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0. Introduction. Our object is to create a coherent record of the state
of knowledge concerning curves on which |ζ(s)| is constant, and also the
curves on which |ζ(s)| has steepest ascent. The value of |ζ(s)| at critical
points is also of interest, as it is at these values that lemniscates of constant
value coalesce. The spirit of our inquiry is similar to that of Speiser [5]. Some
of our results may already be known, and most of them should have been
known for a very long time.

It is well-known that there is exactly one real zero of ζ ′(s) between two
consecutive trivial zeros, and that these are the only zeros of ζ ′(s) with
real part ≤ 0. Moreover, the Riemann Hypothesis (RH) is equivalent to the
assertion that there are no further zeros of ζ ′(s) in the half-plane σ < 1/2.
The zero βn of ζ ′(s) lying between −2n− 2 and −2n satisfies

(0.1) βn = −2n− 2 + 1/log(n/π) +O((log n)−3),

and the local maximum (on the real axis) of |ζ(s)| at βn is

(0.2) |ζ(βn)| = (2n+ 2)!

e22n+3π2n+2 log n

(
1 +O

(
1

log n

))
for n ≥ 2. More explicitly, it is easy to show that if n ≥ 5, then

(0.3) |ζ(s)| ≤ (2n)!

22nπ2n+1

for −2n ≤ s ≤ 0, and that

(0.4) |ζ(−2n− 1)| > (2n+ 1)!

22n+1π2n+2
.
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Thus the local maximum of |ζ(s)| in the interval (−2n− 2,−2n) is strictly
greater than the corresponding local maximum in (−2n,−2n+2), for n ≥ 5.
By direct calculation (see Table 1), it can be further shown that actually
this holds for all n ≥ 3.

Table 1. The first twelve trivial zeros βn of ζ′(s), and ζ(βn)

n βn ζ(βn) n βn ζ(βn)

1 −2.71726283 0.00915989 7 −15.33872907 0.52058968

2 −4.93676211 −0.00398644 8 −17.37388334 −3.74356682

3 −7.07459714 0.00419400 9 −19.40313326 33.80830360

4 −9.17049316 −0.00785088 10 −21.42790225 −374.41885187

5 −11.24121232 0.02273075 11 −23.44918904 4988.00767609

6 −13.29557457 −0.09371731 12 −25.46771425 −78673.98339103

Of the various connected components on which ζ(s) is positive real,
for each even integer k there is a unique one that we call Rk that has an
asymptote t = kπ/(2 log 2) as σ → +∞. (Here, and in the following, we
write s = σ+ it, so that σ = < s and t = = s.) If 4 | k, then this is a curve of
steepest ascent in the sense that |ζ(s)| is increasing as σ decreases from +∞.
If k ≡ 2 (mod 4), then it is in the same sense a curve of steepest descent.

Of the various connected components on which |ζ(s)| = 1, for each odd
integer k there is a unique one we call Ck that has the asymptote t =
kπ/(2 log 2) as σ → +∞. It will turn out in due course that the curves Rk
do not intersect with each other, with the single exception that R2 and R−2
meet at β1 = −2.717262829, the first trivial zero of ζ ′. It is quite a different
story with the Ck, as C1 and C−1 meet on the real axis at 0.345372657. The
inequality |ζ(s)| > 1 holds for all points interior to C±1. The zeta function
has no zero nor any critical point inside this curve, and for each c > 1 there
is a simple closed curve lying inside C±1 on which |ζ(s)| = c. Such curves
form a nested family, each one encircling the pole at s = 1. Similarly, C3 and
C−3 meet on the real axis at σ3 = −16.406143017. The inequality |ζ(s)| < 1
holds for all s between C±1 and C±3. The curve C±3 encloses 8 trivial zeros
and one pole of the zeta function, and 7 zeros of ζ ′(s), namely the 7 trivial
zeros of ζ ′ between the 8 trivial zeros of ζ. The curves C±1 and C±3 are
depicted in Figure 1.

With the aid of the first part of Lemma 2.1 it is easy to show that
|ζ(σ + 2πi/log 2)| > 1 for all σ, so the curve C5 does not cross this line. By
direct computation it may be shown that C5 enters the critical strip, and
emerges again as C7. The inequality |ζ(s)| < 1 holds for all s inside C6±1. The
curve R6 lies in this domain, and thus must terminate at a nontrivial zero
of ζ(s). It will be shown below that for every integer k ≥ 1, the curve C4k+1
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Fig. 1. The curves C−3, R−2, C−1, R0, C1, R2, C3

meets the curve C4k+3, and that the simple curve C4k+2±1 wraps around one
or more nontrivial zeros of ζ(s), including the termination of R4k+2.

1. Notation

Symbol Meaning

Ck Defined for odd k; the connected component on which |ζ(s)| = 1
with asymptote t = kπ/(2 log 2) as σ → +∞.

D(c) Defined for c > 1; the noncompact domain on which |ζ(s)| < c.
N(c) Defined for c > 1; the noncompact connected component on which

|ζ(s)| = c.
Rk Defined for even k; the connected component on which ζ(s) is pos-

itive real, with asymptote t = kπ/(2 log 2) as σ → +∞.
βn The real zero of ζ ′(s) lying between −2n− 2 and −2n.
β′n The unique number σ ∈ (βn+1,−2n−2) for which ζ(β′n) = −ζ(βn).

Defined for n ≥ 2.
σ1(c) The largest number σ < 0 at which |ζ(σ)| = c. Defined for c > 1.
σ2(c) The unique number σ > 1 at which ζ(σ) = c.
σ3 = −16.406143017 is the point at which C±3 intersects the real axis.

2. Basic lemmas. In this section we establish a variety of results, some
of which are interesting in their own right.

Lemma 2.1. If σ > 1, then

|arg ζ(s)| ≤
∑
p

arcsin p−σ.



376 H. L. Montgomery and J. G. Thompson

Hence in particular,

(2.1) < ζ(s) > 0 (σ ≥ 1.2)

and

(2.2) sgn arg ζ(s) = sgn= ζ(s) (σ ≥ 1.034).

Proof of Lemma 2.1. If 0 ≤ r < 1, then |arg(1 + reiφ)| ≤ arcsin r. Hence
the stated bound follows from the Euler product for ζ(s).

Lemma 2.2. Let k be an integer. Then

(2.3)
∂

∂t
arg ζ(σ + it) < 0,

∂

∂σ
|ζ(σ + it)| < 0, |ζ(σ + it)| > 1

for s in the half-strip σ ≥ 4, |t− 4kπ/(2 log 2)| ≤ π/(4 log 2);

(2.4)
∂

∂t
|ζ(σ + it)| < 0,

∂

∂σ
arg ζ(σ + it) > 0, = ζ(σ + it) < 0

for σ ≥ 4, |t− (4k + 1)π/(2 log 2)| ≤ π/(4 log 2);

(2.5)
∂

∂t
arg ζ(σ + it) > 0,

∂

∂σ
|ζ(σ + it)| > 0, |ζ(σ + it)| < 1

for σ ≥ 4, |t− (4k + 2)π/(2 log 2)| ≤ π/(4 log 2); and

(2.6)
∂

∂t
|ζ(σ + it)| > 0,

∂

∂σ
arg ζ(σ + it) < 0, = ζ(σ + it) > 0

for σ ≥ 4, |t− (4k + 3)π/(2 log 2)| ≤ π/(4 log 2).

