em have rank 1, while 50%
of curves have rank 2. We have computed, using Mwrank [8], the ranks
for m ∈ {3, 4, 6, 7, . . . , 200} and obtained the following distribution of ranks:
80 cases of rank 1, 95 cases of rank 2, 20 cases of rank 3, and 2 cases of
rank 4. For larger values of m, we also found several curves with rank 5, 6
and 7. Using standard sieving methods (see e.g. [11]), we were able to find
examples with rank equal to 8 for m = 8704960 and m = 11007950.
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3. A family of elliptic curves. In this section we obtain some results
on integer points on the curves Em under the assumption that rank(Em(Q))
= 1. The above discussion shows that this assumption is not unrealistic. We
will follow the strategy from [10].

First we need the result that P, P +A,P +B,P +C 6∈ 2Em(Q). This fol-
lows easily, by applying the 2-descent Proposition [17, Theorem 4.3] to points
P ′, P ′+A′, P ′+B′, P ′+C ′ on the curve E′m. Assume that Em(Q)/Em(Q)tors
= 〈U〉. Let X ∈ Em(Q). Then we can represent X in the form X = kU +T ,
where k is an integer and T is a torsion point, i.e. T ∈ {O, A,B,C}. Also,
P = kPU + TP for an integer kP and a torsion point TP . We know that
kP is odd. Hence, U ≡ P + TP (mod 2Em(Q)). Therefore, we have X ≡ X0

(mod 2Em(Q)), where X0 ∈ S = {O, A,B,C, P, P +A,P +B,P + C}.
Let {a, b, c} = {0, 6m−12, 30−6m}. By [17, Proposition 4.6], the function

ϕ : E′m(Q)→ Q∗/Q∗2 defined by

ϕ(X) =


(x+ a)Q∗2 if X = (x, y) 6= O, (−a, 0),

(b− a)(c− a)Q∗2 if X = (−a, 0),

Q∗2 if X = O
is a group homomorphism. Therefore, in order to find all integer points
on Em, it suffices to solve in integers all systems of equations of the form

x = α�, x+ 1 = β�, (m− 2)x+ 5−m = γ�(5)

where for X0 = (6(m−2)s, 36(m−2)t) ∈ S, the numbers α, β, γ are defined
by α = s, β = s+ 1, γ = (m− 2)s+ 5−m if all of these three expressions
are nonzero, and if e.g. s = 0 then we define α = βγ. Here � denotes the
square of a rational number.

Consider now (5) for the possible choices of X0.
1) X0 = O. The system (5) becomes

x = 6(m− 2)�,

x+ 1 = 6(m− 2)�,

(m− 2)x+ 5−m = 6�.

Since gcd(x, x + 1) = 1, we must have m − 2 = 6�. This gives x = � and
x+ 1 = �, which leads to a contradiction.

2) X0 = A. Now (5) becomes

x = −6(m− 5)�,

x+ 1 = �,

(m− 2)x+ 5−m = −(m− 5)�.

One solution is x = 0. For m ≥ 6 there are no other solutions since x and
x + 1 cannot be of opposite sign. Both cases m = 3 and m = 4 lead to the
system of Pell equations v2− 6u2 = 1, w2− 12u2 = 1, which has the unique
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solution u = 2, v = 5, w = 7 (see [1]). This gives the additional solution
x = 48 for m = 3, and x = 24 for m = 4.

3) X0 = B. We obtain the system

x = −�,
x+ 1 = 6(2m− 7)�,

(m− 2)x+ 5−m = −(2m− 7)�,

which obviously has the only solution x = −1, since otherwise for m ≥ 4 the
integers x and x + 1 would be of opposite sign (for m = 3 the same holds
for x and x+ 2).

4) X0 = C. In this case we obtain the system

x = (m− 2)(m− 5)�,

x+ 1 = (m− 2)(2m− 7)�,

(m− 2)x+ 5−m = 6(m− 5)(2m− 7)�.

