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1. Introduction. The well known conjecture of Masser–Oesterlé is

Conjecture 1.1 (Oesterlé and Masser’s abc-conjecture). For any given
ε > 0 there exists a constant cε depending only on ε such that if

(1) a+ b = c

where a, b and c are coprime positive integers, then

c ≤ cε

(∏
p|abc

p
)1+ε

.

It is known as abc-conjecture; the name derives from the usage of letters
a, b, c in (1). For any positive integer i > 1, let N = N(i) =

∏
p|i p be the

radical of i, P (i) be the greatest prime factor of i, and ω(i) be the number
of distinct prime factors of i; moreover, we put N(1) = 1, P (1) = 1 and
ω(1) = 0. An explicit version of this conjecture due to Baker [Bak94] is the
following:

Conjecture 1.2 (Explicit abc-conjecture). Let a, b and c be pairwise
coprime positive integers satisfying (1). Then

c <
6

5
N

(logN)ω

ω!

where N = N(abc) and ω = ω(N).

We observe that N = N(abc) ≥ 2 whenever a, b, c satisfy (1). We shall
refer to Conjecture 1.1 as abc-conjecture and Conjecture 1.2 as explicit abc-
conjecture. Conjecture 1.2 implies the following explicit version of Conjecture
1.1.
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Theorem 1. Assume Conjecture 1.2. Let a, b and c be pairwise coprime
positive integers satisfying (1) and N = N(abc). Then

(2) c < N1+3/4.

Further for 0 < ε ≤ 3/4, there exists ωε depending only ε such that when
N = N(abc) ≥ Nε =

∏
p≤pωε p, we have

c < κεN
1+ε where κε =

6

5
√

2πmax(ω, ωε)
≤ 6

5
√

2πωε

with ω = ω(N). Here are some values of ε, ωε and Nε.

ε 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωε 14 49 72 127 175 548 6460

Nε e37.1101 e204.75 e335.71 e679.585 e1004.763 e3894.57 e63727

Thus c < N2, which was conjectured in Granville and Tucker [GrTu02].
We present here some consequences of Theorem 1.

The Nagell–Ljunggren equation is the equation

(3) yq =
xn − 1

x− 1

in integers x > 1, y > 1, n > 2, q > 1. It is known that

112 =
35 − 1

3− 1
, 202 =

74 − 1

7− 1
, 73 =

183 − 1

18− 1
,

which are called the exceptional solutions. Any other solution is termed non-
exceptional. For an account of results on (3), see Shorey [Sho99] and Bugeaud
and Mignotte [BuMi02]. It is conjectured that there are no non-exceptional
solutions. We prove in Section 4 the following.

Theorem 2. Assume Conjecture 1.2. There are no non-exceptional so-
lutions of equation (3) in integers x > 1, y > 1, n > 2, q > 1.

Let (p, q, r) ∈ Z≥2 with (p, q, r) 6= (2, 2, 2). The equation

(4) xp + yq = zr, (x, y, z) = 1, x, y, z ∈ Z,
is called the generalized Fermat equation or Fermat–Catalan equation with
signature (p, q, r). An integer solution (x, y, z) is said to be non-trivial if
xyz 6= 0, and primitive if x, y, z are coprime. We are interested in finding
non-trivial primitive integer solutions of (4). The case p = q = r is the
famous Fermat equation, which was completely solved by Wiles [Wil95].
One of known solution 1p + 23 = 32 of (4) comes from Catalan’s equation.
Let χ = 1/p + 1/q + 1/r − 1. A complete parametrization of non-trivial
primitive integer solutions for (p, q, r) with χ ≥ 0 has been found ([Beu04],
[Coh07]). It was shown by Darmon and Granville [DaGr95] that (4) has only
finitely many solutions in x, y, z if χ < 0. When 2 ∈ {p, q, r}, there are some



Baker’s explicit abc-conjecture 421

known solutions. So, we consider p ≥ 3, q ≥ 3, r ≥ 3. An open problem in
this direction is the following.

Conjecture 1.3 (Tijdeman, Zagier). There are no non-trivial solutions
to (4) in positive integers x, y, z, p, q, r with p ≥ 3, q ≥ 3 and r ≥ 3.