Suppose that σ ≥ 4. From (2.3) and (2.5) we know that∣∣∣∣ζ(σ + iπ
4k + 1/2

2 log 2

)∣∣∣∣ > 1,

∣∣∣∣ζ(σ + iπ
4k + 3/2

2 log 2

)∣∣∣∣ < 1.

From (2.4) we also know that |ζ(σ + it)| is a decreasing function of t for
(4k+1/2)π/(2 log 2) ≤ t ≤ (4k+3/2)π/(2 log 2). Hence in this interval there
is a unique t = t(σ) such that |ζ(σ + it(σ))| = 1. This t(σ) is a continuous
function of σ, and tends to (4k+1)π/(2 log 2) as σ → +∞. Indeed, it is easy
to see that

t(σ) = (4k + 1)π/(2 log 2) +O((2/3)σ).

These points s + it(σ) form part of the curve we know as C4k+1. Similarly,
from (2.4), (2.6), and (2.2) we see that

arg ζ

(
σ + iπ

4k + 3/2

2 log 2

)
< 0, arg ζ

(
σ + iπ

4k + 5/2

2 log 2

)
> 0.

From (2.5) we know that arg ζ(σ + it) is an increasing function of t for
(4k + 3/2)π/(2 log 2) ≤ t ≤ (4k + 5/2)π/(2 log 2), so there is a unique
t = t(σ) in this interval for which ζ(σ + it(σ)) is positive real. This is
a portion of the curve R4k+2. Continuing in this manner, we see that for
σ ≥ 4, the curve C4k+3 is found in the half-strip (4k + 5/2)π/(2 log 2)
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≤ t ≤ (4k + 7/2)π/(2 log 2), and that the curve R4k is in the half-strip
(4k − 1/2)π/(2 log 2) ≤ t ≤ (4k + 1/2)π/(2 log 2).

In (2.3)–(2.6), the most favorable case is when t is in the center of the
interval, and in this situation we can extend the range of validity somewhat:
For σ ≥ 2 we have

|ζ(σ + i4kπ/(2 log 2))| > 1,(2.7)

= ζ(σ + i(4k + 1)π/(2 log 2)) < 0,(2.8)

|ζ(σ + i(4k + 2)π/(2 log 2))| < 1,(2.9)

= ζ(σ + i(4k + 3)π/(2 log 2)) > 0.(2.10)

Proof of Lemma 2.2. For σ > 1, let

(2.11) F (σ) =
log 2

2σ+1/2
−
∑
n>2

Λ(n)

nσ
= (1 + 1/

√
2)

log 2

2σ
+
ζ ′

ζ
(σ).

By the Euler–Maclaurin summation formula we can calculate ζ(σ) and ζ ′(σ).

Thus we can compute ζ′

ζ (σ) without needing estimates for the distribution

of prime numbers. In this way we find that F (4) = 0.010285 > 0. From
the first formula for F (σ) in (2.11) it is clear that 2σF (σ) is an increasing
function of σ. Thus

(2.12) F (σ) > 0 (σ ≥ 4).

If (4k − 1/2)π/(2 log 2) ≤ t ≤ (4k + 1/2)π/(2 log 2), then −π/4 ≤
arg 2−it ≤ π/4, and hence < 2−it ≥ 1/

√
2. Hence if σ ≥ 4, then

< ζ
′

ζ
(s) = −<

∞∑
n=2

Λ(n)

ns
≤ − log 2

2σ+1/2
+
∑
n>2

Λ(n)

nσ
= −F (σ) < 0

by (2.12). The first two parts of (2.3) follow by the Cauchy–Riemann equa-
tions.

If (4k + 1/2)π/(2 log 2) ≤ t ≤ (4k + 3/2)π/(2 log 2), then −3π/4 ≤
arg 2−it ≤ −π/4, and so = 2−it ≤ −1/

√
2. Hence if σ ≥ 4, then

= ζ
′

ζ
(s) = −=

∞∑
n=2

Λ(n)

ns
≥ log 2

2σ+1/2
−
∞∑
n=2

Λ(n)

nσ
= F (σ) > 0

by (2.12). The first two parts of (2.4) follow by the Cauchy–Riemann equa-
tions.

The first two parts of (2.5) and (2.6) are derived similarly. To obtain the
third part of (2.3)–(2.6), we observe that

lim
σ→+∞

|ζ(σ + it)| = 1, lim
σ→+∞

arg ζ(σ + it) = 0,

uniformly in t. Thus the third part of (2.3)–(2.6) follows from the corre-
sponding second part. In the case of = ζ(s) we are using (2.2).
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Lemma 2.3. For even k let the curves Rk be defined as in §0. If j < k,
then Rj and Rk intersect only in the case j = −2, k = 2.

Proof. If k ≡ 0 (mod 4), then |ζ(s)| > 1 for all s ∈ Rk, and if k ≡ 2
(mod 4), then |ζ(s)| < 1 for all s ∈ Rk. Thus it is trivial that Rj and Rk
do not intersect if j 6≡ k (mod 4). Suppose that j ≡ k ≡ 2 (mod 4). Then
there is an ` ≡ 0 (mod 4) with j < ` < k, and so Rj is separated from Rk
by R`. Here it is essential that ` 6= 0, since R0 = [1,+∞) does not provide
separation. There will be a nonzero ` between j and k unless j = −2 and
k = 2. Now suppose that j ≡ k ≡ 0 (mod 4). If Rj were to meet Rk,
then it would have to be at a critical point, say ρ1. We may assume that
this is the first point at which these two curves have met. Let R′j denote
that portion of Rj that connects ρ1 to ∞+ ijπ/(2 log 2), and let R′k denote
that portion of Rk that connects ρ1 to ∞ + ikπ/(2 log 2). Then R′j ∪ R′k
forms the boundary of a domain D. By the maximum modulus principle,
|ζ(s)| ≤ |ζ(ρ1)| for all s ∈ D. From the perspective of the point ρ1, these
curves are curves of steepest descent, and between these curves there must
be a curve of steepest ascent. This contradicts the fact that in D, |ζ(s)| is
largest at ρ1.

Lemma 2.4. The inequality < ζ′

ζ (s) < 0 holds throughout the quarter-
plane σ ≤ −1, t ≥ 6, and

< ζ
′

ζ
(s) = − log |s|+O(1)

uniformly in this quarter-plane.

Proof. By taking the logarithmic derivative of the functional equation
in the asymmetric form, we find that

(2.13)
ζ ′

ζ
(s) = − ζ

′

ζ
(1− s) + log 2π − Γ ′

Γ
(1− s) +

π

2
cot

πs

2

(cf. (10.27) of Montgomery–Vaughan [4]). For σ ≥ 2,

(2.14)

∣∣∣∣ζ ′ζ (s)

∣∣∣∣ =

∣∣∣∣ ∞∑
n=2

Λ(n)

ns

∣∣∣∣ ≤ ∞∑
n=2

Λ(n)

n2
= − ζ

′

ζ
(2) = 0.569960993.

