
ACTA ARITHMETICA

155.3 (2012)

On Waring’s problem for two cubes and two small cubes
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Jörg Brüdern (Göttingen)

1. Introduction. It is expected that all large natural numbers are the
sum of four positive cubes, and Davenport [7] confirmed this for all but
O(N29/30+ε) of the integers n with 1 ≤ n ≤ N . The exponent 29/30 has now
been reduced to a number slightly smaller than 37/42 (see [11, 2, 3, 17, 18]).
No such result can be valid with fewer cubes because a sum of three cubes
is incongruent to 4 modulo 9. However, the fourth cube is probably almost
redundant. In particular, it should be possible to choose the fourth cube
quite small in terms of the number to be represented. In this spirit, Wooley
and the author [6] established that almost all natural numbers n are the
sum of four cubes, one of which is bounded in size by n5/36.

It is then natural to ask what happens if another cube is restricted in
size. The theme was taken up by Lee [9] in a very recent work. For fixed
positive real θ, he considers the number rθ(n) of solutions to

x31 + x32 + z31 + z32 = n

in natural numbers xj , zj with zj ≤ nθ (j = 1, 2). Lee’s main result [9,
Theorem 1.1], is that whenever θ ≥ 192

869 , then rθ(n) ≥ 1 for almost all n.
Inter alia, a little more is proved. The heuristics underpinning the Hardy–
Littlewood method suggest that the asymptotic formula

(1) rθ(n) ∼ Γ (4/3)2

Γ (2/3)
S(n)n2θ−1/3 (n→∞)

should hold for 0 < θ < 1/3. Here S(n) is the familiar singular series
associated with sums of four cubes, and it is useful to recall that

(2) S(n)� 1

(see [16, §4.6, exercise 3]). An examination of Lee’s argument reveals that
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whenever θ ≥ 192
869 , then the lower bound

(3) rθ(n)� S(n)n2θ−1/3

is valid for almost all n, and his aformentioned result is a corollary.
To appreciate the strength of Lee’s result, note that for θ > 1/6, the

asymptotic formula (1), if true, would imply that rθ(n) ≥ 1 for large n. On
the other hand, a simple lattice point count shows that the mean

N−1
∑
n≤N

r1/6(n)

tends to a limit strictly less than 1, so that r1/6(n) = 0 for a positive
proportion of the natural numbers. Thus, Lee’s result cannot be valid for
θ ≤ 1/6.

Lee’s approach depends on minor arc estimates imported from Brüdern
and Wooley [6], and hence on analytic descriptions of the iterative schemes
dominating much recent work on Waring’s problem. Implicitly, Lee’s treat-
ment rests on the p-adic iteration developed in [11, 14, 5]. However, when
two small cubes are present in a sum of four, then the representation prob-
lem lends itself to much older routines sometimes referred to as diminishing
ranges. In this method, one restricts variables in size to enforce diagonal
behaviour in certain auxiliary symmetric diophantine equations. The idea
goes back to Hardy and Littlewood [8] and was developed further by Daven-
port ([7] and Chapter 6 of Vaughan [16]) and Vaughan [10, 12]. The arrival
of the new iterative method of Vaughan [15] has diminished interest in the
traditional procedures over the past two decades, but for problems involv-
ing small variables these are ideally suited, and as we shall see momentarily,
they provide a sizeable improvement over Lee’s result. Yet, one should note a
change of paradigm: we wish to choose variables as small as we can whereas
in earlier work emphasis was on diagonal behaviour with size constraints as
mild as possible.

Some notation is required before our main result can be announced. Let
P be a large number (the main parameter), and let 0 < θ < 1/3. Let

(4) Q = P 5/6, R = 1
2P

3θ.

Let %θ(n, P ) denote the number of solutions of

(5) n = x3 + y3 + z31 + z32
with

(6) P < x ≤ 2P, Q < y ≤ 2Q, R < zj ≤ 2R.

Theorem. Let 7/36 < θ ≤ 2/9. Then there is a positive number δ such
that ∑

P 3<n≤8P 3

(
%θ(n, P )− 1

3S(n)QR2n−2/3
)2 � P 12θ+2/3−δ.
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An inspection of conditions (4)–(6) reveals that whenever P 3 < n ≤ 8P 3,
then rθ(n) ≥ %θ(n, P ). Moreover, by (2), the Theorem implies that the
inequality %θ(n, P ) < 1

20S(n)n2θ−7/18 can hold for at most O(P 3−δ) of these
values n. A familiar dyadic dissection argument now suffices to conclude as
follows.