This is also referred to as Beal’s Conjecture or Fermat–Catalan Con-
jecture. This conjecture has been established for many signatures (p, q, r),
including for several infinite families of signatures. For exhaustive surveys,
see [Beu04], [Coh07, Chapter 14], [Kra99] and [PSS07]. Let [p, q, r] denote
all permutations of the ordered triple (p, q, r) and let

Q = {[3, 5, p] : 7 ≤ p ≤ 23, pprime} ∪ {[3, 4, p] : p prime}.
We prove the following in Section 5.

Theorem 3. Assume Conjecture 1.2. There are no non-trivial solutions
to (4) in positive integers x, y, z, p, q, r with p ≥ 3, q ≥ 3 and r ≥ 3 with
(p, q, r) 6∈ Q. Further for (p, q, r) ∈ Q, we have max(xp, yq, zr) < e1758.3353.

Another equation which we will be considering is the equation of Goor-
maghtigh

(5)
xm − 1

x− 1
=
yn − 1

y − 1
, integers x > 1, y > 1,m > 2, n > 2 with x 6= y.

We may assume without loss of generality that x > y > 1 and 2 < m < n.
It is known that

(6) 31 =
53 − 1

5− 1
=

25 − 1

2− 1
and 8191 =

903 − 1

90− 1
=

213 − 1

2− 1

are solutions of (5) and it is conjectured that there are no other solutions.
A weaker conjecture states that there are only finitely many solutions x, y,
m,n of (5). We refer to [Sho99] for a survey of results on (5). In Section 6
we prove

Theorem 4.Assume Conjecture 1.2. Then equation (5) in integers x>1,
y > 1, m> 2, n> 3 with x>y implies that m ≤ 6 and further 7 ≤ n ≤ 17,
n /∈ {11, 16} if m = 6; moreover there exists an effectively computable abso-
lute constant C such that

max(x, y, n) ≤ C.
Thus, assuming Conjecture 1.2, equation (5) has only finitely many solu-

tions in integers x > 1, y > 1, m > 2, n > 3 with x 6= y, which considerably
improves Saradha’s result [Sar12, Theorem 1.4].

2. Notation and preliminaries. For an integer i > 0, let pi denote
the ith prime. For a real x > 0, let Θ(x) =

∏
p≤x p and θ(x) = log(Θ(x)).

We write log2 i for log(log i).
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Lemma 2.1. We have

(i) π(x) ≤ x

log x

(
1 +

1.2762

log x

)
for x > 1.

(ii) pi ≥ i(log i+ log2 i− 1) for i ≥ 1.
(iii) θ(pi) ≥ i(log i+ log2 i− 1.076869) for i ≥ 1.
(iv) θ(x) < 1.000081x for x > 0.

(v)
√

2πk(k/e)ke1/(12k+1) ≤ k! ≤
√

2πk (k/e)ke1/12k.

Here we understand that log2 1 = −∞. The estimates (i) and (ii) are
due to Dusart (see [Dus99b] and [Dus99a], respectively). The estimate (iii)
is [Rob83, Theorem 6]. For the estimate (iv), see [Dus99b]. The estimate (v)
is [Rob55, Theorem 6].

3. Proof of Theorem 1. Let ε > 0, and let N ≥ 1 be an integer with
ω(N) = ω. Then N ≥ Θ(pω) or logN ≥ θ(pω). Given i, we observe that
M ε/(logM)i is an increasing function for logM ≥ i/ε. Let

X0(i) = log i+ log2 i− 1.076869.

Then θ(pi) ≥ iX0(i) by Lemma 2.1(iii). Observe that X0(i) > 1 for i ≥ 5.
Let ω1 ≥ 5 be the smallest integer such that

(7) εX0(i)− logX0(i) ≥ 1 for all i ≥ ω1.

Note that εX0(i) ≥ 1 for i ≥ ω1, implying logN ≥ θ(pω) ≥ ωX0(ω) ≥ ω/ε
when ω ≥ ω1 by Lemma 2.1(iii). Therefore

ω!N ε

(logN)ω
≥ ω!Θ(pω)ε

(θ(pω))ω
≥ ω!eεωX0(ω)

ωX0(ω)ω
>
√

2πω

(
ω

e

)ω eεωX0(ω)

(ωX0(ω))ω
when ω ≥ ω1.