Since

(2.15) cot
πs

2
=
ie−πt + 2 sinπσ − ieπt

e−πt − 2 cosπσ + eπt
,

it is easy to see that

(2.16)

∣∣∣∣< cot
πs

2

∣∣∣∣ ≤ 0.000000014
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when t ≥ 6. Since

(2.17)
Γ ′

Γ
(s) = log s+O(1/|s|)

when < s ≥ 2 (cf. (C.17) of Montgomery–Vaughan [4]), we deduce that

< ζ′

ζ (s) = − log |s| + O(1) in the quarter-plane. Since this is tending to

−∞ uniformly as |s| → ∞, the maximum real part must occur on the

boundary. By detailed numerical calculation one may show that < ζ′

ζ (−1+it)

≤ < ζ′

ζ (−1+6i) for 6 ≤ t ≤ 60, and that < ζ′

ζ (σ+6i) ≤ < ζ′

ζ (−1+6i) < 0 for
−60 ≤ σ ≤ −1. In order to demonstrate that such a data comprises values
sufficiently far for the asymptotics to apply, it is necessary to have (2.17) in
a quantitative form, and in this connection we note that

(2.18)

∣∣∣∣Γ ′Γ (s)− log s

∣∣∣∣ ≤ 0.55

|s|
uniformly for σ ≥ 2. From these calculations we conclude that the maxi-
mum real part in the quarter-plane occurs at −1 + 6i, where the value is
−0.008670053.

Lemma 2.5. The inequality

= ζ
′

ζ
(s) < 0

holds throughout the half-strip σ ≤ −1, 0 < t ≤ 8.

By the Cauchy–Riemann equations we deduce that if σ ≤ −1 and 0 <
t ≤ 8, then

(2.19)
∂

∂t
log |ζ(σ + it)| = ∂

∂t
< log ζ(σ + it) = −= ζ

′

ζ
(s) > 0,

and thus |ζ(σ + it)| is a strictly increasing function of t for 0 ≤ t ≤ 8.
With more work, one could show that for each σ ≤ −1 there is a T (σ) such
that |ζ(σ + it)| is increasing for 0 ≤ t ≤ T (σ). The function T (σ) grows
exponentially as σ → −∞, but is always a finite function of σ. In particular,
T (−1) = 11.441988.

Proof of Lemma 2.5. The situation is a little delicate, since = ζ′

ζ (σ) = 0,

and since ζ′

ζ (s) has poles at negative even integers. For positive real r and

positive integers n, let D(n, r) denote the domain −2n − 1 < σ < −1,
0 < t < 8, with semidiscs |s + 2k| ≤ r removed for k = 1, . . . , n. Then

= ζ′

ζ (s) is a nonconstant harmonic function on D(n, r), and the union as

n → ∞ and r → 0+ of these domains is the half-strip −∞ < σ < −1,

0 < t < 8. Thus it suffices to show that = ζ′

ζ (s) ≤ 0 on the boundary of

D(n, r) if r is sufficiently small and n is sufficiently large.
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First we treat the interval from −2n − 1 to −1n − 1 + 8i by means of
(2.13). If σ ≥ 2, then

= ζ
′

ζ
(s) =

t�

0

∂

∂u
= ζ
′

ζ
(σ + iu) du =

t�

0

<
(
ζ ′

ζ

)′
(σ + iu) du.

But ∣∣∣∣(ζ ′ζ
)′

(s)

∣∣∣∣ =

∣∣∣∣ ∞∑
n=2

Λ(n) log n

ns

∣∣∣∣ ≤ 2−σ
∞∑
n=2

Λ(n) log n

(n/2)σ

≤ 22−σ
(
ζ ′

ζ

)′
(2) = 22−σ

(
ζ ′′(2)

ζ(2)
−
(
ζ ′

ζ
(2)

)2)
≤ 22−σ.

Hence

(2.20)

∣∣∣∣= ζ ′ζ (σ + it)

∣∣∣∣ ≤ t22−σ
for σ ≥ 2, t ≥ 0.

Similarly, if σ ≥ 2, then

= Γ
′

Γ
(s) =

t�

0

∂

∂u
= Γ

′

Γ
(σ + iu) du =

t�

0

<
(
Γ ′

Γ

)′
(σ + iu) du.

Now (
Γ ′

Γ

)′
(s) =

∞∑
n=0

(n+ s)−2,

and by the Euler–Maclaurin summation formula we know that(
Γ ′

Γ

)′
(s) = s−1 +O(|s|−2)

for σ ≥ 2. More specifically,

(2.21)

∣∣∣∣(Γ ′Γ
)′

(s)

∣∣∣∣ ≤ 1.3

|s|
when σ ≥ 2, and hence

(2.22)

∣∣∣∣= Γ ′Γ (s)

∣∣∣∣ ≤ 1.3t

σ

for σ ≥ 2.

From (2.15) we see that

= cot
π(−2n− 1 + it)

2
= − tanh

πt

2
≤ − t

9

for 0 ≤ t ≤ 8. On combining our estimates in (2.13), we see that = ζ′

ζ (−2n−
1 + it) < 0 for 0 < t ≤ 8, provided that n ≥ 6.



Geometric properties of the zeta function 381

Next we consider s = σ + 8i. From (2.15) we see that

(2.23) − 1.000000000025 < = cot
π(σ + 8i)

2
< − 0.999999999975.

On combining this with our other estimates in (2.13), we deduce that

= ζ′

ζ (σ + 8i) < 0 for σ ≤ −10. We calculate that = ζ′

ζ (σ + 8i) is increas-

ing for −10 ≤ σ ≤ −1, with the maximum value = ζ′

ζ (−1+8i) = −0.257367.

We also find that = ζ′

ζ (−1 + it) ≤ −t/32 for 0 ≤ t ≤ 8. As to the delicate
behavior when t is near 0, we remark that

∂

∂t
= ζ
′

ζ
(−1 + it)

∣∣∣∣
t=0

=

(
ζ ′

ζ

)′
(−1) =

ζ ′′(−1)

ζ(−1)
−
(
ζ ′

ζ
(−1)

)2
= −0.937985199.

It remains to consider = ζ′

ζ (s) when s is on a small semicircle centered
at a negative even integer. We recall that

cot s =
1

s
+

∞∑
n=1

(
1

s− πn
+

1

s+ πn

)
.

Here each term has negative imaginary part when s is in the upper half-
plane, and thus

= cot reiθ ≤ = 1

r
e−iθ = − 1

r
sin θ = − t

r2
.

Hence

= π
2

cot
π(−2n+ reiθ)

2
= = π

2
cot

πreiθ

2
≤ − 2t

πr2
.

Thus in (2.13), the contribution of cotπs/2 overwhelms those of the zeta
function and gamma function, if r is sufficiently small, say r ≤ 1/2. Since

= ζ′

ζ (s) ≤ 0 on the boundary of D(n, r), it follows that this inequality holds

throughout D(n, r), and the proof is complete.

Lemma 2.6. A curve of steepest ascent of |ζ(s)|, once it enters the
quarter-plane σ ≤ −1, t ≥ 6, will never leave it. On such a curve, the
real part will be monotonically decreasing to −∞, and the imaginary part
will tend to +∞.

By direct computation we find that R4 intersects the line σ = −1 at
−1 + 10.798685i.