Corollary. Let 7/36 < θ ≤ 2/9. Then there is a positive number δ
such that for all but O(N1−δ) of the integers n with 1 ≤ n ≤ N one has

(7) rθ(n)� S(n)n2θ−7/18.

The upper bound on θ in these results is of no importance, and has been
introduced for technical convenience only. For larger values of θ Lee has
stronger results anyway. For comparison with Lee’s Theorem 1.1 and the
limiting value θ = 1/6, note that

192
869 = 0.2209 . . . , 7

36 = 0.1944 . . . , 1
6 = 0.1666 . . . .

Thus, our method covers about 51 percent of the uncertain range 1/6 < θ
< 192

869 in Lee’s approach, but we no longer obtain the essentially best possible
lower bound (3). The weaker estimate (7) has the interesting feature that
the exponent 2θ − 7/18 approaches 0 as θ tends to 7/36. Thus, we work
with a singular integral that only just is large. These observations reflect
the diminished range for y in (5). Lee [9] suggests to view representations
counted by rθ(n) as sums of 6θ+ 2 cubes. In this sense, the Corollary shows
almost all n to be the sum of 3 + 1/6 + ε cubes, for any fixed ε > 0. One
can take this point of view a step further and consider the representations
counted by %θ(n, P ) as sums of 11/6 + 2θ cubes. The Theorem then asserts
that almost all natural numbers are the sum of 3 + ε cubes, a result that is
essentially best possible. The Theorem also contains a first result concerning
sums of four cubes with three small variables: almost all n are the sum of
four cubes, three of which are of size at most n5/18. However, it is not difficult
to obtain better estimates in this direction by other methods. Limitations
of space do not permit a discussion of this matter here.

2. The method. We follow a strategy that is the dispersion method in
disguise. For a direct application of the latter, let %∗θ(n, P )= 1

3S(n)QR2n−2/3

for P 3 < n ≤ 8P 3, and %∗θ(n, P ) = 0 otherwise, and then square out the
variance

(8) V =
∑
n

(%θ(n, P )− %∗θ(n, P ))2.

One of the three terms that then arise is the sum

S =
∑
n

%θ(n, P )2,
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and it is usually the one that presents the main difficulties. The argument
that we describe below yields an asymptotic formula for S whenever θ >
7/36, at least in principle. Companion formulae for the other two terms
would exhibit cancellation, leading to a successful estimation of V . It is,
however, simpler to perform all this after taking Fourier transforms. The
idea is not new, it occurs in work of Vaughan [13], and in a different context
in [4], but has hardly been used elsewhere. Note that S equals the number
of solutions of the symmetric diophantine equation

(9) x31 − x32 = y31 − y32 + z31 + z32 − z33 − z34
with

(10) P < xj ≤ 2P, Q < yj ≤ 2Q, R < zj ≤ 2R.

We evaluate S by the Hardy–Littlewood method, in two ways.
The standard approach involves the exponential sums

f(α) =
∑

P<x≤2P
e(αx3), g(α) =

∑
Q<y≤2Q

e(αy3), h(α) =
∑

R<z≤2R
e(αz3).

By orthogonality, one then has

(11) S =

1�

0

|f(α)g(α)h(α)2|2 dα.

Alternatively, one may difference the left hand side of (9) by k = x1 − x2.
Then (9) transforms into

(12) k(3x22 + 3x2k + k2) = y31 − y32 + z31 + z32 − z33 − z34 .
By (10), the modulus of the right hand side here does not exceed 9Q3, at
least when P is large. Also, by (10),

3x22 + 3x2k + k2 =
(
3
2x2 + k

)2
+ 3

4x
2
2 ≥ 3

4P
2.

Hence, (12) implies that |k| ≤ K where K = 12P 1/2. Now let

(13) F (α) =
∑
|k|≤K

∑
P<x≤2P

e(αk(3x2 + 3xk + k2)).