Thus for ω ≥ ω1, from (7) we have

log

(
ω!eεωX0(ω)

(ωX0(ω))ω

)
> log

√
2πω + ω(log(ω)− 1) + εωX0(ω)

− ω(logω + logX0(ω))

> log
√

2πω + ω(εX0(ω)− logX0(ω)− 1) ≥ log
√

2πω,

implying
ω!N ε

(logN)ω
≥ ω!Θ(pω)ε

θ(pω)ω
>
√

2πω when ω ≥ ω1.

Define ωε to be the smallest integer ≤ ω1 such that

(8) θ(pi) ≥
i

ε
and

i!Θ(pi)
ε

θ(pi)i
>
√

2πi for all ωε ≤ i ≤ ω1

by taking the exact values of i and θ. Then clearly

(9)
ω!N ε

(logN)ω
≥ ω!Θ(pω)ε

θ(pω)ω
>
√

2πω when ω ≥ ωε.
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Here are the values of ωε for some ε values.

ε 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωε 14 49 72 127 175 548 6458

Let ω < ωε and N ≥ Θ(pωε). Then logN ≥ θ(pωε) ≥ ωε/ε. Therefore

ω!N ε

(logN)ω
≥ ω!Θ(pωε)

ε

θ(pωε)
ω

=
ωε!Θ(pωε)

ε

θ(pωε)
ωε
· ω!

ωε!
θ(pωε)

ωε−ω

>
√

2πωε
ω!ωωε−ωε

ωε!
≥
√

2πωε.

Combining this with (9), we obtain

(10)
(logN)ω

ω!
<

N ε√
2πmax(ω, ωε)

≤ N ε

√
2πωε

when N ≥ Θ(pωε).

Further we now prove

(11)
(logN)ω

ω!
<

5N3/4

6
for N ≥ 1.

For that we take ε = 3/4. Then ωε = 14 and we may assume that N <
Θ(p14). Then ω < 14. Observe that N ≥ Θ(pω) and N3/4/(logN)ω is in-
creasing for logN ≥ 4ω/3. For 4 ≤ ω < 14, we check that

θ(pω) ≥ 4ω

3
and

ω!Θ(pω)3/4

θ(pω)ω
>

6

5
,

implying (11) when 4 ≤ ω < 14. Thus we may assume ω < 4. We check that

(12)
ω!N3/4

(logN)ω
>

6

5
at N = e4ω/3

for 1 ≤ ω < 4, implying (11) for N ≥ e4ω/3. Thus we may assume that
N < e4ω/3. Then N ∈ {2, 3} if ω = 1, N ∈ {6, 10, 12, 14} if ω = 2, and
N ∈ {30, 42} if ω = 3. For these values of N too, we find that (12) is valid,
implying (11). Clearly (11) is valid when N = 1.

We now prove Theorem 1. Assume Conjecture 1.2. Let ε > 0 be given.
Let a, b, c be positive integers such that a + b = c and gcd(a, b) = 1. By
Conjecture 1.2, c ≤ 6

5N(logN)ω/ω! where N = N(abc). Now assertion (2)
follows from (11). Let 0 < ε ≤ 3/4 and Nε = Θ(pωε). By (10), we have

c <
6N1+ε

5
√

2πmax(ω, ωε)
.

The table is obtained by taking the table values of ε, ωε given after (9) and
computing Nε for those ε given in the table. Hence the theorem follows.
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4. Nagell–Ljungrenn equation: Proof of Theorem 2. Let x > 1,
y > 1, n > 2 and q > 1 be a non-exceptional solution of (3). It was proved
by Ljunggren [Lju43] that there are no further solutions of (3) when q = 2.
Thus we may suppose that q ≥ 3. Further it has been proved that 4 - n by
Nagell [Nag20], 3 - n by Ljunggren [Lju43] and 5 - n, 7 - n by Bugeaud,
Hanrot and Mignotte [BHM02]. Therefore n ≥ 11. From (3), we get

1 + (x− 1)yq = xn.

Then y < xn/q ≤ xn/3 since q ≥ 3, implying N = N(x(x − 1)y) < x2y <
x2+n/3. From (2) in Theorem 1, we obtain

xn < N7/4 < x7/2+7n/12, implying n <
7

2
+

7n

12
.

This gives n ≤ 8, which is a contradiction.

