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1. Introduction. Let p be an odd prime. It is known that (see, e.g.,
S. Ahlgren [A], L. van Hamme [vH] and T. Ishikawa [I])

(p−1)/2∑
k=0

(−1)k
(
−1/2

k

)3

≡
{

4x2 − 2p (mod p2) if p = x2 + y2 (2 - x & 2 | y),

0 (mod p2) if p ≡ 3 (mod 4).

Clearly, (
−1/2

k

)
=

(
2k
k

)
(−4)k

for all k ∈ N = {0, 1, 2, . . .},

and (
2k

k

)
=

(2k)!

(k!)2
≡ 0 (mod p) for any k =

p+ 1

2
, . . . , p− 1.

After the determination of
∑p−1

k=0

(
2k
k

)
/mk mod p2 (where m ∈ Z and m 6≡

0 (mod p)) in [Su1], the author [Su2, Su3] posed some conjectures on∑p−1
k=0

(
2k
k

)3
/mk mod p2 with m ∈ {1,−8, 16,−64, 256,−512, 4096}; for ex-

ample, in [Su2] he conjectured that

(1.1)

p−1∑
k=0

(
2k

k

)3

≡

{
4x2 − 2p (mod p2) if

(p
7

)
= 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if
(p
7

)
= −1, i.e., p ≡ 3, 5, 6 (mod 7),

where (−) denotes the Legendre symbol. (It is known that if
(p
7

)
= 1

then p = x2 + 7y2 for some x, y ∈ Z; see, e.g., [C, p. 31].) Quite recently
Z.-H. Sun [S2] made a certain progress on those conjectures; in particular,
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he proved (1.1) in the case
(p
7

)
= −1 and confirmed the author’s conjecture

on
∑p−1

k=0

(
2k
k

)3
/(−8)k mod p2.

Let p = 2n+1 be an odd prime. It is easy to see that for any k = 0, . . . , n
we have (

n+ k

2k

)
=

∏k
j=1(−(2j − 1)2)

4k(2k)!

k∏
j=1

(
1− p2

(2j − 1)2

)
(1.2)

≡
(
2k
k

)
(−16)k

(mod p2).

Based on this observation Z.-H. Sun [S2] studied the polynomial

fn(x) =

n∑
k=0

(
n+ k

2k

)(
2k

k

)2

xk

and found the key identity

(1.3) fn(x(x+ 1)) = Dn(x)2

in his approach to (1.1), where

Dn(x) :=
n∑
k=0

(
n+ k

2k

)(
2k

k

)
xk =

n∑
k=0

(
n

k

)(
n+ k

k

)
xk.

Note that the numbers Dn = Dn(1) (n ∈ N) are the so-called central De-
lannoy numbers and Pn(x) := Dn((x − 1)/2) is the Legendre polynomial of
degree n.

Recall that the Catalan numbers are the integers defined by

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n+ 1

)
(n ∈ N),

while the Schröder numbers are given by

Sn :=

n∑
k=0

(
n+ k

2k

)
Ck =

n∑
k=0

(
n

k

)(
n+ k

k

)
1

k + 1
.

We define the Schröder polynomial of degree n by

(1.4) Sn(x) :=

n∑
k=0

(
n+ k

2k

)
Ckx

k.

For basic information about Dn and Sn, the reader may consult [CHV],
[Sl], [St, pp. 178 and 185], and [Su4].

In combinatorics, Zeilberger’s algorithm developed in [Z] (see also Chap-
ter 6 of [PWZ, pp. 101–119]) is an algorithm which finds a polynomial
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recurrence for a terminating hypergeometric sum. For example, if we use
Mathematica 7 and input Zb[Binomial[n,k]∧3,{k,0,n},n,2], then we

obtain the following second-order recurrence for S(n) =
∑n

k=0

(
n
k

)3
:

−8(n+ 1)2S(n)− (7n2 + 21n+ 16)S(n+ 1) + (n+ 2)2S(n+ 2) = 0.

Via the Schröder polynomials and the Zeilberger algorithm, we obtain
the following result.

Theorem 1.1. Let p be an odd prime.

(i) We have

(1.5)

p−1∑
k=0

(
2k
k

)2( 2k
k+d

)
64k

≡ 0 (mod p2)

for all d ∈ {0, 1, . . . , p− 1} with d ≡ (p+ 1)/2 (mod 2).
(ii) If p ≡ 3 (mod 4), then

(1.6)

p−1∑
k=0

(
2k
k

)2( 2k
k+1

)
64k

≡ (2p+ 2− 2p−1)

(
(p− 1)/2

(p+ 1)/4

)2

(mod p2).