Then, again by orthogonality,

(14) S =

1�

0

F (α)|g(α)h(α)2|2 dα.

The integral representations (11) and (14) will play a fundamental role in
the derivation of a minor arc estimate in Section 6.

3. A first asymptotic evaluation. From now on we suppose that the
real number θ is fixed and chosen in the interval 7/36 < θ ≤ 2/9. The main
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parameter P is supposed to exceed a suitable positive number P0 that may
increase from one such requirement to the next. Also, we apply the following
convention concerning the letter ε. Whenever ε occurs in a statement, it
denotes a real number, and it is asserted that the statement is true for any
fixed positive value assigned to ε.

In this section we apply the Hardy–Littlewood method to the inte-
gral (14). Let 1 ≤ X ≤ P , and let M(X) denote the union of the intervals

(15) {α ∈ [0, 1] : |qα− a| ≤ XQ−3}

with 0 ≤ a ≤ q, 1 ≤ q ≤ X and (a, q) = 1. The observant connoisseur will
notice that the arcs (15) are shaped to suit the exponential sum g(α), but
are not a perfect fit for the longer sum f(α) which is absent in (14).

The current hypotheses ensure that ν = 1
9

(
θ − 7

36

)
is positive, and we

put

M = M(P ν), m = [0, 1] \M.

The main estimate in this section is that

(16)
�

m

F (α)|g(α)h(α)2|2 dα� P−1−
1
7
νQ2R4.

Once this is established, one deduces from (14) the following result.

Lemma 1. In the notation introduced above, one has

S =
�

M

F (α)|g(α)h(α)2|2 dα+O(P−1−
1
7
νQ2R4).

The proof of (16) is a pruning exercise for which an estimate for F (α) is
pivotal. Let Υ : [0, 1] → [0, 1] be the function that is 0 outside M(P ), and
for α ∈M(P ) is defined by

Υ (α) = (q +Q3|qα− a|)−1,

where a, q is the uniquely defined pair that occurs in (15).

Lemma 2. For α ∈ [0, 1] one has

F (α)� P 1+ε + P 3/2+εΥ (α)1/2.

Proof. Let a ∈ Z, q ∈ N be coprime with α = a/q + β and |β| ≤ q−2.
Then, by usual Weyl differencing (see the Lemma in Vaughan [10]),

|F (α)|2 � K2P 2+ε

(
1

q
+

1

P
+

q

KP 2

)
.

Note that KP 2 = 12Q3. Hence, a familiar principle (see Exercise 2 in §2.8
of Vaughan [16]) transforms the previous bound into

|F (α)|2 � P 3+ε
(
(q +Q3q|β|)−1 + P−1 +Q−3(q +Q3q|β|)

)
.
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By Dirichlet’s theorem on diophantine approximation, one may chose the
coprime pair a, q with 1 ≤ q ≤ P 3/2 and q|β| ≤ P−3/2, so that

|F (α)|2 � P 3+ε(q +Q3q|β|)−1 + P 2+ε.

In particular, if q > P , then F (α) � P 1+ε. If q ≤ P , then α ∈ M(P ), and
the lemma follows.

Lemma 3. Let R ≤ Q4/5. Then
1�

0

|g(α)h(α)2|2 dα� Q1+εR2.

Davenport [7, Lemma 1] gives a proof when R = Q4/5, but an inspection
of his argument shows that his method applies to smaller values of R as well.
By working along the lines of Vaughan [10], the hypothesis in Lemma 3 may
be relaxed to R ≤ Q5/6, but in the range θ ≤ 2/9 this is not needed.

We are ready to embark on the deduction of (16). By Lemmas 2 and 3,

(17)
�

m

F |gh2|2 dα� P 1+εQR2 + P 3/2+εM

where

(18) M =
�

M(P )\M

Υ 1/2|gh2|2 dα.

The estimation of M proceeds through the Ramanujan sum technique. In
Lemma 2 of Brüdern [1], we choose Ψ(α) = |h(α)|4. Then, since the inequal-
ity

(19)

1�

0

|h(α)|4 dα� R2+ε

is merely a special case of Hua’s lemma ([16, Lemma 2.5]), we infer that

(20)
�

M(P )

Υ |h|4 dα� Qε−3(PR2 +R4)� Qε−3R4.