5. Fermat–Catalan equation. We may assume that each of p, q, r
is either 4 or an odd prime. Let [p, q, r] denote all permutations of the
ordered triple (p, q, r). Fermat’s Last Theorem, the case (p, p, p), was proved
by Wiles [Wil95]; [3, p, p], [4, p, p] for p ≥ 7 by Darmon and Merel [DaGr95]
and [3, 5, 5], [4, 5, 5] by Poonen; [4, 4, p] by Bennett, Ellenberg, Ng [BEN10].
The signatures [3, 3, p] for p ≤ 109 were solved by Chen and Siksek [ChSi09],
[3, 4, 5] by Siksek and Stoll [SiSt12] and [3, 4, 7] by Poonen, Schefer and Stoll
[PSS07]. Hence we may suppose (p, q, r) is different from those values.

We may assume that x > 1, y > 1, z > 1. Then

x < zr/p, y < zr/q.

Given ε > 0, by Theorem 1, we have

(13) zr <

{
N

7/4
ε if N(xyz) < Nε,

N(xyz)1+ε ≤ (xyz)1+ε if N(xyz) ≥ Nε.

In particular, taking ε = 3/4, we get

zr < (xyz)7/4 < z
7
4
(1+r/p+r/q),

implying

(14)
4

7
<

1

p
+

1

q
+

1

r
.

Thus we need to consider [3, 3, p] for p > 109 and (p, q, r) ∈ Q. Let ε = 34/71.
First assume that N(xyz) ≥ Nε. Then

zr < (xyz)1+ε < z(1+ε)(1+r/p+r/q),

implying
1

p
+

1

q
+

1

r
>

1

1 + ε
=

71

105
=

1

3
+

1

5
+

1

7
.



Baker’s explicit abc-conjecture 425

Therefore we may suppose that N(xyz) < N34/71. Then from (13) it follows

that max(xp, yq, zr) < N
7/4
34/71 ≤ e1758.3353, implying x, y, z, p, q, r are all

bounded. This will imply that [3, 3, p] with p > 109 does not have any
solution. Hence the assertion.

6. Goormaghtigh equation. Let d = gcd(x, y). From (5), we have

xm−1 + · · ·+ x = yn−1 + · · ·+ y,

implying ordp(x) = ordp(y) for all primes p | d. Further

m−1∑
i=1

(xi − yi) = (x− y)

{
1 +

m−1∑
i=2

xi − yi

x− y

}
= yn−1 + · · ·+ ym,

which is

1 +

m−1∑
i=2

xi − yi

x− y
=

ym

x− y
yn−m − 1

y − 1
.

We observe that d is coprime to yn−m−1
y−1 and also to the left hand side.

Therefore

ordp(x− y) = m · ordp(x) = m · ordp(y) = m · ordp(d)

for every prime p | d. Let d2 = gcd(y− 1, x− 1, x− y) and let d3 be given by
x− y = dmd2d3. We observe that d2d3 = 1 if n = m+ 1 and d2d3 | (y+ 1) if
n = m+ 2. We now rewrite (5) as

(15)
(y − 1)xm

dmd2
+ d3 =

(x− 1)yn

dmd2
.

Let

N = N

(
xmyn(x− 1)(y − 1)d3

d2md22

)
≤ N(xy(x− 1)(y − 1)d3)

≤ xy(x− 1)(y − 1)d3
2δdd2

where δ=0 if 2 | dd2 and 1 otherwise. Recall that d=gcd(x, y) and d2 | (x−1).
Let ε < 3/4. From (15) and Theorem 1 and x− y = dmd2d3 we obtain

(16) max

{
(y − 1)xmd3

(x− y)
,
(x− 1)ynd3

x− y

}
<

{
N

7/4
ε if N < Nε,

N1+ε if N ≥ Nε.

Assume that N ≥ Nε. Then using (16) we obtain

xm < x2+2εy1+2ε(x− y)
dε3

(2δdd2)1+ε
< x4+5ε,(17)

yn < x1+2εy1+ε(y − 1)1+ε(x− y)
dε3

(2δdd2)1+ε
,(18)
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since y < x and d3 ≤ x− y < x. We observe that (5) yields xm−1 < 2yn−1,

implying x < 2
1

m−1 y
n−1
m−1 . This together with (18), d3 ≤ x − y < x and

2δdd2 ≥ 2 gives

(19) yn < 2
2+3ε
m−1

−1−εy2+2ε+ n−1
m−1

(2+3ε).