Now we state our second theorem the first part of which plays a key role
in our proof of the second part.

Theorem 1.2. Let p ≡ 1 (mod 4) be a prime and write p = x2 +y2 with
x ≡ 1 (mod 4) and y ≡ 0 (mod 2)

(i) We can determine x mod p2 in the following way:

(−1)(p−1)/4 x ≡
(p−1)/2∑
k=0

k + 1

8k

(
2k

k

)2

(1.7)

≡
(p−1)/2∑
k=0

2k + 1

(−16)k

(
2k

k

)2

(mod p2).

Also,

(p−1)/2∑
k=0

(
2k
k

)
Ck

8k
≡ − 2

p−1∑
k=0

k
(
2k
k

)2
8k

(1.8)

≡ (−1)(p−1)/4
(

2x− p

x

)
(mod p2),

S(p−1)/2 ≡
(p−1)/2∑
k=0

(
2k
k

)
Ck

(−16)k
≡ −8

(p−1)/2∑
k=0

k
(
2k
k

)2
(−16)k

(1.9)

≡ (−1)(p−1)/4 2

(
2x− p

x

)
(mod p2),
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(p−1)/2∑
k=0

k2
(
2k
k

)2
8k

≡ (−1)(p−1)/4
(
x− 3p

4x

)
(mod p2),(1.10)

(p−1)/2∑
k=0

k2
(
2k
k

)2
(−16)k

≡ (−1)(p+3)/4 p

16x
(mod p2).(1.11)

(ii) We have

p−1∑
k=0

(
2k
k

)2( 2k
k+1

)
(−8)k

≡ 2p− 2x2 (mod p2),(1.12)

p−1∑
k=0

(
2k
k

)(
2k
k+1

)2
(−8)k

≡ − 2p (mod p2).(1.13)

Remark 1.1. Let p be an odd prime. We conjecture that

p−1∑
k=0

k + 1

8k

(
2k

k

)2

+

(p−1)/2∑
k=0

2k + 1

(−16)k

(
2k

k

)2

≡
{

2(2p)x (mod p3) if p = x2 + y2 (4 |x− 1 & 2 | y),

0 (mod p2) if p ≡ 3 (mod 4).

Motivated by his study of Gaussian hypergeometric series and Calabi–
Yau manifolds, in 2003 F. Rodriguez-Villegas [RV] raised some conjectures
on congruences. In particular, he conjectured that for any prime p > 3 we
have

(1.14)

p−1∑
k=0

(
2k
k

)2(3k
k

)
108k

≡ b(p) (mod p2),

p−1∑
k=0

(
2k
k

)2(4k
2k

)
256k

≡ c(p) (mod p2),

and

(1.15)

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡
(
p

3

)
a(p) (mod p2),

where
∞∑
n=1

a(n)qn = q

∞∏
n=1

(1− q4n)6 = η(4z)6,

∞∑
n=1

b(n)qn = q
∞∏
n=1

(1− q6n)3(1− q2n)3 = η3(6z)η3(2z),

∞∑
n=1

c(n)qn = q

∞∏
n=1

(1− qn)2(1− q2n)(1− q4n)(1− q8n)2

= η2(8z)η(4z)η(2z)η2(z),
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and the Dedekind η-function is given by

η(z) = q1/24
∞∏
n=1

(1− qn) (Im(z) > 0 and q = e2πiz).

In 1892 F. Klein and R. Fricke [KF] proved that (see also [SB])

a(p) =

{
4x2 − 2p if p ≡ 1 (mod 4) and p = x2 + y2 (2 - x),

0 if p ≡ 3 (mod 4).

By [SB] we also have

b(p) =

{
4x2 − 2p if p ≡ 1 (mod 3) and p = x2 + 3y2 with x, y ∈ Z,
0 if p ≡ 2 (mod 3),

and

c(p) =


4x2 − 2p if

(
−2

p

)
= 1 and p = x2 + 2y2 with x, y ∈ Z,

0 if

(
−2

p

)
= −1, i.e., p ≡ 5, 7 (mod 8).

Via an advanced approach involving the p-adic Gamma function and Gauss
and Jacobi sums (see K. Ono [O, Chapter 11] for an introduction to this
method), E. Mortenson [M] managed to provide a partial solution of (1.14)
and (1.15), with the following congruences still open:

p−1∑
k=0

(
2k
k

)2(3k
k

)
108k

≡ b(p) = 0 (mod p2) if p ≡ 5 (mod 6),(1.16)

p−1∑
k=0

(
2k
k

)2(4k
2k

)
256k

≡ c(p) (mod p2) if p ≡ 3 (mod 4),(1.17)

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡ − a(p) (mod p2) if p ≡ 5 (mod 6).(1.18)

Concerning (1.16)–(1.18), Mortenson’s approach [M] only allowed him to
show that for each of them the squares of both sides of the congruence are
congruent modulo p2.