Proof of Lemma 2.6. If f is analytic at s0 and f(s0) 6= 0, then the ray
s0 + reiθ points in the direction of the curve of steepest ascent through s0
if θ = − arg f ′

f (s0). For the zeta function we deduce from Lemma 2.4 that

at −1 + it with t ≥ 6 we have θ ∈ (π/2, 3π/2), which is to say the curve
is heading into the quarter-plane. Similarly, from Lemma 2.5 we see that
at σ + 6i with σ ≤ −1 we have θ ∈ (0, π), which again is pointing into the
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quarter-plane. In this quarter-plane we have < ζ′

ζ (s) = − log |s|+ O(1) and

= ζ′

ζ (s) � 1. Hence θ = π + O(1/log |s|). Once this curve passes the ray

t = −σ, we have = Γ ′

Γ (1 − s) ≤ π/4 + o(1), while = cotπs/2 is near −1,
and so by (2.13) we see that there are positive constants c1 < c2 such that

−c2 ≤ = ζ′

ζ (s) ≤ −c1. Thus θ will be less than π by an amount comparable

to 1/log |s|, so t tends to infinity, with t � −σ/log(−σ). Here the constants
of proportionality depend on the particular curve being considered.

The functional equation of the zeta function, in its asymmetric form,
asserts that

(2.24) ζ(s) = ζ(1− s)∆(s)

where

(2.25) ∆(s) = 2sπs−1Γ (1− s) sin
πs

2
=
Γ ((1− s)/2)

Γ (s/2)
πs−1/2

(cf. (10.5) and (10.9) of Montgomery–Vaughan [4]). Thus ∆(s) is a mero-
morphic function with simple zeros at the nonpositive even integers and
simple poles at the positive odd integers. From the second formula for ∆(s)
in (2.25) it is clear that

(2.26) ∆(s)∆(1− s) = 1.

Since ∆(1/2− it) = ∆(1/2 + it), it follows that

(2.27) |∆(1/2 + it)| = 1

for all t. By taking logarithmic derivatives in (2.26), we deduce that

(2.28)
∆′

∆
(s) =

∆′

∆
(1− s)

for all s. The sign of = ∆′

∆ (s) is easily described, as follows.

Lemma 2.7. Let ∆(s) be defined as in (2.25). Then

(2.29) sgn= ∆
′

∆
(s) = (sgn(σ − 1/2))(sgn t).

By the Cauchy–Riemann equations it follows that

(2.30) sgn
∂

∂t
|∆(s)| = −(sgn(σ − 1/2))(sgn t).

Proof of Lemma 2.7. By taking logarithmic derivatives in (2.25) we see
that

∆′

∆
(s) = −1

2

Γ ′

Γ

(
1− s

2

)
− 1

2

Γ ′

Γ

(
s

2

)
+ log π.
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By the partial fraction formula for Γ ′

Γ (s) (cf. (C.10) of Montgomery–Vaughan
[4]) we deduce that

∆′

∆
(s) =

1

s
− 1

s− 1
+ C0 + log π +

∞∑
n=1

(
1

s+ 2n
− 1

s− 1− 2n
− 1

n

)
.

Hence

= ∆
′

∆
(s) = t

∞∑
n=0

(
1

(σ − 1− 2n)2 + t2
− 1

(σ + 2n)2 + t2

)
.

If σ > 1/2, then (σ− 1− 2n)2 < (σ+ 2n)2 for all n, so all terms in the sum
are positive. If σ < 1/2, then the signs are reversed. Hence the result.

In view of our remarks following Lemma 2.5, the next lemma plays a
useful role.

Lemma 2.8. Let σ ≤ −1 be fixed. Then |ζ(σ+it)| ≥ |ζ(σ+6i)| for t ≥ 6.

Proof. Suppose that σ ≤ −1. By (2.19) we know that |ζ(σ + it)| >
|ζ(σ + 6i)| for 6 ≤ t ≤ 8. Suppose that t ≥ 8. By the functional equation in
the asymmetric form (2.24) we see that

(2.31)
|ζ(σ + it)|
|ζ(σ + 6i)|

=
|ζ(1− σ + it)|
|ζ(1− σ + 6i)|

· |∆(σ + it)|
|∆(σ + 6i)|

.

Our first step is to show that

(2.32)
|ζ(1− σ + it)|
|ζ(1− σ + 6i)|

≥ 0.65797

for σ ≤ −1, which is to say that

(2.33)
|ζ(σ + it)|
|ζ(σ + 6i)|

≥ 0.65797

for σ ≥ 2. By direct calculation we find that |ζ(σ + 6i)| < 1 for 2 ≤ σ ≤ 3.
By the familiar inequalities

(2.34)
ζ(2σ)

ζ(σ)
≤ |ζ(σ + it)| ≤ ζ(σ)

we deduce that

|ζ(σ + it)|
|ζ(σ + 6i)|

> |ζ(σ + it)| ≥ ζ(2σ)

ζ(σ)
≥ ζ(4)

ζ(2)
> 0.65797

for 2 ≤ σ ≤ 3. This gives (2.33) in this range. If σ ≥ 3, then by the
inequalities (2.34) we find that

|ζ(σ + it)|
|ζ(σ + 6i)|

≥ ζ(2σ)

ζ(σ)2
≥ ζ(6)

ζ(3)2
> 0.7.

Thus we have (2.33) for all σ ≥ 2, and hence (2.32) for σ ≤ −1.
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Next we show that

(2.35)
|∆(σ + it)|
|∆(σ + 6i)|

≥ 1.527.

for σ ≤ −1 and t ≥ 8. By Lemma 2.7 and the remarks following we know
that |∆(σ + it)| is an increasing function of t for t > 0, σ ≤ −1. Thus it
suffices to show that

(2.36)
|∆(σ + 8i)|
|∆(σ + 6i)|

≥ 1.527.

From the first formula for ∆(s) in (2.25) we see that

(2.37)
|∆(σ + 8i)|
|∆(σ + 6i)|

=
|Γ (1− σ + 8i)|
|Γ (1− σ + 6i)|

·
|sin π

2 (σ + 8i)|
|sin π

2 (σ + 6i)|
.

By the product formula for the gamma function (cf. (C.1) of Montgomery–
Vaughan [4]) we see that

|Γ (σ + 8i)|
|Γ (σ + 6i)|

< 1

for σ ≥ 2, and that this quantity is monotonically increasing to 1 as σ →
+∞. Thus

(2.38)
|Γ (1− σ + 8i)|
|Γ (1− σ + 6i)|

≥ |Γ (2 + 8i)|
|Γ (2 + 6i)|

> 0.066

for σ ≤ −1. On the other hand,

|sin π
2 (σ + 8i)|

|sin π
2 (σ + 6i)|

= eπ
∣∣∣∣1− e−8πeiπσ1− e−6πeiπσ

∣∣∣∣ ≥ eπ 1 + e−8π

1 + e−6π
> 23.14.

On combining this and (2.38) in (2.37) we obtain (2.36) and hence (2.35). We
insert (2.32) and (2.35) into (2.31) to see that |ζ(σ + it)| ≥ 1.004|ζ(σ + 6i)|
for σ ≤ −1, so the proof is complete.

In Lemma 2.7 we discussed = ∆′

∆ (s) where ∆(s) is defined in (2.25). We

now turn to < ∆′

∆ (s).

Lemma 2.9. Suppose that t ≥ 6.3. Then < ∆′

∆ (σ + it) < 0 for all σ.

From the above we see that |∆(σ + it)| is a decreasing function of σ if
t ≥ 6.3. Thus from (2.27) it follows that |∆(σ + it)| < 1 if σ > 1/2 and
t ≥ 6.3. Hence

(2.39) |ζ(σ + it)| < |ζ(1− σ + it)|
if σ > 1/2, t ≥ 6.3, and ζ(σ + it) 6= 0.