This system may have a solution only if m− 2 = k2 or m− 2 = 3k2 for an
integer k, since otherwise the square-free part of m− 2 or (m− 2)/3 would
divide both x and x+1. For m = k2+2 and m = 3k2+2 we were not able to
solve the system unconditionally. It is easy to check that for m = 12 + 2 = 3
the only solution is x = −2.

5) X0 = P . In this case we have the system

x = �,

x+ 1 = 2�,

(m− 2)x+ 5−m = 3�,

which has an obvious solution x = 1. For certain integers m there can
be additional solutions. From x = u2, x + 1 = 2v2, we find the possibili-
ties for x, namely, x = 72, 412, 2392, . . . . Inserting this in the third equa-
tion of the system, we obtain a condition for m. For example, for x = 49,
we obtain 16m = w2 + 31, which is satisfied for m = 7, 16, 20, 35, 41, 62,
70, 97, 107, 140, 152, 191, . . . , while for x = 1681 we obtain 560m = w2 +
1119, which is satisfied for m = 11, 24, 53, 80, 104, 141, 143, 186, . . . . Note
that for m = 30890 we have two additional solutions x = 49 and x =
1681. Note also that for most of these values of m, the rank of Em is
greater than 1. The only known exception is m = 11, where the rank
is equal to 1 and x(3P ) = 1681. Note moreover that for m = 3 and
m = 4 the only solution of the above system is x = 1, which follows
from [4].

6) X0 = P + A. It is easy to see that the corresponding system of
equations
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x = −(m− 2)(m− 5)�,

x+ 1 = 3(m− 2)�,

(m− 2)x+ 5−m = −2(m− 5)�

has no solution for m ≥ 6, because x and x + 1 have the same sign. There
is no solution for m = 4 either, while the only solution for m = 3 is x = 2.

7) X0 = P +B. Then the system of equations is

x = −6(m− 2)�,

x+ 1 = 2(m− 2)(2m− 7)�,

(m− 2)x+ 5−m = −2(2m− 7)�,

which is clearly unsolvable. Again, it is enough to use the fact that integers
x and x+ 1 have the same sign.

8) X0 = P + C. In this case we have the system

x = 6(m− 5)�,

x+ 1 = 3(2m− 7)�,

(m− 2)x+ 5−m = 3(m− 5)(2m− 7)�.

It has an obvious rational solution x = 2
3(m − 5). Therefore, if m ≡ 2

(mod 3) this gives an integer solution. On the other hand, it is clear that if
m 6≡ 2 (mod 3), then there is no integer solution, since x and x+ 1 cannot
be both divisible by 3.

Thus, let us consider the above system for m = 3k + 2. Then we have

(6) x = 2(k−1)u2, x+1 = (2k−1)v2, kx−k+1 = (k−1)(2k−1)w2.

It seems that the only solution of (6) is x = 2k−2 = 2
3(m−5). However, we

are able to prove this statement only under the additional assumption that
the integers k−1 and 2k−1 are square-free. It is well known that there exist
infinitely many positive integers k with this property. These assumptions
imply that u, v, w in (6) are integers, and we obtain the system of Pellian
equations

2ku2 − (2k − 1)w2 = 1,(7)

kv2 − (k − 1)w2 = 1.(8)

We have v = pj = ql, where the sequences (pj) and (ql) are defined by

p0 = 1, p1 = 8k − 1, pj+2 = (8k − 2)pj+1 − pj ,
q0 = 1, q1 = 4k − 1, ql+2 = (4k − 2)ql+1 − ql.

Using the method described in [12], we will show that the only solution of
the equation pj = ql is j = l = 0, which corresponds to u = v = w = 1 and
x = 2k − 2. In fact, the system of equations solved in [12] is very similar to
(7)–(8), so we will omit the details of the proof and give just a short overview.
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Using the congruence relations pj ≡ (−1)j−1(4j(j + 1)k − 1) (mod 64k2)
and ql ≡ (−1)l−1(2l(l+1)−1) (mod 16k2), we obtain a lower bound for the
solutions: l ≥ j ≥ 2k−0.5. Comparing it with the upper bound which follows
from Bennett’s theorem on simultaneous approximations [3] we finish the
proof for sufficiently large values of m. For small m, the statement can be
proved by Baker–Davenport reduction (see [2] or [13]).