Our following theorem confirms (1.16)–(1.18) and hence completes the
proof of (1.14) and (1.15). So far, all conjectures of Rodriguez-Villegas
[RV] involving at most three products of binomial coefficients have been
proved!
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Theorem 1.3. Let p > 3 be a prime.

(i) Given d ∈ {0, . . . , p− 1}, we have

p−1∑
k=0

(
2k
k+d

)(
2k
k

)(
3k
k

)
108k

≡ 0 (mod p2) if d ≡
1 +

(p
3

)
2

(mod 2),(1.19)

p−1∑
k=0

(
2k
k+d

)(
2k
k

)(
4k
2k

)
256k

≡ 0 (mod p2) if d ≡
1 +

(−2
p

)
2

(mod 2),(1.20)

p−1∑
k=0

(
2k
k+d

)(
3k
k

)(
6k
3k

)
123k

≡ 0 (mod p2) if d ≡
1 +

(−1
p

)
2

(mod 2).(1.21)

(ii) If p ≡ 3 (mod 8) and p = x2 + 2y2 with x, y ∈ Z, then

(1.22)

p−1∑
k=0

(
2k
k

)2(4k
2k

)
256k

≡ 4x2 − 2p (mod p2).

(iii) If p ≡ 5 (mod 12) and p = x2 + y2 with 2 - x and 2 | y, then

(1.23)

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡ 2p− 4x2 (mod p2).

In the case d = 1, Theorem 1.3(i) yields the following new result. (Note
that

(
2k
k

)(
3k
k+1

)
= 2
(

2k
k+1

)(
3k
k

)
for any k ∈ N.)

Corollary 1.1. Let p > 3 be a prime. Then

p−1∑
k=0

(
2k
k

)2( 3k
k+1

)
108k

≡ 0 (mod p2) if p ≡ 1 (mod 3),(1.24)

p−1∑
k=0

(
4k
2k

)(
2k
k

)(
2k
k+1

)
256k

≡ 0 (mod p2) if p ≡ 1, 3 (mod 8),(1.25)

p−1∑
k=0

(
6k
3k

)(
3k
k

)(
2k
k+1

)
123k

≡ 0 (mod p2) if p ≡ 1 (mod 4).(1.26)

We will prove Theorems 1.1–1.3 in Sections 2–4 respectively.

2. Proof of Theorem 1.1

Lemma 2.1. For any positive integer n we have

(2.1)
n∑
k=1

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)
xk−1(x+ 1)k+1 = n(n+ 1)Sn(x)2.
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Proof. Observe that

Sn(x)2 =

n∑
k=0

(
n+ k

2k

)
Ckx

k
n∑
l=0

(
n+ l

2l

)
Clx

l =

2n∑
m=0

am(n)xm,

where

am(n) :=
m∑
k=0

(
n+ k

2k

)
Ck

(
n+m− k
2m− 2k

)
Cm−k.

Also, the coefficient of xm on the left-hand side of (2.1) coincides with

bm(n) :=
m+1∑
k=1

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)(
k + 1

m+ 1− k

)

=
m∑
k=0

(
n+ k + 1

2k + 2

)(
2k + 2

k + 1

)(
2k + 2

k

)(
k + 2

m− k

)
.

Thus, for the validity of (2.1) it suffices to show that bm(n) = n(n+1)am(n)
for all m = 0, 1, . . .. Obviously, a0(n) = 1 and b0(n) = n(n + 1). Also,
a1(n) = n(n + 1) and b1(n) = n2(n + 1)2. By the Zeilberger algorithm via
Mathematica 7 we find that both um = am(n) and um = bm(n) satisfy the
following recursion:

(m+ 2)(m+ 3)(m+ 4)um+2

= 2(2mn2 + 5n2 + 2mn+ 5n−m3 − 6m2 − 11m− 6)um+1

− (m+ 1)(m− 2n)(m+ 2n+ 2)um.

So bm(n) = n(n+ 1)am(n) for all m ∈ N. This proves (2.1).

Proof of Theorem 1.1. We first determine
∑p−1

k=0

(
2k
k

)2( 2k
k+1

)
/64k mod p2

via Lemma 2.1, which actually led the author to the study of (1.5).

Recall the following combinatorial identity (cf. [Su2, (4.3)]):

(2.2)

n∑
k=0

(
n+ k

2k

)
Ck

(−2)k
=

{
(−1)(n−1)/2C(n−1)/2/2

n if 2 - n,
0 if 2 |n.