From (17), we obtain m < 4 + 5ε, and further from (19), we get

n < 2 + 2ε+
n− 1

m− 1
(2 + 3ε)

if m > 3.

Let ε = 3/4 and Nε = 1. Then m ≤ 7, and further 7 ≤ n ≤ 17 if m = 6,
and n ∈ {8, 9} if m = 7.

Let m = 7 and n = m + 1 = 8. Then d2d3 = 1 and from the first
inequality of (17) and y < x we get xm < x4+4ε = x7, implying 7 = m < 7,
a contradiction.

Let m = 7 and n = m + 2 = 9. Then d2d3 ≤ y + 1 and from (18) with

x < 2
1

m−1 y
n−1
m−1 , d3(y − 1) < y2 and 2δdd2 ≥ 2 we get

yn < 2
2+2ε
m−1

−1−εy2+3ε+ n−1
m−1

(2+2ε) < y9,

which is a contradiction again.

Let m = 6 and n ∈ {11, 16}. From Nesterenko and Shorey [NeSh98], we
get y ≤ 8, 15 when n = 11, 16, respectively. For 2 ≤ y ≤ 15 and y+ 1 ≤ x ≤(yn−1
y−1

) 1
m−1 , we check that (5) does not hold. Therefore n /∈ {11, 16} when

m = 6. Hence we have the first assertion of Theorem 4.

Now we take ε = 1/18. Since m ≤ 7 and G < x, we get an explicit bound
of x, y,m, n from (16) if N < N1/18, implying Theorem 4 in that case. Thus
we may suppose that N ≥ N1/18. Then we deduce from (17) with ε = 1/18
that m < 4 + 5ε, implying m ∈ {3, 4}, and further from (19) that n < 5 if
m = 4. This is a contradiction for m = 4 since n > m and n ∈ Z.

Let m = 3. We rewrite (5) as

(20) (2x+ 1)2 = 4(yn−1 + · · ·+ y) + 1.

By [NeSh98], we may assume that n 6= 5. Let n = 4 and denote by f(y)
the polynomial on the right hand side of (20). Let f ′(α) = 0. Then α =
(−1 ±

√
2 i)/3 and we check that f(α) 6= 0. Therefore the roots of f are

simple. Now we apply [Bak69] to conclude that y and hence x are bounded
by effectively computable absolute constants. Let n ≥ 6. Now we rewrite (5)
as

(21) 4yn = (y − 1)(2x+ 1)2 + (3y + 1).

Let G = gcd(4yn, (y − 1)(2x + 1)2, 3y + 1). Then G = 4, 2, 1 according as
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4 | (y − 1), 4 | (y − 3) and 2 | y, and we infer from (21) that

(22)
4

G
yn =

y − 1

G
(2x+ 1)2 +

3y + 1

G
.

Let

N = N

(
4y(y − 1)(2x+ 1)(3y + 1)

G3

)
≤ y(y − 1)(2x+ 1)(3y + 1)

G
<

6xy3

G1
.

Let ε = 1/12. We see from Theorem 1 with ε = 1/12 that

(23)
4yn

G
<

{
N

7/4
1/12 if N < N1/12,

N1+1/12 if N ≥ N1/12.

If N < N1/12, then yn < N
7/4
1/12, implying the assertion of Theorem 4. Hence

we may suppose that N ≥ N1/12 and further that y is sufficiently large.

Then we conclude from x2 < 2yn−1 that

4yn < (6
√

2 y(n+5)/2)1+1/12.

Therefore

n− 13(n+ 5)

24
<

13
12 log(6

√
2)− log 4

log y
<

1

24

since y is sufficiently large. This is not possible since n ≥ 6. Hence the
assertion follows.

Remarks. The examples in this paper show that in applications of the
abc-conjecture to diophantine equations, it is sufficient to assume that ε is
not very near to 0. Sometimes it is sufficient to use abc with ε = 1/2 or 3/4
or even larger. See also the paper of Browkin [Bro08], where the minimal
sufficient values of ε are discussed for some diophantine equations. In general
they are large. From this point of view it is probably irrelevant what the
abc-conjecture says in the case of ε near to 0.
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