Proof of Lemma 2.9. In view of (2.28), we may restrict our attention to
σ ≤ 1/2. By taking logarithmic derivatives in (2.25) we find that

(2.40)
∆′

∆
(s) = log 2π − Γ ′

Γ
(1− s) +

π

2
cot

πs

2
.
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We calculate that < ∆′

∆ (σ + 6.3i) is increasing for −2 ≤ σ ≤ 1/2 with the

maximum value < ∆′

∆ (1/2 + 6.3i) = −0.001618. From (2.15) we deduce that∣∣∣∣π2< cot
π

2
(σ + it)

∣∣∣∣ < 10−8

for t ≥ 6.3. Hence by (2.18) we know that

< ∆
′

∆
(σ + 6.3i) ≤ 1.8378771− log |1− σ + 6.3i|+ 0.55

|1− σ + 6.3i|
for σ ≤ −2. This upper bound is an increasing function of σ in this interval,
and has the value −0.0260386 at σ = −2, and so < ∆′

∆ (σ + 6.3i) < 0 for all

real σ. From (2.17) and (2.28) we know that < ∆′

∆ (s) is large and negative
on a semicircle |s| = R, if R is large. Since the largest value of this harmonic
function must occur on the boundary, we conclude that

< ∆
′

∆
(σ + it) ≤ < ∆

′

∆
(1/2 + 6.3i) = −0.001618

if t ≥ 6.3.

Lemma 2.10. If ζ(1/2 + it) 6= 0, then

(2.41)
d

dt
arg ζ(1/2 + it) = < ζ

′

ζ
(1/2 + it) = − 1

2
log t+O(1)

for t ≥ 1, and

(2.42) < ζ
′

ζ
(1/2 + it) < 0

for t ≥ 6.3.

A notable consequence of (2.42) is that a curve of steepest ascent of
|ζ(s)| crosses the critical line only from right to left for |t| ≥ 6.3.

Proof of Lemma 2.10. The first identity is a Cauchy–Riemann equation,
so we turn our attention to the estimate and inequality. By taking logarith-
mic derivatives in (2.24) we find that

ζ ′

ζ
(s) +

ζ ′

ζ
(1− s) =

∆′

∆
(s).

On taking s = 1/2 + it we obtain

2< ζ
′

ζ
(1/2 + it) =

∆′

∆
(1/2 + it) = < ∆

′

∆
(1/2 + it).

By Lemma 2.9 we know that this last quantity is negative for t ≥ 6.3. The
stated estimate follows by combining (2.16) and (2.17) in (2.40).

Lemma 2.11. Let A(σ, T, θ) denote the number of t, 0 ≤ t ≤ T , such
that

arg ζ(σ + it) ≡ θ (mod 2π).
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Then

(2.43)

2π�

0

A(σ, T, θ) dθ =

T�

0

∣∣∣∣< ζ ′ζ (σ + it)

∣∣∣∣ dt.
Proof. The identity clearly holds when T = 0. Thus it suffices to show

that the two sides have the same derivative. When we pass from T to T + δ,

arg ζ(σ+ it) changes by approximately δ< ζ′

ζ (σ+ iT ). Thus A(σ, T + δ, θ) =

A(σ, T, θ) for most θ, but for θ lying in an interval of length approximately

δ
∣∣< ζ′

ζ (σ + iT )
∣∣ we have A(σ, T + δ, θ) = A(σ, T, θ) + 1. Thus

2π�

0

A(σ, T + δ, θ) dθ −
2π�

0

A(σ, T, θ) dθ ∼ δ
∣∣∣∣< ζ ′ζ (σ + it)

∣∣∣∣.
In the special case σ = 1, we know that < ζ′

ζ (1 + it) has a limiting
distribution with an absolutely continuous everywhere positive density that
tends rapidly to 0 at infinity, and thus there is a constant c > 0 such that

(2.44)

T�

0

∣∣∣∣< ζ ′ζ (1 + it)

∣∣∣∣ dt ∼ cT
as T →∞. With less sophistication now we show that the above integral is
� T , and indeed that a proportionate lower bound holds even for intervals
of bounded length.

Lemma 2.12. There is an A0 such that

T+A�

T−A

∣∣∣∣< ζ ′ζ (1 + it)

∣∣∣∣ dt� A

uniformly for A ≥ A0.

Proof. We note first that we may assume that T ≥ A. Let K(u) =
max(0, 1− |u|/A). For σ > 1,

(2.45) −
T+A�

T−A
< ζ
′

ζ
(σ + it)(1 + cos(t log 2))K(t− T ) dt

=
∑
n

Λ(n)

nσ

A�

−A
(1 + cos((T + u) log 2))(cos((T + u) log n))K(u) du.

For f ∈ L1(R) we define the Fourier transform of f to be

f̂(t) =

∞�

−∞
f(x)e(−tx) dx
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where e(θ) = e2πiθ is Vinogradov’s notation for the complex exponential
with period 1. In this notation the integral on the right in (2.45) is

1

2
niT K̂

(
− log n

2π

)
+

1

2
n−iT K̂

(
log n

2π

)
+

1

4
(2n)iT K̂

(
− log 2n

2π

)
+

1

4
(2n)−iT K̂

(
log 2n

2π

)
+

1

4
(n/2)iT K̂

(
− log n/2

2π

)
+

1

4
(n/2)−iT K̂

(
log n/2

2π

)
.

Now K̂(0) = A, and

K̂(t) =
1

A

(
sinAπt

πt

)2
for t 6= 0, so K̂(t) � min(A, 1/(At2)). Hence the sum of the six terms
displayed above is 

A

2
+O

(
1

A

)
(n = 2),

O

(
1

A(log n)2

)
(n > 2).

Since
∞∑
n=2

Λ(n)

n(log n)2
< ∞,

the expression (2.45) is
A log 2

2σ+1
+O

(
1

A

)
uniformly for σ > 1. We let σ → 1+ and note that∣∣∣∣ T+A�

T−A
< ζ
′

ζ
(1 + it)(1 + cos(t log 2))K(t− T ) dt

∣∣∣∣ ≤ 2

T+A�

T−A

∣∣∣∣< ζ ′ζ (1 + it)

∣∣∣∣ dt
to complete the proof.

3. Main results

Theorem 3.1. There exist positive constants k0 and C such that if k >
k0, k ≡ 0 (mod 4), and s = σ + it ∈ Rk with σ ≥ −1, then

|t− πk/(2 log 2)| < C log k.

This has many consequences, not the least of which is that Rk must inter-
sect the interval from −1 + i(kπ/(2 log 2)−C log k) to −1 + i(kπ/(2 log 2) +
C log k) when k ≡ 0 (mod 4).

Proof of Theorem 3.1. Suppose that j≥2, and put t0=(4j−1)π/(2 log 2).
By a method due to Backlund [1], we show that the number of σ ∈ [−1, 4]
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such that ζ(σ + it0)) ∈ R is O(log j). To this end, let

f(s) = ζ(s+ it0)− ζ(s− it0).

By the reflection principle, f(σ) = 2i=ζ(σ + it0). Thus (f(σ) = 0 whenever
ζ(σ + it0)) is real. Our first task is to show that

(3.1) |f(4)| ≥ 0.09.

Since 2−it0 = i we see that

= log ζ(4 + it0) =
1

16
+ =

∑
n>2

Λ(n)

n4+it0 log n
≥ 1

16
−
∑
n>2

Λ(n)

n4 log n

=
1

8
−
∞∑
n=2

Λ(n)

n4 log n
=

1

8
− log ζ(4) > 0.04589.