Set n = (p− 1)/2. Applying (2.1) with x = −1/2 we get

n∑
k=1

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)
1

(−2)k−12k+1
= n(n+ 1)Sn

(
−1

2

)2

.
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Thus, with the help of (1.2) and (2.2), we have

p−1∑
k=0

(
2k
k

)2( 2k
k+1

)
64k

≡
n∑
k=1

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)
1

(−4)k
= −n(n+ 1)Sn

(
−1

2

)2

≡

{
0 (mod p2) if p ≡ 1 (mod 4),

C2
(n−1)/2/2

2n+2 (mod p2) if p ≡ 3 (mod 4).

Therefore (1.5) with d = 1 holds if p ≡ 1 (mod 4). In the case p ≡ 3 (mod 4),
clearly

C2
(n−1)/2

22n+2
=

((
(p− 1)/2

(p+ 1)/4

)
2

p− 1

)2

4 · 2p−1
≡ 1

(1− 2p)(1 + p qp(2))

(
(p− 1)/2

(p+ 1)/4

)2

≡ (1 + 2p− p qp(2))

(
(p− 1)/2

(p+ 1)/4

)2

(mod p2),

where qp(2) = (2p−1 − 1)/p, and hence (1.6) holds.

For d = 0, 1, 2, . . . set

ud =

p−1∑
k=0

(
2k
k

)2( 2k
k+d

)
64k

=
∑
d≤k<p

(
2k
k

)2( 2k
k+d

)
64k

.

By the Zeilberger algorithm we find the recursion

(2d+ 1)2ud − (2d+ 3)2ud+2 =
(2p− 1)2(d+ 1)

64p−1p

(
2p

p+ d+ 1

)(
2p− 2

p− 1

)2

.

Note that (
2p− 2

p− 1

)
= pCp−1 ≡ 0 (mod p).

If 0 ≤ d < p− 2, then(
2p

p+ d+ 1

)
=

2p

p+ d+ 1

(
2p− 1

p+ d

)
≡ 0 (mod p)

and hence

(2d+ 1)2ud ≡ (2d+ 3)2ud+2 (mod p2).

For d ∈ {0, . . . , p− 3} with d ≡ (p+ 1)/2 (mod 2), clearly p 6= 2d+ 1 < 2p
and hence

ud+2 ≡ 0 (mod p2) ⇒ ud ≡ 0 (mod p2).

If d ∈ {p − 1, p − 2} and d ≡ (p + 1)/2 (mod 2), then d ≥ (p + 1)/2
and hence ud ≡ 0 (mod p2). So (1.5) holds for all d ∈ {0, . . . , p − 1} with
d ≡ (p+ 1)/2 (mod 2).

Thus we have completed the proof of Theorem 1.1.
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3. Proof of Theorem 1.2

Lemma 3.1. For any n ∈ N we have

(3.1)
n∑
k=0

(
2k

k

)3( k

n− k

)
(−16)n−k =

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

.

Proof. For n = 0, 1, both sides of (3.1) take the values 1 and 8 respec-
tively. Let un denote the left-hand side of (3.1) or the right-hand side of
(3.1). Applying the Zeilberger algorithm via Mathematica 7, we obtain the
recursion

(n+ 2)3un+2 = 8(2n+ 3)(2n2 + 6n+ 5)un+1 − 256(n+ 1)3un (n ∈ N).

So, by induction (3.1) holds for all n = 0, 1, 2, . . . .

Lemma 3.2. Let p be an odd prime. Then

p−1∑
n=0

n+ 1

8n

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

≡
p−1∑
n=0

2n+ 1

(−16)n

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

≡ p
(
−1

p

)
(mod p3).

Proof. In view of Lemma 3.1, we have

p−1∑
n=0

n+ 1

8n

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

=

p−1∑
n=0

n+ 1

8n

n∑
k=0

(
2k

k

)3( k

n− k

)
(−16)n−k

=

p−1∑
k=0

(
2k
k

)3
8k

p−1−k∑
j=0

(k + j + 1)

(
k

j

)
(−16)j

8j

≡
(p−1)/2∑
k=0

(
2k
k

)3
8k

(
(k + 1)

k∑
j=0

(
k

j

)
(−2)j − 2k

k∑
j=1

(
k − 1

j − 1

)
(−2)j−1

)

=

(p−1)/2∑
k=0

(
2k
k

)3
8k

((k + 1)(−1)k − 2k(−1)k−1)

≡
p−1∑
k=0

3k + 1

(−8)k

(
2k

k

)3

(mod p3).
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In [Su3] the author conjectured that

p−1∑
k=0

3k + 1

(−8)k

(
2k

k

)3

≡ p
(
−1

p

)
+ p3Ep−3 (mod p4)

provided p > 3, where E0, E1, E2, . . . are the Euler numbers given by

E0 = 1 and
n∑
k=0
2|k

(
n

k

)
En−k = 0 (n = 1, 2, . . .).