If α ∈M(P ) \M, then Υ (α)� P−ν . We further deduce that

(21)
�

M(P )\M

Υ 7/6|h|4 dα� Qε−3R4P−ν/6.

We combine these estimates with a major arc upper bound for g(α). By
Theorem 4.1 and Lemma 6.3 of [16], when α ∈M(P ), one has

(22) |g(α)| � QΥ (α)1/3 + P 1/2+ε.

Consequently, by (18),

(23) M � Q
�

M(P )\M

Υ 5/6|gh4| dα+ P 1/2+ε
�

M(P )

Υ 1/2|gh4| dα.
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By Schwarz’s inequality, Lemma 3 and (20),

(24)
�

M(P )

Υ 1/2|gh4| dα� (Q1+εR2)1/2(Qε−3R4)1/2 � Qε−1R3.

Another use of (22) gives
�

M(P )\M

Υ 5/6|gh4| dα� Q
�

M(P )\M

Υ 7/6|h4| dα+ P 1/2+ε
�

M(P )

Υ 5/6|h4| dα.

The first integral on the right hand side was estimated in (21), and for the
second, one may use Hölder’s inequality and then apply (19) and (20) to
deduce that �

M(P )

Υ 5/6|h4| dα� (R2+ε)1/6(Qε−3R4)5/6.

This shows that�

M(P )\M

Υ 5/6|gh4| dα� Qε−2R4P−ν/6 + P 1/2+εQ−5/2R11/3.

On combining this with (23), (24) and (17), we now have
�

m

F |gh2|2 dα� P 1+εQR2 + P 2+εQ−1R3 + P 3/2+εQ−1R4P−ν/6

+ P 2+εQ−3/2R11/3.

This establishes (16), as one readily checks.

4. A major arc analysis. In this section we consider the integral that
occurs in Lemma 1. For m ∈ Z let

K(m) =
�

M

|g(α)h(α)2|2e(αm) dα.

Standard major arc analysis yields an asymptotic formula for K(m). Let

S(q, a) =

q∑
r=1

e(ar3/q)

and

v(β) =
1

3

∑
P 3<l≤8P 3

l−2/3e(βl), w(β) =
1

3

∑
Q3<l≤8Q3

l−2/3e(βl).

When α ∈ M(P ), there is a unique pair a, q of integers with 1 ≤ q ≤ P
and (a, q) = 1 such that |qα − a| ≤ PQ−3, and we define functions f∗, g∗ :
M(P )→ C by

(25) f∗(α) = q−1S(q, a)v(α− a/q), g∗(α) = q−1S(q, a)w(α− a/q).
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Note that P νQ−3 ≤ 1
6P
−2, so that a crude application of Theorem 4.1 of

Vaughan [16] shows that whenever α ∈M, one has

(26) f(α) = f∗(α) +O(P ν), g(α) = g∗(α) +O(P ν).

There is a similar but simpler formula for h(α). One may first use partial
summation to compare h(α) with h(a/q), and then apply Theorem 4.1 of
Vaughan [16] to h(a/q). Then, in the same notation as before, one finds that
whenever α ∈M, one has

(27) h(α) = h∗(α) +O(P ν)

where now h∗ : M(P )→ C is defined by

(28) h∗(α) = q−1S(q, a)R.

For α ∈M, the approximations (26) and (27) combine to

(29) |g(α)h(α)2|2 = |g∗(α)h∗(α)2|2 +O(Q2R3P ν).

We multiply with e(αm) and integrate. The measure of M is O(P 2νQ−3),
whence

(30) K(m) =
�

M

|g∗(α)h∗(α)2|2e(αm) dα+O(Q−1R3P 3ν).

We write

(31) B(q,m) = q−6
q∑

a=1
(a,q)=1

|S(q, a)|6e(am/q).

By (25) and (28),

(32)
�

M

|g∗(α)h∗(α)2|2e(αm) dα = R4
∑
q≤P ν

B(q,m)

P ν/(qQ3)�

−P ν/(qQ3)

|w(β)|2e(βm) dβ.

Here we wish to replace the integral on the right hand side by the complete
integral

(33) J(m) =

1/2�

−1/2

|w(β)|2e(βm) dβ.