Similarly,

< log ζ(4 + it0) = <
∑
n>2

Λ(n)

n4+it0 log n
≥ −

∞∑
n>2

Λ(n)

n4 log n

=
1

16
− log ζ(4) > −0.01661.

Thus if we write ζ(4 + it0) = reiφ, then = ζ(4 + it0) = r sinφ > 0.045. This
gives (3.1).

We apply Jensen’s inequality to f(s) in the disc |s−4| ≤ 6. Since f(s)�
j5/2 in this disc, the number of zeros of f in the smaller disc |s − 4| ≤ 5 is
O(log j). In particular, the number of σ ∈ [−1, 4] for which ζ(σ + t0) is real
is O(log j).

Now let m be an integer, m ≥ 3, and put t1 = (k − 4m − 1)π/(2 log 2),
t2 = (k+4m−1)π/(2 log 2). Suppose that Rk intersects the interval [−1+it1,
4 + it1]. Since Rk and Rk−4 do not intersect, it follows that Rk−4 must
also intersect the interval [−1 + it1, 4 + it1]. This same reasoning applies to
Rk − 4j for 1 ≤ j ≤ m. Thus there are at least m points on the interval
[−1 + it1, 4 + it1] for which ζ(s) is real, so m = O(log k). Similarly, suppose
that Rk intersects the interval [−1 + it2, 4 + it2]. Then Rk+4j must also
intersect this interval for 1 ≤ j < m. It again follows that m = O(log k), so
the proof is complete.

Corollary 3.2. Any curve of steepest ascent of |ζ(s)|, other than those
tending toward s = 1, and the curves Rk with k ≡ 2 (mod 4), must have
real part tending to minus infinity.

Proof. Let s0 = σ0 + it0 be given with ζ(s0) 6= 0, and consider the curve
of steepest ascent ascending from s0. For s0 inside R±2, curves of steepest
ascent spring from the trivial zero at −2 and tend to the pole at s = 1.
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Now suppose that s0 is not enclosed by R±2. On the curve through s0 of
steepest ascent, the zeta function has constant argument, say θ ∈ (−π, π].
Suppose first that θ 6= 0, and choose ε so that ε < |θ|. Now arg ζ(s)� 2−σ

uniformly as σ → +∞. Thus there is a σ1 such that |arg ζ(s)| < ε uniformly
for σ ≥ σ1. Choose a k+ ≡ 0 (mod 4) sufficiently large so that Rk+ lies
above s0 for −1 ≤ σ < +∞. Similarly, choose a k− ≡ 0 (mod 4) so that
s0 lies above Rk− for −1 ≤ σ < +∞. We can form a path from σ = −1 to
σ = σ1 along Rk+ , followed by a path on σ = σ1 to Rk− , and then along Rk−
to σ = −1. The zeta function is nonzero on this path, and has argument
different from θ, so the curve of steepest ascent from s0 does not intersect
this path. Therefore it must cross the abscissa σ = −1. If 0 < k− < k+, then
we are done, since R2 reaches the abscissa −1 at t = 10.079868532, and so
the curve in question is forced to enter the quarter-plane discussed in Lemma
2.6. If k− < 0 < k+, then as we come up from Rk− on the abscissa σ1 we
should take R−1 to β1 = −2.717262829, then R1 back to the abscissa σ1, and
then continue up this abscissa. Thus the curve is again forced to reach the
line σ = −1. If it does so at height t ≥ 6 or ≤ −6, then we are done. In case
it reaches the abscissa −1 at −1 + it with |t| < 6, we observe that the zeta
function is positive real on a curve starting at −8.700603531 − 6i, running
through β3 = −7.074597145, and then ending at −8.700603531 + 6i. Thus
the curve in question is still forced to enter the quarter-plane of Lemma 2.6.

Finally, we consider the case in which s0 lies outside R±2, but θ = 0, so
the zeta function is positive real on our curve. If the real part σ becomes
large on the curve, then the curve is one of the Rk with k ≡ 2 (mod 4).
Otherwise, the curve is still blocked by the same barriers as before, but
now we have to consider the possibility that it meets the barrier at a critical
point. Suppose the curve meets Rk+ at a critical point ρ′ of the zeta function.
The two curves arrive from opposite directions, and so we turn by −π/2 and
continue. The curve cannot contact Rk+ between ρ′ and +∞ + ikπ/log 2,
because the value on the curve is now larger than on this part of Rk+ . If
it were to contact Rk+ again farther to the left, then we would again turn
by −π/2 and then we would be inside a simple closed curve on which the
zeta function is taking real values smaller than those on the curve, which is
something that the harmonic function <ζ(s) cannot do. If after making a
first contact with Rk+ , the curve were then to contact Rk− , then we would
turn by π/2, and we would have the same contradiction as before. Of course
we can argue similarly in the case that the zero of ζ ′ that is encountered is
more than a simple zero.

Corollary 3.3. For each positive integer k, the curves C4k+2±1 are in
fact opposite ends of the same simple curve. The curve R4k+2 lies entirely
within this curve, and terminates at a nontrivial zero enclosed by C4k+2±1.
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Proof. The region between C4k+1 and C4k+3 is one in which |ζ(s)| < 1.
If these curves do not meet to bound the region, then it must continue off
to infinity in some direction. However, |ζ(s)| > 1 on R4k and on R4k+4, and
these curves enter the quarter-plane of Lemma 2.6, and will each reach the
abscissa σ = −4, where they can be linked, since |ζ(−4 + it)| > 1 for t ≥ 6.
Thus the region in which |ζ(s)| < 1 is contained, so the curves C4k+1 and
C4k+3 must meet.

Corollary 3.4. Let k be a positive integer, and let r denote the number
of zeros of ζ(s) inside C4k+2±1. Then r > 0, and the number of zeros of ζ ′

inside C4k+2±1 is exactly r − 1.

That there must be at least one zero inside C4k+2±1 can be seen in a
variety of ways. For example, |ζ(s)| < 1 inside the curve, and the minimum
modulus cannot be positive. Alternatively, we may observe that |ζ(s)| is de-
creasing as one comes in from σ = +∞ on R4k+2. This curve of steepest de-
scent must terminate at a zero, which must be inside C4k+2±1. Suppose that c
is a very small positive number. Then the connected components of the level
set |ζ(s)| = c inside C4k+2±1 consist of r small ovals, one around each of the
zeros. As c increases, these ovals enlarge, and occasionally two of them coa-
lesce. The point at which they touch is a zero of ζ ′(s). When c is only slightly
less than 1, the level set is a simple closed curve only slightly inside C4k+2±1
until σ is large. Since we started with r components and end with 1, there
have been r− 1 mergers, and hence r− 1 zeros of ζ ′(s). While this is an in-
structive way to view things, we supplement these comments with a rigorous
proof utilizing ideas found in §3.55 of Titchmarsh’s Theory of Functions [6].