The last congruence is still open but [GZ] confirmed that

p−1∑
k=0

3k + 1

(−8)k

(
2k

k

)3

≡ p
(
−1

p

)
(mod p3).

So we have

p−1∑
n=0

n+ 1

8n

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

≡ p
(
−1

p

)
(mod p3).

Similarly,

p−1∑
n=0

2n+ 1

(−16)n

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

=

p−1∑
n=0

2n+ 1

(−16)n

n∑
k=0

(
2k

k

)3( k

n− k

)
(−16)n−k

≡
(p−1)/2∑
k=0

(
2k
k

)3
(−16)k

(
(2k + 1)

k∑
j=0

(
k

j

)
+ 2k

k∑
j=1

(
k − 1

j − 1

))

≡
p−1∑
k=0

3k + 1

(−8)k

(
2k

k

)3

≡ p
(
−1

p

)
(mod p3).

Lemma 3.3. Let p be an odd prime. Then

2

(p−1)/2∑
k=0

k
(
2k
k

)2
8k

+

(p−1)/2∑
k=0

(
2k
k

)
Ck

8k
≡ 2p2

(
2

p

)
(mod p3),

8

(p−1)/2∑
k=0

k
(
2k
k

)2
(−16)k

+

(p−1)/2∑
k=0

(
2k
k

)
Ck

(−16)k
≡ 2p2

(
−1

p

)
(mod p3),
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(p−1)/2∑
k=0

(2k2 + 4k + 1)

(
2k
k

)2
8k
≡ p2

(
2

p

)
(mod p3),

(p−1)/2∑
k=0

(8k2 + 4k + 1)

(
2k
k

)2
(−16)k

≡ p2
(
−1

p

)
(mod p3).

Proof. By induction, for every n = 0, 1, 2, . . . we have

n∑
k=0

(
2k +

1

k + 1

)(2k
k

)2
8k

=
(2n+ 1)2

(n+ 1)8n

(
2n

n

)2

,

n∑
k=0

(
8k +

1

k + 1

) (
2k
k

)2
(−16)k

=
(2n+ 1)2

(n+ 1)(−16)n

(
2n

n

)2

,

n∑
k=0

(2k2 + 4k + 1)

(
2k
k

)2
8k

=
(2n+ 1)2

8n

(
2n

n

)2

,

n∑
k=0

(8k2 + 4k + 1)

(
2k
k

)2
(−16)k

=
(2n+ 1)2

(−16)n

(
2n

n

)2

.

Applying these identities with n = (p−1)/2 we immediately get the desired
congruences.

Let p ≡ 1 (mod 4) be a prime and write p = x2 + y2 with x ≡ 1 (mod 4)

and y ≡ 0 (mod 2). In 1828 Gauss showed the congruence
((p−1)/2
(p−1)/4

)
≡

2x (mod p). In 1986, S. Chowla, B. Dwork and R. J. Evans [CDE] used
Gauss and Jacobi sums to prove that

(3.2)

(
(p− 1)/2

(p− 1)/4

)
≡ 2p−1 + 1

2

(
2x− p

2x

)
(mod p2),

which was first conjectured by F. Beukers. (See also [BEW, Chapter 9] and
[HW] for further related results.) In 2009, the author (see [Su2]) conjectured
that

(3.3)

(p−1)/2∑
k=0

(
2k
k

)2
8k
≡

(p−1)/2∑
k=0

(
2k
k

)2
(−16)k

≡ (−1)(p−1)/4
(

2x− p

2x

)
(mod p2),

and this was confirmed by Z.-H. Sun [S1] via (3.2) and the Legendre poly-
nomials.

Proof of Theorem 1.2(i). By (1.2),

S(p−1)/2 ≡
(p−1)/2∑
k=0

(
2k
k

)
Ck

(−16)k
(mod p2).