We have solved completely the systems of equations corresponding to the
points O, A,B, P+A,P+B, while the systems corresponding to C,P, P+C
are solved only for values of the parameter m satisfying certain conditions.
We will solve completely all eight systems, i.e. we will find all integer points
for a (conjecturally infinite) subfamily of Em. Let m = 3k4 + 2. The family
E3k4+2 has generic rank 1 over Q(k), which can be proved by 2-descent
method, as in [10], by finding a suitable specialization with rank 1 (e.g.
k = 60).

Theorem 2. Let k be positive integer such that 2k4 − 1 is square-free,
while k4−1 = 2st for s ≥ 0 and a square-free odd number t. Let m = 3k4+2.
If rank(Em(Q)) = 1, then all integer points on Em are

(0, 0), (−1, 0), (1, 1), (2k4 − 2, 2k8 − 3k4 + 1).

This gives all square values of the pyramidal numbers for the numbers
m under consideration.

The conditions of Theorem 2 are satisfied for k = 2, 3, 4, 9, 16, 25, 47, 59,
60, 65, 78, 85, 87, . . . . The first few corresponding m’s are m = 50, 245, 770,
19685, 196610. The conditions concerning k4−1 and 2k4−1 are conjecturally
satisfied for infinitely many positive integers k (see [15]).

Proof of Theorem 2. Having the results obtained in cases 1) to 8), it
suffices to solve the corresponding systems for the points C, P and P + C
only.

Because of the special form of m, we have to consider the system corre-
sponding to the point C:

x = (k4 − 1)�,

x+ 1 = (2k4 − 1)�,

k4x+ 1− k4 = 2(k4 − 1)(2k4 − 1)�.

The third equation shows that there is no solution if k is even. For odd k,
from the first and third equations we obtain

k4u2 − 2(2k4 − 1)w2 = 2s or 2s−1,

according as s is even or odd. Since k is odd, u must be even, and repeating
this argument we arrive at the equation

(9) k4u′2 − 2(2k4 − 1)w′2 = 1.
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The fundamental solution of the Pell equation U2 − 2(2k4 − 1)W 2 = 1 is
U0 = 2k4− 1, W0 = 2k2. Since W0 |W , we conclude that k |w′ in (9), which
is impossible for k > 1.

Consider now the system corresponding to P . From the first and third
equations we obtain

(10) w2 − (u2 − 1)k4 = 1,

which we consider as an equation in unknowns w and k. Here we may apply
the result of Ljungrren [18, 25], which implies that if equation (10) has two
solutions, then k2 = 2u or k2 = 8u3 − 4u. The first possibility implies that
u is even, which is in contradiction to

(11) u2 − 2v2 = −1.

The second possibility can occur only for u = 169, which again contradicts
(11). Hence, the only solution to (10) is w = u, k = 1.

There remains the seventh system corresponding to P +C. If k is even,
then our assumption implies that k4− 1 is square-free, and we have already
solved the system under this assumption. For k odd, we obtain the system

2k4u2 − (2k4 − 1)w2 = 2s or 2s−1,

k4v2 − tw2 = 1,

which can be written in the form

2k4u′2 − (2k4 − 1)w′2 = 1,

k4v2 − (k4 − 1)w′2 = 1.

This is a special case of the system (7)–(8). But we have already shown that
its only solution is v = 0, i.e. x = 2k4 − 2.

Remark. Note that although we have followed the strategy from [10],
there are some significant differences between the two families. The results
of [10] suggest (see also [19]) that the number of integer points on the elliptic
curves

y2 = ((k − 1)x+ 1)((k + 1)x+ 1)(4kx+ 1)

is independent of the value of k, in particular, that it does not depend on
the rank of the curve. This is in big contrast with what is conjectured (and
partly proved) for elliptic curves in Weierstrass form, where it is expected
that the number of integer points grows exponentially with the rank (see
[22]). For our family of curves, the dependence of the number of integer
points on the rank of the curve is not so clear, and we believe that this is a
challenging question.
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