By Lemma 6.2 of Vaughan [16], for |β|≤1/2, one has w(β)�Q(1+Q3|β|)−1,
and consequently

P ν/(qQ3)�

−P ν/(qQ3)

|w(β)|2e(βm) dβ = J(m) +O(Q−1P−νq).
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By (32), �

M

|g∗(α)h∗(α)2|2e(αm) dα = R4T(m,P ν)J(m) + E

where

T(m,X) =
∑
q≤X

B(q,m) and E � R4Q−1P−ν
∑
q≤P ν

q|B(q,m)|.

By (31), one has |B(q,m)| ≤ B(q, 0). Much as in the proof of Lemma 2.11 in
Vaughan [16], one finds that B(q, 0) is multiplicative. The natural number
q factors uniquely as q = ru3 where r is cube-free. Then, by Lemmas 4.3
and 4.4 of [16], one finds that B(q, 0)� q1+εr−3u−6. It follows that

(34)
∑
q≤P ν

qB(q, 0)� P ε
∑

ru3≤P ν
r−1 � P ν/3+ε.

On collecting together the above, we now infer from (30) that

K(m) = T(m,P ν)J(m)R4 +O(P−ν/2Q−1R4)

because the error in (30) is considerably smaller. In this expansion, we take

(35) m = m(k, x) = k(3x2 + 3kx+ k2)

and sum over k and x as in (13). This yields
�

M

F (α)|g(α)h(α)2|2 dα

= R4
∑
|k|≤K

∑
P<x≤2P

T(m,P ν)J(m) +O(P (3−ν)/2Q−1R4),

and this final formula may be injected into Lemma 1 to conclude as follows.

Lemma 4. One has

S = R4
∑
|k|≤K

∑
P<x≤2P

T(m(k, x), P ν)J(m(k, x)) +O(P 1− 1
7
νQ2R4).

5. Another major arc analysis. In this section we compute the major
arc contribution to the alternative integral (11) for S. Thus, we now examine

(36) S0 =
�

M

|f(α)g(α)h(α)2|2 dα.

By (29), we have

S0 =
�

M

|fg∗h∗2|2 dα+O
(
Q2R3P ν

�

M

|f |2 dα
)
.

By (26), |f |2 � |f∗|2 + P 2ν , and the measure of M is O(P 2νQ−3). Hence,�

M

|f |2 dα�
�

M

|f∗|2 dα+ P 4νQ−3.
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By Lemma 6.3 of Vaughan [16], when α ∈ M and a/q is the centre of the
interval to which α belongs, then

(37) f∗(α)� q−1/3P (1 + P 3|α− a/q|)−1.
A straightforward and crude estimation therefore shows that�

M

|f∗|2 dα� P 2ν−1.

This combines to

(38) S0 =
�

M

|fg∗h∗2|2 dα+O(P 3ν−1Q2R3).

We now mimic the argument leading to Lemma 4. Rather more care is
needed, however. We can no longer sum the integral (32) trivially, because
we should now sum over about P 2 values m = x31 − x32, and not only over
O(P 3/2) terms m = k(3x2 + 3kx+ k2).

Let N denote the union of the intervals

{α ∈ [0, 1] : |qα− a| ≤ P−7/4}
with 0 ≤ a ≤ q, 1 ≤ q ≤ P ν and (a, q) = 1. Note that N ⊂ M(P ) so that
f∗, g∗, h∗ are defined on N. We proceed to show that

(39)
�

N\M

|fg∗h∗2|2 dα� P ε−5/4Q2R4.

To see this, we apply Theorem 4.1 of Vaughan [16] to deduce that for α ∈ N
one has f(α) = f∗(α) +O(P 5/8+ε). Consequently,

(40) |f(α)|2 � |f∗(α)|2 + P 5/4+ε.

Also, much as in (32), and observing positivity, one finds that�

N

|g∗h∗2|2 dα� R4
∑
q≤P ν

B(q, 0)J(0).

By (33) and orthogonality, J(0)� Q−1. The argument in (34) now gives

(41)
�

N

|g∗h∗2|2 dα� Q−1R4.