In view of this and Lemma 3.3 and (3.3), it suffices to show (1.7).
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As p |
(
2k
k

)
for all k = (p+ 1)/2, . . . , p− 1, we have

p−1∑
n=0

n+ 1

8n

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

=

p−1∑
k=0

(
2k
k

)2
8k

p−1∑
n=k

n+ 1

8n−k

(
2(n− k)

n− k

)2

=

p−1∑
k=0

(
2k
k

)2
8k

p−1−k∑
j=0

k + j + 1

8j

(
2j

j

)2

≡
(p−1)/2∑
k=0

(
2k
k

)2
8k

(p−1)/2∑
j=0

(k + 1) + (j + 1)− 1

8j

(
2j

j

)2

= 2

(p−1)/2∑
k=0

(
2k
k

)2
8k

(p−1)/2∑
j=0

(j + 1)
(
2j
j

)2
8j

−
( p−1∑
k=0

(
2k
k

)2
8k

)2

(mod p2).

Similarly,
p−1∑
n=0

2n+ 1

(−16)n

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

≡ 2

(p−1)/2∑
k=0

(
2k
k

)2
(−16)k

(p−1)/2∑
j=0

(2j + 1)
(
2j
j

)2
(−16)j

−
( p−1∑
k=0

(
2k
k

)2
(−16)k

)2

(mod p2).

Combining these with Lemma 3.2 and (3.3), we immediately obtain (1.7).

Lemma 3.4. Let p ≡ 1 (mod 4) be a prime. Write p = x2 + y2 with
x ≡ 1 (mod 4) and y ≡ 0 (mod 2). Then

(3.4) D(p−1)/2 ≡ (−1)(p−1)/4
(

2x− p

2x

)
(mod p2).

Proof. By (1.2),

D(p−1)/2 ≡
(p−1)/2∑
k=0

(
2k
k

)2
(−16)k

(mod p2).

So (3.4) follows from (3.3).

Remark 3.1. If p is a prime with p ≡ 3 (mod 4), then n = (p− 1)/2 is
odd and hence

Dn ≡
n∑
k=0

(−1)k
(
2k
k

)2
16k

=
n∑
k=0

(−1)k
(
−1/2

k

)2

≡
n∑
k=0

(−1)k
(
n

k

)2

=
n∑
k=0

(−1)n−k
(
n

k

)2

= 0 (mod p).

The following result was conjectured by the author [Su2] and confirmed
by Z.-H. Sun [S2].
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Lemma 3.5. Let p be an odd prime. Then

(3.5)

p−1∑
k=0

(
2k
k

)3
(−8)k

≡
{

4x2 − 2p (mod p2) if 4 | p− 1 & p = x2 + y2 (2 - x),

0 (mod p2) if p ≡ 3 (mod 4).

Remark 3.2. Fix an odd prime p = 2n+ 1. By (1.2) and (1.3) we have

p−1∑
k=0

(
2k
k

)3
(−8)k

≡
n∑
k=0

(
n+ k

2k

)(
2k

k

)2

2k = D2
n (mod p2).

Hence (3.5) follows from Lemma 3.4 and Remark 3.1.

Lemma 3.6. For any positive integer n we have

(3.6)
n∑
k=0

(
n+ k

2k

)(
2k

k

)2 2k + 1

(k + 1)2
xk(x+ 1)k+1

=
Sn(x)

2
(Dn−1(x) +Dn+1(x)).

Proof. Note that

Sn(x)(Dn−1(x) +Dn+1(x)) =

2n+1∑
m=0

cm(n)xm

where

cm(n) =
m∑
k=0

((
n+ k

2k

)
Ck

(
2m− 2k

m− k

)
×
((

n− 1 +m− k
2m− 2k

)
+

(
n+ 1 +m− k

2m− 2k

)))
= 2

m∑
k=0

((
n+ k

2k

)
Ck

(
n+m− k
2m− 2k

)(
2m− 2k

m− k

)
× (m+ n− k)2 − n(2m− 2k − 1)

(m+ n− k)(n−m+ k + 1)

)
.

By the Zeilberger algorithm we find that um = cm(n)/2 satisfies the recur-
sion

(3.7) (m+ 2)(m+ 3)2(m2 + 5m+ 6 + 4n(n+ 1))um+2 + 2P (m,n)um+1

= (m+ 2)((2n+ 1)2 −m2)(m2 + 7m+ 12 + 4n(n+ 1))um

where P (m,n) denotes the polynomial

m5 + 11m4 + 45m3 + 83m2 + 64m+ 12 + 20n4 − 40n3 − 58n2 − 38n

− 25mn+m2n+ 2m3n− 33mn2 +m2n2 + 2m3n2 − 16mn3 − 8mn4.
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Clearly the coefficient of xm on the left-hand side of (3.6) coincides with

dm(n) =
m∑
k=0

(
n+ k

2k

)(
2k

k

)2( k + 1

m− k

)
2k + 1

(k + 1)2
.

