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On the largest prime factor of the partition function of n
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For Andrzej Schinzel on his seventy-fifth birthday

1. Introduction. Let p(n) be the partition function of n, which is the
number of ways of writing n = λ1 + · · ·+ λk, where k ≥ 1 and 1 ≤ λ1 ≤ · · ·
· · · ≤ λk are integers. There is a huge literature on this function, dealing with
its size, congruence properties, recurrence relations, and so on. Let P (m) be
the largest prime factor of the positive integer m with the convention that
P (1) = 1, and let ω(m) be the number of distinct prime factors of m. In re-

sponse to a question of Erdős and Ivić, Schinzel showed that ω(
∏N
m=1 p(m))

tends to infinity with N (Lemma 2 in [2]). His method used lower bounds
for nonzero linear forms in logarithms of algebraic numbers. Later, Schinzel
and Wirsing [6] proved the effective result

(1.1) ω
( N∏
m=1

p(m)
)
≥ (1− ε) logN

log 2
if N > N0(ε),

valid for all ε > 0, without using linear forms in logarithms.

Here, we revisit Schinzel’s original argument to prove the following result.

Theorem 1. The set of n for which

P (p(n)) > log logn

is of asymptotic density 1.

This improves a result of the second author from [3], where it is proved
by a different method that P (p(n)) > log log log log log log n for almost all
positive integers n.
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Notation. We use c1, c2, . . . for computable positive constants. We use
the Landau symbols O and o and the Vinogradov symbols �, � and �
with their usual meanings. Recall that A = O(B), A � B and B � A
are all equivalent to the fact that the inequality |A| ≤ cB holds with some
constant c. The constants implied by these symbols in our arguments are
absolute. Furthermore, A � B means that both A � B and B � A hold,
and A = o(B) and A ∼ B mean that A/B tends to 0 and to 1, respectively.

2. Preliminary results. We start with Rademacher’s formula for p(n)
(Chapter 5 in [1]).

Lemma 1. We have

(2.1) p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k

[
d

dx

(
sinh((π/k)

√
(2/3)(x−1/24))√

x− 1/24

)]
x=n

,

where

Ak(n) :=
∑

1≤h≤k
gcd(h,k)=1

ωh,ke
−2πinh/k

with ωh,k being the root of unity of order 24 given by

ωh,k := eπis(h,k),

and s(h, k) is the Dedekind sum

s(h, k) :=
k−1∑
µ=1

(
µ

k
−
[
µ

k

]
− 1

2

)(
hµ

k
−
[
hµ

k

]
− 1

2

)
.

In practice, one may truncate the sum appearing in (2.1) at k := b
√
nc

and then the nearest integer to this partial sum is exactly the value of p(n)
when n > n0 is sufficiently large. Since in the range k ≤

√
n the kth term

of the expansion (2.1) is of order O(exp(c1
√
n/k), where c1 := π

√
2/3 and

A1(n) = 1, we get

(2.2) p(n) =
1

π
√

2

[
d

dx

(
sinh(π

√
(2/3)(x−1/24))√
x−1/24

)]
x=n

+O(exp(c1
√
n/2)).

The first term of the expansion (2.2) is, after some calculation,

(2.3)
1

π
√

2

[
d

dx

(
sinh(π

√
(2/3)(x− 1/24))√
x− 1/24

)]
x=n

=
ec1
√
n−1/24

2π
√

2(n− 1/24)

(
π√
6
− 1

2
√
n− 1/24

)
+O(exp(−c1

√
n)).
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Putting together (2.2) and (2.3), we get our working formula

(2.4) p(n) = ec1
√
n−1/24f(n) +O(ec1

√
n/2),

where

(2.5) f(n) :=
1

4
√

3(n− 1/24)

[
1− c2√

n− 1/24

]
with c2 =

√
3/2/π.

We shall also need a result of Matveev [4] from transcendental number
theory. But first, some notation. For an algebraic number η having

F (X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X]

as minimal polynomial over the integers, the logarithmic height of η is de-
fined as

h(η) :=
1

d

(
log |a0|+

d∑
i=1

log max{|η(i)|, 1}
)
.

With this notation, Matveev [4] proved the following deep theorem.

Lemma 2. Let K be a field of degree D, η1, . . . , ηk be nonzero ele-
ments of K, and b1, . . . , bk be integers. Define B := max{|b1|, . . . , |bk|} and

Λ := 1−
∏k
i=1 η

bi
i . Let A1, . . . , Ak be real numbers such that

Aj ≥ max{Dh(ηj), |log ηj |, 0.16}, j = 1, . . . , k.