Proof of Corollary 3.4. Let s1 be a point on C4k+1 with σ1 very large, and
let s2 be a point on C4k+3 with σ2 = σ1. For s ∈ C4k+2±1, the outward unit
normal at s points in the direction of steepest ascent. At s1 the argument of
this outward normal is approximately π/2. As s moves along the curve from
s1 to s0, the argument varies, and has increased from π/2 to approximately
3π/2 by the time s reaches s0. But the direction of steepest ascent is the

negative of the argument of ζ′

ζ (s). Thus the argument of the logarithmic
derivative has decreased by π. On the abscissa σ1, the logarithmic derivative
is very close to c2−s where c = − log 2. Since t1 is near (4k+1)π/(2 log 2) and
t2 is near (4k+3)π/(2 log 2), as s passes from s1 to s2 along the abscissa σ1,

the argument of ζ′

ζ (s) decreases by approximately π. Since the total change
of argument around this simple closed curve must be an integral multiple of
2π, we deduce that it is −2π. But this is the difference between the change
of argument of ζ ′(s) and the change of argument of ζ(s). Thus ζ ′(s) has one
fewer zero inside C4k+2±1 than does ζ(s). Since the number of zeros of ζ ′(s)
is at least 0, it follows that the number of zeros of ζ(s) is at least 1.



Geometric properties of the zeta function 391

Corollary 3.5. Suppose that 0 < c < 1. Then every connected compo-
nent of the level curve |ζ(s)| = c is compact.

Proof. We know that

inf
t
|ζ(σ + it)| = ζ(2σ)

ζ(σ)
when σ > 1. This tends to 1 as σ → +∞, so ζ(2σ0)/ζ(σ0) > c if σ0 is
sufficiently large. Thus we may ignore the half-plane σ ≥ σ0. We can also
ignore the half-plane σ ≤ −17, since |ζ(s)| > 1 in the quarter-planes σ ≤
−17, |t| ≥ 6 and also on the rectangular paths with vertices −2n + 1 + 6i,
−2n− 1 + 6i, −2n− 1− 6i, −2n+ 1− 6i. Since |ζ(s)| > 1 for s ∈ R4k, any
connected component in the strip −17 ≤ σ ≤ σ0 will lie between R4k and
R4k+4 for some k, and must therefore be compact.

Corollary 3.6. All connected components on which |ζ(s)| = 1 are com-
pact, except for the curves C±1, C±3, and C4k+2±1 with k = 1, 2, 3, . . . or
k = −2,−3,−4, . . . .

Proof. Let s0 be a point for which |ζ(s0)| = 1. Suppose first that s0 lies
between R−4 and R4. Choose an odd integer k ≤ −17 such that k < σ0.
Let t1 be chosen so that 4 + it1 ∈ R4, put s1 = 4 + it1, let t2 be chosen
so that k + it2 ∈ R4, and put s2 = k + it2. Let C be the simple closed
curve that runs along R4 from s1 to s2, along the line joining s2 to s2, along
R−2 from s2 to s1, and then along the straight line connecting s1 to s1.
Then s0 lies inside this curve. However, |ζ(s)| > 1 along the first three legs
of C, and by the remarks made after Lemma 2.2 we know that the only
curves crossing the final segment are C±1 and C±3. Thus either s0 is on one
of these two noncompact curves, or else s0 lies on a compact component.
The first eight trivial zeros of the zeta function lie between C±1 and C±3,
a region in which |ζ(s)| < 1. However, around each of −18,−20,−22, . . .
there is a simple closed curve on which |ζ(s)| = 1. Each such curve contains
exactly one trivial zero −2k, since |ζ(s)| > 1 on the rectangular path from
−2k+ 1 + 6i to −2k−1 + 6i to −2k−2−6i to −2k+ 1−6i to −2k+ 1 + 6i.

Suppose now that s0 lies above R4. Let n be an even integer chosen to
be so large that all points of Rn have imaginary part > t0. Choose t1 so that
4 + it1 ∈ Rn, t2 so that 17 + it2 ∈ Rn, t3 so that −17 + it3 ∈ R2, and t4 so
that 4 + it4 ∈ R2. Consider the simple closed curve C that starts at 4 + it1,
runs along Rk to −17 + it2, and along the line to −17 + it3, then along R2

to 4 + it4, and then along the abscissa σ = 4 to 4 + it1. Then s0 lies in the
interior of this curve, and we have |ζ(s)| > 1 on the first three portions of C.
The only points on σ = 4 for which |ζ(s)| are points on Ck for some k. Thus
the connected component containing s0 is compact, or else is one of the Ck.

If s0 lies below R−2, then we can reflect about the real axis and appeal
to the case just considered. Thus the proof is complete.
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Corollary 3.7. For each c > 1, the level curve on which |ζ(s)| = c has
exactly one noncompact component, say N(c). Let σ1(c) denote the largest
real number < 0 for which |ζ(σ)| = c. Then σ1(c) ∈ N(c), and this is the only
intersection of N(c) with the real axis, unless c = |ζ(βn)| for some trivial
zero βn of ζ ′, in which case there is exactly one more intersection β′n with
βn+1 < β′n < −2n− 2.

The number σ1(c) described above must in fact be < −16, since it must
lie outside the curve C±3 on which |ζ(s)| = 1.

Proof of Corollary 3.7. First we demonstrate the existence of such a
curve. Let σ2(c) be the unique real number σ > 1 for which ζ(σ) = c. Then
|ζ(s)| < c when σ > σ2(c). Let D(c) denote the largest pathwise connected
domain containing the half-plane σ > σ2(c) in which |ζ(s)| < c. Inside C±1
there is a compact oval on which |ζ(s)| = c; thus D(c) has one hole. It does
not have any further hole, since any such hole must contain a pole, and
the zeta function has only the one pole. Consider a path that follows C3 to
the negative real axis at σ0 = −16.406143017, and then continues on the
negative real axis to σ1(c). This path lies in D(c) up to σ1(c), so σ1(c) is on
the boundary of D(c).

Let N(c) denote the connected component of the level set |ζ(s)| = c that
passes through σ1(c). This curve is symmetric with respect to the real axis,
and could be compact only by returning to the real axis. We show that this
does not happen, with the exception already noted. Certainly N(c) does
not intersect the segment from σ1(c) to σ0, nor does it cross the curve C3.
Hence any further possible intersection with the real axis must occur at a
point σ < σ1(c). Let n be determined so that |ζ(βn−1)| < c ≤ |ζ(βn)|. Sup-
pose first that c < |ζ(βn)|. Then by Lemma 2.5 we see that |ζ(s)| > c on
the rectangular paths with vertices βk + 6i, βk+1 + 6i, βk+1 − 6i, βk − 6i
for all k ≥ n. Each of these rectangles contains a simple closed curve on
which |ζ(s)| = c, surrounding the trivial zero at −2k − 2. Thus the curve
N(c) cannot enter the half-strip σ ≤ σ1(c), |t| ≤ 6. Now suppose that
c = |ζ(βn)|. By arguing as above we deduce that N(c) loops around the
trivial zero −2n − 2, and leaves the nth rectangle where it entered. See
Figure 2 for an example of this. The curve N(c) clearly does not enter
the half-strip σ ≤ βn+1, |t| ≤ 6. Thus N(c) is noncompact in this case
also.