By the Zeilberger algorithm um = dm(n) also satisfies the recursion (3.7).
Thus we have dm(n) = cm(n) by induction on m. So (3.6) holds.

Proof of Theorem 1.2(ii). Write p = 2n+ 1. By (2.1),
n∑
k=0

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)
2k =

n(n+ 1)

2
S2
n.

Thus, by (1.2) and (1.9) we have

p−1∑
k=0

(
2k
k

)2( 2k
k+1

)
(−8)k

≡
n∑
k=0

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)
2k

≡ p2 − 1

8
4(4x2 − 4p) (mod p2),

and hence (1.12) holds.
Now we consider (1.13). Observe that(

2k

k + 1

)2

=

(
1− 2k + 1

(k + 1)2

)(
2k

k

)2

for k = 0, 1, 2, . . . ,

and(
2(p− 1)

p− 1

)(
2(p− 1)

(p− 1) + 1

)2

=
p

2p− 1

(
2p− 1

p− 1

)(
2p− 2

p− 2

)2

≡ −p (mod p2).

Thus we have

(3.8)

p−1∑
k=0

(
2k
k

)(
2k
k+1

)2
(−8)k

≡−p+

n∑
k=0

(
2k
k

)3
(−8)k

−
n∑
k=0

(2k + 1)
(
2k
k

)3
(k + 1)2(−8)k

(mod p2).

By (1.2) and (3.6) with x = 1,

n∑
k=0

(2k + 1)
(
2k
k

)3
(k + 1)2(−8)k

≡
n∑
k=0

(
n+ k

2k

)(
2k

k

)2 (2k + 1)2k

(k + 1)2

=
Sn
4

(Dn−1 +Dn+1) (mod p2).

It is known (cf. [Sl] and [St, p. 191]) that

(n+ 1)Dn+1 = 3(2n+ 1)Dn − nDn−1 and Dn+1 − 3Dn = 2nSn.

Thus

n(Dn−1 +Dn+1) = 3(2n+ 1)Dn −Dn+1

= 3(2n+ 1)Dn − (3Dn + 2nSn) = 2n(3Dn − Sn)
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and hence
n∑
k=0

(2k + 1)
(
2k
k

)3
(k + 1)2(−8)k

≡ Sn
2

(3Dn − Sn) (mod p2).

With the help of (1.9) and (3.4), we have

Sn
2

(3Dn − Sn) ≡
(

2x− p

x

)(
3

(
2x− p

2x

)
−
(

4x− 2p

x

))
(mod p2)

and hence
n∑
k=0

(2k + 1)
(
2k
k

)3
(k + 1)2(−8)k

≡ 4x2 − p (mod p2).

Combining this with (3.5) and (3.8), we immediately obtain (1.13).

4. Proof of Theorem 1.3

Lemma 4.1. Let p be an odd prime. Then, for any p-adic integer x 6≡
0,−1 (mod p) we have

(4.1)

p−1∑
k=0

(
2k

k

)3(−x
64

)k

≡
(
x+ 1

p

) p−1∑
k=0

(
2k

k

)2(4k

2k

)(
x

64(x+ 1)2

)k
(mod p).

Proof. Taking n = (p−1)/2 in the following identity of MacMahon (see,
e.g., [G, (6.7)]):

n∑
k=0

(
n

k

)3

xk =
n∑
k=0

(
n+ k

2k

)(
2k

k

)(
n− k
k

)
xk(1 + x)n−2k,

and noting (1.2) and the basic facts(
n

k

)
≡
(
−1/2

k

)
=

(
2k
k

)
(−4)k

(mod p)

and (
n− k
k

)
≡
(
−1/2− k

k

)
=

(
4k
2k

)
(−4)k

(mod p),

we immediately get (4.1).

Proof of Theorem 1.3. (i) For d = 0, 1, 2, . . . , we define

f(d) =

p−1∑
k=0

(
2k
k+d

)(
2k
k

)(
3k
k

)
108k

, g(d) =

p−1∑
k=0

(
2k
k+d

)(
2k
k

)(
4k
2k

)
256k

,
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and

h(d) =

p−1∑
k=0

(
2k
k+d

)(
3k
k

)(
6k
3k

)
123k

.