By (40) and (41),�

N\M

|fg∗h∗2|2 dα�
�

N\M

|f∗g∗h∗2|2 dα+ P 5/4+εQε−1R4,

and since P 5/4Q−1 = P−5/4Q2, the last term on the right is acceptable.
Moreover, much as in (32) again, one finds from (37) that

�

N\M

|f∗g∗h∗2|2 dα� P 2Q2R4
∑
q≤P ν

q−2/3B(q, 0)

∞�

P ν/(qQ3)

(1 + P 3|β|)−2 dβ.

A straightforward and now familar estimation yields (39) immediately.
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The expansions (38) and (39) combine to

(42) S0 =
�

N

|fg∗h∗2|2 dα+O(P ε−5/4Q2R4),

and one has�

N

|fg∗h∗2|2 dα =
∑

P<x1,x2≤2P

�

N

|g∗(α)h∗(α)2|2e(α(x31 − x32)) dα.

For the wider arcs N, it is easy to recycle the argument of the previous
section. Following the estimations as begun in (30), one finds that

�

N

|g∗(α)h∗(α)2|2e(αm) dα

= R4
∑
q≤P ν

B(q,m)

(
J(m) +O

( ∞�

P−7/4q−1

Q2

(1 +Q3|β|)2
dβ

))
,

and again as in the previous section this leads to
�

N

|g∗(α)h∗(α)2|2e(αm) dα = R4T(m,P ν)J(m) +O(R4Q−4P 7/4+ν).

It remains to sum over m = x31 − x32 to conclude that
�

N

|fg∗h∗2|2 dα = R4
∑

P<x1,x2≤2P
T(x31−x32, P ν)J(x31−x32)+O(R4Q−4P 15/4+ν).

We rewrite the error term via P 5 = Q6 and deduce from (42) the following
result.

Lemma 5. One has

S0 = R4
∑

P<x1,x2≤2P
T(x31 − x32, P ν)J(x31 − x32) +O(P ν−5/4Q2R4).

6. The principal minor arcs estimate. By (33) and orthogonality,

J(m) =
1

9

∑
l1−l2=m

Q3<lj≤8Q3

(l1l2)
−2/3.

In particular, the sum is empty when |m| > 8Q3. Hence, in Lemma 5, we
may restrict the sum over x1, x2 to pairs with |x31 − x32| ≤ 8Q3. Then, as
in the argument leading from (12) to (14), we may write k = x1 − x2 and
x = x2 to obtain

S0 = R4
∑
|k|≤K

∑
P<x≤2P

T(m(k, x), P ν)J(m(k, x)) +O(P ν−5/4Q2R4)
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where m(k, x) is given by (35). We now subtract this from the expansion for
S obtained in Lemma 4. Since (11) and (36) show that

S − S0 =
�

m

|fgh2|2 dα,

this yields

(43)
�

m

|fgh2|2 dα� P−1−
1
7
νQ2R4.

The main difficulty has now been overcome, the required minor arc es-
timate is available. However, the endgame becomes easier if we proceed by
pruning to the root. Let P denote the union of the intervals

(44) {α ∈ [0, 1] : |α− a/q| ≤ P−11/4}
with 0 ≤ a ≤ q, 1 ≤ q ≤ P ν and (a, q) = 1. Then P ⊂M. By (26), we have
|f |2 � |f∗|2 + P 2ν on M, and Lemma 3 then gives�

M\P

|fgh2|2 dα�
�

M\P

|f∗gh2|2 dα+ P 2νQ1+εR2.

Also, by trivial estimates and (37),�

M\P

|f∗gh2|2 dα� Q2R4
�

M\P

|f∗|2 dα

� P 2Q2R4
∑
q≤P ν

q1/3
∞�

P−11/4

(1 + P 3|β|)−2 dβ � P 2ν−5/4Q2R4.

The minor arcs p = [0, 1] \ P are the union of m and M \ P, so that the
preceding bounds combine with (43) to give

(45)
�

p

|fgh2|2 dα� P 1− 1
7
νQ2R4.

7. Endgame. We complete the proof of the Theorem by a straightfor-
ward but unorthodox treatment of the major arc contribution, featuring a
single variable singular integral. It will be convenient to write

%P(n, P ) =
�

P

f(α)g(α)h(α)2e(−αn) dα,

and %p for the same expression with P replaced by p. For the latter, Bessel’s
inequality and (45) yield

(46)
∑
n

|%p(n, P )|2 � P 1− 1
7
νQ2R4.