Now we establish the uniqueness of N(c). Any connected noncompact
component of |ζ(s)| = c is confined to the strip βn+1 ≤ σ ≤ σ2(c). On
a curve R4k there is exactly one point at which |ζ(s)| = c. Since we arrive
there on a curve within D(c), this is a point on N(c). However, no other con-
nected component of |ζ(s)| = c can intersect R4k. Thus all other connected
components are compact.
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Fig. 2. Part of the noncompact curve N(c) where c = |ζ(β8)|

Suppose that c > 1 and t are fixed, with |t| ≥ π/(2 log 2). On the line
σ + it, we have |ζ(s)| = c at abscissæ σ1(c, t) ≥ · · · ≥ σR(c, t). Since

lim
σ→−∞

|ζ(σ + it)| = +∞, lim
σ→+∞

|ζ(σ + it)| = 1,

it follows that R is an odd positive number. Also, since the ray (σ1(c, t)+ it,
+∞+it) lies entirely within D(c), it follows that σ1(c, t)+it ∈ N(c). Suppose
that k ≡ 2 (mod 4), and let ρ = β + iγ denote the point at which Rk
terminates. Clearly ρ ∈ D(c), and so σR(c, γ) < β.

Theorem 3.8. Let c > 1, and let N(c) denote the noncompact compo-
nent described in Corollary 3.7. As s tends to infinity along N(c), the limsup
of the real part of s is σ2(c), and the liminf is ≤ 1/2. If RH is true, then
there exist arbitrarily large t for which σ + it ∈ N(c) and σ < 1/2, but the
liminf of σ is = 1/2.

Proof. By Dirichlet’s theorem on simultaneous approximation, there
exist arbitrarily large t for which ‖t(log p)/(2π)‖ < ε for all primes p ≤ y.
Here ‖θ‖ = minn∈Z |θ−n| is the distance from θ to the nearest integer. (This
is the natural metric on T = R/Z.) Let δ be given, with 0 < δ < σ2(c)−1. If
ε is sufficiently small, and y is sufficiently large, then |ζ(σ2(c)− δ+ it)| > c.
On the other hand, σ2(c) + it ∈ D(c), so N(c) intersects the segment from
σ2(c) − δ + it to σ2(c) + it. Hence the limsup of the real part of s ∈ N(c)
is σ(c).
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Let N(σ, T ) denote the number of zeros ρ = β + iγ of ζ(s) such that
β ≥ σ and 0 < γ ≤ T . Ingham [3] showed that

N(σ, T )� T
3(1−σ)
2−σ (log T )5.

If we take σ = 1/2 + C(log log T )/log T with C sufficiently large, then this
upper bound is o(T ). However, there are � T zeros ρ = β + iγ that mark
the termination of the curves Rk with k ≡ 2 (mod 4), so � T of these
‘special zeros’ have real part < 1/2 +C(log log T )/log T . Since σR(c, γ) < β
for such a zero, we have σR(c, t) < 1/2 + C(log log t)/log t for arbitrarily
large t. Assuming RH, we have β = 1/2, so σR(c, γ) < 1/2. However, on RH
we know that if 0 < σ < 1/2, then |ζ(σ + it)| > t1/2−σ+o(1) as t → ∞, so
N(c) crosses the abscissa σ at most finitely many times.

From the above it is clear that N(c) crosses the abscissa σ = 1 infinitely
many times. However, since |ζ(it)| � t1/2/log t, it crosses the imaginary axis
only finitely many times (but at least once).

Corollary 3.9. Suppose that c > 1. There exists a t0 > 0, and a t1
such that there is a curve joining it0 to 1 + it1, lying entirely in the open
strip 0 < σ < 1 apart from the endpoints, such that |ζ(s)| = c on this curve.

If c is only slightly larger than 1, say 1 < c < 3, then there is more than
one curve with this property, but for all sufficiently large c there is only one
such curve in the upper half-plane.

Proof of Corollary 3.9. Let the point it0 be the last departure of N(c)
from the imaginary axis, and the point 1 + it1 be its first arrival on the
1-line.

4. Open questions. 1. How many zeros does the typical loop C4k+2±1
contain? It must contain at least one. For t of moderate size, it seems that
it generally contains ∼ (log t)/(2 log 2) zeros, but it may be that at greater
heights it contains fewer.

2. Let c > 1 be fixed, and assume RH. Then < ζ
′

ζ (σ + it) < 0 for −∞ <

σ ≤ 1/2, t ≥ 7. Thus for any fixed t ≥ 7, the quantity |ζ(σ + it)| is a
monotonically decreasing function of σ on the interval −∞ < σ ≤ 1/2.
Let ρ = 1/2 + iγ be a zero. Then there is a unique σ < 1/2 such that
|ζ(σ+ iγ)| = c. There are two possibilities: Either σ+ iγ ∈ N(c), or σ+ iγ is
on a compact lemniscate surrounding ρ. It should be possible to show that
the latter possibility holds for at least half the zeros (asymptotically), but
even showing that this happens infinitely often seems difficult. Perhaps it
holds for almost all zeros (in the sense of density). The former possibility
occurs infinitely often, namely for the zeros that mark the termination of the
curve of steepest descent Rk (k ≡ 2 (mod 4)). Does the former possibility
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occur for a positive proportion of the zeros? It seems to, in numerical studies
of t of modest size, but perhaps it happens less frequently when t is large.
Possibly the eventual asymptotic behavior is revealed only when log log t is
large, which means beyond the possibility of computation.

3. Baker and Montgomery [2] showed that most quadratic L-functions
have a large number of critical points in the interval (1/2, 1). Let t be given,
and let σ1 ≥ σ2 ≥ · · · ≥ σR denote those abscissæ at which |ζ(σr + it)| = c.
Certainly R is odd, and σ1 + it ∈ N(c). In case t is the ordinate of a zero,
σR < 1/2 < σR−1 (assuming there is an R − 1). By borrowing the Baker–
Montgomery ideas, it should be possible to show that R is large for most t,
possibly even that R is of the order of

√
log log t for most t.

4. Let ρ′ range over the nontrivial zeros of ζ ′. How is |ζ(ρ′)| distributed?
Are these values unbounded? If so, then there exist infinitely many zeros ρ
that are contained in compact lemniscates.

5. Let c be a value attained by |ζ(ρ′)| at some critical point. At this level,
two lemniscates coalesce, generally two compact curves becoming a larger
compact curve, but also occasionally N(c) swallowing a compact lemniscate.
Fix m > 0 and n > 0, and consider the distribution of the real parts of the
zeros ρ′ at which lemniscates containing m and n zeros, respectively, join to
form a lemniscate containing m + n zeros. What is the (1, 1) distribution,
at least experimentally? (1, 2)? It has been observed (experimentally) that
the distribution of the real parts has a density with a first hump, and then
a second one. If for each (m,n) one has a distribution function, then the
overall distribution function is the sum of all of these over m and n. Possibly
(m,n) = (1, 1) accounts for the first hump, (1, 2) the second, and then after
that it all gets blurred together.

6. Consider a curve of steepest ascent starting at 1 + it and ending on
the imaginary axis. What is its typical arc length? Probably not bounded.
Is the liminf of the arc length bounded? This would be somewhat analogous
to the existence of infinitely many quadratic discriminants for which the
L-function is monotonic in [1/2,+∞).

7. By (2.8) and (2.10) we see that the curve of steepest ascent R4k reaches
the 2-line between (4k−1)π/(2 log 2) and (4k+1)π/(2 log 2), say at t. Is there
a constant c > 1 such that necessarily |ζ(2 + it)| ≥ c? Perhaps c = π2/9.
When R4k reaches a given abscissa σ, 1 < σ < 2, is the ordinate still only a
bounded distance from 2kπ/log 2?

8. What does random matrix theory tell us? The nature of the level
curves of the characteristic function of a random matrix might be informa-
tive. Insights as to question 5 above might be gleaned through numerical
studies of the absolute values of critical points of various types.
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