Then, assuming that Λ 6= 0, we have

log |Λ| > −3 · 30k+4(k + 1)5.5D2(1 + logD)(1 + log(kB))

k∏
i=1

Ai.

We shall use the above result only when η1, . . . , ηk are rational. So,
K := Q, D = 1, and the logarithmic height of η := r/s with nonzero co-
prime integers r and s is just log(max{|r|, |s|}).

3. The proof of Theorem 1. We let x be a large positive real number,
and 2 = p1 < p2 < · · · be the increasing sequence of prime numbers. We
write r := r(x) for a function tending slowly to infinity and let

(3.1) Nr(x) := {n ∈ [x, 2x) : P (p(n)) ≤ pr}.
Our goal is to show that if r(x) is chosen such that pr ≤ log log x then
#Nr(x) = o(x) as x → ∞, since once we have done that, Theorem 1 will
follow by replacing x with x/2, then with x/4, and so on, and then summing
up all these estimates.
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So assume that n ∈ Nr(x) and write

(3.2) p(n) =: pa11 · · · p
ar
r .

Combining (3.2) with (2.4), we get

ec1
√
n−1/24f(n)− pa11 · · · p

ar
r = O(e(c1/2)

√
n).

Dividing through by ec1
√
n−1/24f(n), we get

1− e−c1
√
n−1/24f(n)−1pa11 · · · p

ar
r = O(ne−(c1/2)

√
n) = O(e−c3

√
n),

where c3 := c1/3. Taking logarithms, we get

(3.3) |c1
√
n− 1/24 + log f(n)− a1 log p1 − · · · − ar log pr| = O(e−c3

√
n).

We let z := log x, K := bz1/2c, and assume that there exists an inter-
val [n, n + z) ⊂ [x, 2x) containing K numbers n1 < · · · < nK such that
P (p(ni)) ≤ pr for all i = 1, . . . ,K.

Indeed, otherwise we can split [x, 2x) into O(x/z) intervals of length z,
each one containing at most K − 1 elements of Nr(x), and then

(3.4) #Nr(x)�
(
x

z

)
· (K − 1) = O

(
x

(log x)1/2

)
= o(x) as x→∞,

which is what we want to prove.
For i = 1, . . . ,K, write

p(ni) =
r∏
j=1

p
αi,j

j .

Put
g(x) := c1

√
x− 1/24 + log f(x).

We let y = bx1/4c, yi ∈ {0, 1, . . . , byc} and compute

(3.5)

K∑
i=1

yig(ni).

The absolute value of the vector in (3.5) is O(Kyx1/2) and there are
(byc+ 1)K such vectors. Consequently, by the Pigeonhole Principle, there
is a nonzero vector y := (y1, . . . , yK) with integer components |yi| ≤ y for
all i = 1, . . . ,K, such that

(3.6)
∣∣∣ K∑
i=1

yig(ni)
∣∣∣� Ky

√
x

(byc+ 1)K − 1
� x

yK
=

1

xK/4−1
� 1

xK/5
.

Writing down (3.3) for n := ni, i = 1, . . . ,K, we get∣∣∣g(ni)−
r∑
j=1

αi,j log pj

∣∣∣ = O(exp(−c3
√
x)) for i = 1, . . . ,K.



Largest prime factor of the partition function of n 33

Then, taking linear combinations of the above relations with the coefficients
y = (y1, . . . , yK), we see that for large x,

(3.7)
∣∣∣ K∑
i=1

yig(ni)−
r∑
j=1

βj log pj

∣∣∣� Ky exp(−c3
√
x) ≤ exp(−c4

√
x),

where we can take c4 := c3/2 and

(3.8) βj :=

K∑
i=1

yiαi,j for all j = 1, . . . , r.

Comparing the upper bounds from (3.6) and (3.7), we get∣∣∣ r∑
j=1

βj log pj

∣∣∣ ≤ ∣∣∣ K∑
i=1

yig(ni)
∣∣∣+O(exp(−c4

√
x))(3.9)

= O

(
1

xK/5
+

1

exp(c4
√
x)

)
= O

(
1

xK/5

)
.

We distinguish two cases. In the first case, we assume that

Γ :=

r∑
j=1

βj log pj

is nonzero. Hence,

(3.10) |Γ | ≤ 1

xK/6

for all large enough x. Now Γ is nonzero but Γ = o(1), so that we have
Γ ∼ eΓ −1 =: Λ 6= 0 as x→∞, and we can use Matveev’s result (Lemma 2)
to find a lower bound on this last expression.

We take, in the notation of Lemma 2,

k := r, ηj := pj and bj := βj for j = 1, . . . , r.

Clearly, K := Q, so D = 1, and Aj := log pj for j = 1, . . . , r.