Furthermore, by orthogonality,

(47) %θ(n, P ) = %P(n, P ) + %p(n, P ).
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In view of (46) and (47), it remains to compare %P(n, P ) with %∗θ(n, P ) in
mean square. We do this in three steps.

For α ∈ P, let a/q be the centre of the interval (44) to which α belongs.
Then, similarly to the deduction of (27), one finds that

g(α) = Qq−1S(q, a) +O(P ν).

Combined with (26) and (27), this gives

(48) f(α)g(α)h(α)2 = F(α) +O(P 1+νQR)

where the function F : P→ C is defined by

(49) F(α) = QR2q−3S(q, a)3f∗(α).

Now let

%†(n) =
�

P

F(α)e(−αn) dα.

Then the numbers %P(n, P )−%†(n) are the Fourier coefficients of the function
that is f∗gh2 − F on P, and is 0 elsewhere in [0, 1]. Hence, by Bessel’s
inequality, ∑

n

|%P(n, P )− %†(n)|2 ≤
�

P

|f∗gh2 −F|2 dα.

The measure of P is O(P 2ν−11/4). Invoking (48), we infer that

(50)
∑
n

|%P(n, P )− %†(n)|2 � P 4ν−3/4Q2R2.

For the next step, write

A(q, n) =

q∑
a=1

(a,q)=1

(
S(q, a)

q

)4

e

(
−an
q

)
, S(n,X) =

∑
q≤X

A(q, n).

Lemma 4.8 of Vaughan [16] asserts that∑
q≤X

q1/3|A(q, n)| � (nX)ε.

By partial summation, this implies the bound∑
q>X

|A(q, n)| � nεXε−1/3.

In particular, the singular series

S(n) = lim
X→∞

S(n,X)

converges absolutely and satisfies

(51) S(n)� nε, S(n,X) = S(n) +O(nεXε−1/3).
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In a similar vein, let

I(n) =

1/2�

−1/2

v(β)e(−βn) dβ, E(n) =
�

P−11/4<|β|≤1/2

v(β)e(−βn) dβ.

Then, by orthogonality, one has I(n) = 1
3n
−2/3 in the range P 3 < n ≤ 8P 3,

and I(n) = 0 otherwise. Consequently, we may write the function %∗θ(n, P )
in the simple form

(52) %∗θ(n, P ) = QR2S(n)I(n).

Before we compare this with %†(n) in mean, we estimate I(n) and E(n). By
Lemma 6.2 of Vaughan [16], one has v(β) � P (1 + P 3|β|)−1. Hence, one
finds that

(53) E(n)� P−2 logP

uniformly in n, whereas the explicit formula for I(n) yields the slightly better
bound

(54) I(n)� P−2.

Also, by Bessel’s inequality and the aforementioned bound for v(β), one
deduces the estimate

(55)
∑
n

|E(n)|2 �
�

P−11/4<|β|≤1/2

|v(β)|2 dβ � P−5/4.

We enter the final phase by recalling (49) and (51) to find that

%†(n) = S(n, P ν)QR2
P 11/4�

−P−11/4

v(β) dβ

= (S(n) +O(P−ν/4nε))QR2(I(n)− E(n)).

By (51)–(54), this can be estimated further to yield

%†(n) = %∗θ(n, P ) +O(nεP−2−ν/6QR2 + nεQR2|E(n)|).
We sum the consequential inequality

|%†(n)− %∗θ(n, P )|2 � nεP−4−ν/3Q2R4 + nεQ2R4|E(n)|2

over 1 ≤ n ≤ 9P 3 to infer from (55) that∑
n≤9P 3

|%†(n)− %∗θ(n, P )|2 � P−1−ν/3Q2R4.

This combines with (50) to yield∑
n≤9P 3

|%P(n, P )− %∗θ(n, P )|2 � P−1−ν/3Q2R4.
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Note that %θ(n, P ) = 0 when n > 9P 3, at least when P is large. Hence, the
sum defining V in (8) extends over 1 ≤ n ≤ 9P 3 only. Therefore, by (47),
the last estimate and (46) furnish the bound

V � P−1−
1
7
νQ2R4.

This completes the proof of the Theorem, with δ = 1
7ν.
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