We also use the fact that pm ≤ (m+ 1)2 for all positive integers m (see,
for example, (3.13) in [5]).

As for B, observe that

αi,j ≤ log p(n)/log pj � x1/2 for all j = 1, . . . , r and i = 1, . . . ,K.

Therefore, using (3.8), we deduce that

|βj | � yKx1/2 = o(x) as x→∞.

So, we can take B := x for all sufficiently large x, and then indeed

B ≥ max{|βj | : j = 1, . . . , r}.
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Lemma 2 shows that there exists some absolute constant c5 such that

(3.11) |Λ| > exp
(
−cr5(log x)(log(r + 1)2)r

)
.

Comparing (3.11) with (3.10) and using the fact that |Λ| ∼ |Γ | as x → ∞,
we get

(2c5 log(r + 1))r ≥ K/7

for large x. In turn, this implies

r log log(r + 1) ≥ logK +O(1) ≥ c6 log log x

for large x, where we can take c6 := 1/3. Hence,

r � log log x

log log log log x
.

From the Prime Number Theorem (or the Chebyshev estimates), we get

pr � r log r � (log log x)

(
log log log x

log log log log x

)
.

Note that the right-hand side above is of order at least log log x, which
for large x contradicts our assumption that pr ≤ log log x. Thus, we get a
contradiction assuming that Γ 6= 0.

Now we deal with the harder case when Γ = 0. Then (3.7) becomes

(3.12)
∣∣∣ K∑
i=1

yig(ni)
∣∣∣ = O(exp(−c4

√
x)).

We write each ni := n+ λi for i = 1, . . . ,K (note that λ1 = 0, although we
will not use this information), and write the Taylor series

g(ni) =

∞∑
k=0

g(k)(n)

k!
λki for all i = 1, . . . ,K,

which, via estimate (3.12), yields

(3.13)
∣∣∣ ∞∑
k=0

g(k)(n)

k!

K∑
i=1

yiλ
k
i

∣∣∣ = O(exp(−c4
√
x)).

We need the derivatives of g(y). Observe that

g(t) =
√
t− 1/24− log

(
t− 1

24

)
− log c7 + log

(
1− c2√

t− 1/24

)
,

where c7 := 4
√

3 and c2 :=
√

3/2/π. For k ≥ 1, one checks easily, by
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induction, that

dk

dtk

√
t−1/24 = (−1)k−1

(
1

2

)(
1

2

)
· · ·
(

2k−3

2

)
1

(t− 1/24)(2k−1)/2
(3.14)

= (−1)k−1
(2k − 2)!

(k − 1)!22k−1(t− 1/24)(2k−1)/2
,

and

(3.15)
dk

dtk
log

(
t− 1

24

)
= (−1)k−1

(k − 1)!

(t− 1/24)k
.

Finally, using the Taylor series expansion for log(1− y), we easily get

(3.16) log

(
1− c2√

t− 1/24

)
= −

∑
j≥1

cj2
j(t− 1/24)j/2

,

and taking derivatives, we arrive at

(3.17)
dk

dtk

(
log

(
1− c2√

t− 1/24

))
= −

∑
j≥1

cj2
j

dk

dyk

(
1

(t− 1/24)j/2

)

= (−1)k+1
∑
j≥1

cj2
j

(
j(j + 2) · · · (j + 2(k − 1))

2k(t− 1/24)j/2+k

)
.

To get a contradiction, we shall show that for large x, inequality (3.13) leads
to the conclusion that

(3.18)

K∑
i=1

yiλ
k
i = 0 for k = 0, 1, . . . ,K − 1.

Granted that, y is a zero of the linear map with nonzero (Vandermonde)
determinant, so y = 0, which is a contradiction.

Now we prove by induction on k that (3.18) must hold for large x.

Put

Mk(t) :=

∣∣∣∣g(k)(t)k!

∣∣∣∣ for t ∈ [n, n+ z].

Relations (3.14), (3.15) and (3.17) show easily that

(3.19) Mk(t) �
1

k3/2nk−1/2

uniformly in k ≤ K, t ∈ [n, n+z] and n ∈ [x, 2x]. Indeed, applying Stirling’s
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formula to (3.14), we have

(3.20)
1

k!

∣∣∣∣ dkdtk√t− 1/24

∣∣∣∣ =
(2k − 2)!

(k − 1)!k!22k−1(t− 1/24)k−1/2

� 1

k1/222k−1
((2k − 2)/e)2k−2

(k/e)k((k − 1)/e)k−1
1

nk−1/2

(
1 +O

(
z

n

))k−1/2
� 1

k3/2

(
1− 1

k

)k−1 1

nk−1/2

(
1 +O

(
zK

x

))
� 1

k3/2nk−1/2
,

uniformly for k ≤ K and n ∈ [x, 2x]. From (3.15), we have

(3.21)
1

k!

∣∣∣∣ dkdtk
(

log

(
t− 1

24

))∣∣∣∣ =
1

k(t− 1/24)k

=
1

knk

(
1 +O

(
z

n

))k
=

1

knk

(
1 +O

(
Kz

x

))
� 1

knk
.

For (3.17), put

aj,k :=
cj2
j

(
j(j + 2) · · · (j + 2(k − 1))

2k(t− 1/24)j/2

)
for j ≥ 1,

and observe that

aj+1,k

aj,k
= c2

(
j

j + 1

)(
(j + 1) · · · (j + 1 + 2(k − 1))

j · · · (j + 2(k − 1))

)
1

(t− 1/24)1/2

�
(
j + 1 + 2(k − 1)

j

)
1

(t− 1/24)1/2
� K

x1/2
= o(1)

uniformly in j ≥ 1, k ≤ K, and n ∈ [x, 2x] as x → ∞, which shows that in
the series of (3.17), the first term dominates. Thus,

(3.22)
1

k!

∣∣∣∣ dkdtk log

(
1− c2√

t− 1/24

)∣∣∣∣ � 1 · 3 · · · (2k − 1)

k!2k(t− 1/24)k+1/2

=
2k!

22kk!2nk+1/2

(
1 +O

(
z

n

))k+1/2

� 1

k1/2
(2k/e)2k

22k(k/e)2k
1

nk+1/2

(
1 +O

(
Kz

x

))
� 1

k1/2nk+1/2
.

Since the terms arising from (3.20)–(3.22) are of different orders of magni-
tude, with the dominating term coming from (3.20), we get (3.19).
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Now we are ready to prove that (3.18) must hold. Take k = 0 and use
the Taylor’s formula with remainder at k = 1 in (3.12) to get

√
n
∣∣∣ K∑
i=1

yi

∣∣∣� ∣∣∣g(0)(n)
K∑
i=1

yiλ
0
i

∣∣∣(3.23)

� max
n≤t≤n+z

{∣∣∣∣g(1)(t)1!

∣∣∣∣} K∑
i=1

|yiλi|+ exp(−c4
√
x)

� yKz

n1/2
+ exp(−c4

√
x)� yKz

n1/2
,

giving

(3.24)
∣∣∣ k∑
i=1

yi

∣∣∣� yKz

n
� yKz

x
= o(1) as x→∞.

Since the left-hand side of (3.24) is an integer, we get

(3.25)
K∑
i=1

yi = 0,

which is the desired relation (3.12) with k = 0. Assume now by induction
that (3.12) holds for all exponents 0, 1, . . . , k − 1, for some k ≤ K − 1.
Applying again the Taylor formula with remainder at k in (3.12) and the
induction hypothesis, as well as calculation (3.19), we get

1

k3/2nk−1/2

∣∣∣ K∑
i=1

yiλ
k
i

∣∣∣� ∣∣∣∣g(k)(n)

k!

K∑
i=1

yiλ
k
i

∣∣∣∣ =

∣∣∣∣ k∑
`=0

g(`)(n)

`!

K∑
i=1

yiλ
`
i

∣∣∣∣
� max

n≤t≤n+z

{∣∣∣∣g(k+1)(t)

(k + 1)!

∣∣∣∣} K∑
i=1

|yiλi|k+1 + exp(−c4
√
x)

� yKzK

(k + 1)3/2nk+1−1/2 + exp(−c4
√
x)� yKzK

(k + 1)3/2nk+1−1/2 ,

where the last inequality follows because the term exp(−c4
√
x) is of a smaller

order than
1

K3/2nK+1
> exp

(
−(log(2x))3/2 − log log x

)
.

Thus, from the above calculation we get

(3.26)
∣∣∣ K∑
i=1

yiλ
k
i

∣∣∣� yKzK

n
� yKzK

x
= o(1) as x→∞,

because

yKzK≤x1/4(log x)1/2(log x)(log x)
1/2

=x1/4 exp(O((log x)1/2 log log x)=o(x)
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as x → ∞. Since yKzh/x is an integer, we find that
∑K

i=1 yiλ
k
i = 0, as

desired. Thus, we obtained a contradiction, assuming that Γ = 0. Hence,
both cases Γ = 0 and Γ 6= 0 yield contradictions, so the conclusion is that
an interval [n, n + z] ⊂ [x, 2x) cannot contain K members of Nr(x). Now
the argument used previously to derive (3.4) yields the desired conclusion.
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