By the Zeilberger algorithm, we find the recursive relations:

(4.2) (3d+ 1)(3d+ 2)f(d)− (3d+ 4)(3d+ 5)f(d+ 2)

=
(3p− 1)(3p− 2)(d+ 1)

108p−1p

(
2p

p+ d+ 1

)(
2p− 2

p− 1

)(
3p− 3

p− 1

)
,

(4.3) (4d+ 1)(4d+ 3)g(d)− (4d+ 5)(4d+ 7)g(d+ 2)

=
(4p− 1)(4p− 3)(d+ 1)

256p−1p

(
2p

p+ d+ 1

)(
2p− 2

p− 1

)(
4p− 4

2p− 2

)
,

(4.4) (6d+ 1)(6d+ 5)h(d)− (6d+ 7)(6d+ 11)h(d+ 2)

=
(6p− 1)(6p− 5)(d+ 1)

1728p−1p

(
2p

p+ d+ 1

)(
3p− 3

p− 1

)(
6p− 6

3p− 3

)
.

Recall that
(
2p−2
p−1
)

= pCp−1 ≡ 0 (mod p). Also,

(3p− 2)

(
3p− 3

p− 1

)
= p

(
3p− 2

p

)
≡ 0 (mod p),

(4p− 3)

(
4p− 4

2p− 2

)
= p

(
4p− 2

2p

)
≡ 0 (mod p),

(6p− 5)

(
6p− 6

3p− 3

)
=

3p(3p− 1)(3p− 2)

(6p− 3)(6p− 4)

(
6p− 3

3p

)
≡ 0 (mod p).

If 0 ≤ d < p− 1, then(
2p

p+ d+ 1

)
=

(
2p

p− 1− d

)
≡ 0 (mod p).

So, by (4.2)–(4.4), for any d ∈ {0, . . . , p− 1} we have

(3d+ 1)(3d+ 2)f(d) ≡ (3d+ 4)(3d+ 5)f(d+ 2) (mod p2),(4.5)

(4d+ 1)(4d+ 3)g(d) ≡ (4d+ 5)(4d+ 7)g(d+ 2) (mod p2),(4.6)

(6d+ 1)(6d+ 5)h(d) ≡ (6d+ 7)(6d+ 11)h(d+ 2) (mod p2).(4.7)

Fix 0 ≤ d ≤ p− 1. If d ≡
(
1 +

(p
3

))
/2 (mod 2), then it is easy to verify

that {3d+ 1, 3d+ 2} ∩ {p, 2p} = ∅, hence (3d+ 1)(3d+ 2) 6≡ 0 (mod p) and
thus by (4.5) we have

f(d+ 2) ≡ 0 (mod p2) ⇒ f(d) ≡ 0 (mod p2).

If d ≡
(
1 +

(−2
p

))
/2 (mod 2), then {4d + 1, 4d + 3} ∩ {p, 3p} = ∅, hence

(4d+ 1)(4d+ 3) 6≡ 0 (mod p) and thus by (4.6) we have

g(d+ 2) ≡ 0 (mod p2) ⇒ g(d) ≡ 0 (mod p2).
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If d ≡
(
1 +

(−1
p

))
/2 (mod 2), then {6d+ 1, 6d+ 3} ∩ {p, 3p, 5p} = ∅, hence

(6d+ 1)(6d+ 3) 6≡ 0 (mod p) and thus (4.7) yields

h(d+ 2) ≡ 0 (mod p2) ⇒ h(d) ≡ 0 (mod p2).

Since

f(p) = f(p+ 1) = g(p) = g(p+ 1) = h(p) = h(p+ 1) = 0,

by the last paragraph, for every d = p + 1, p, . . . , 0 we have the desired
(1.19)–(1.21).

(ii) Assume that p ≡ 3 (mod 8) and p = x2 + 2y2 with x, y ∈ Z. Since
4x2 6≡ 0 (mod p) and Mortenson [M] already proved that the squares of both
sides of (1.22) are congruent modulo p2, (1.22) is reduced to its mod p form.
Applying (4.1) with x = 1 we get

p−1∑
k=0

(
2k
k

)3
(−64)k

≡
(

2

p

) p−1∑
k=0

(
2k
k

)2(4k
2k

)
256k

(mod p).

By [A, Theorem 5(3)], we have(
−1

p

) n∑
k=0

(
n

k

)2(n+ k

k

)
(−1)k ≡ 4x2 − 2p (mod p),

where n = (p− 1)/2. For k = 0, . . . , n clearly(
n

k

)2(n+ k

k

)
(−1)k =

(
(p− 1)/2

k

)2(−(p+ 1)/2

k

)
≡
(
−1/2

k

)3

=

(
2k
k

)3
(−64)k

(mod p),

therefore
p−1∑
k=0

(
2k
k

)3
(−64)k

≡
(
−1

p

)
(4x2 − 2p) (mod p),

and hence (1.22) follows.

(iii) Finally, suppose p ≡ 5 (mod 12) and write p = x2 + y2 with x odd
and y even. Once again it suffices to show the mod p form of (1.23) in view
of Mortenson’s work [M]. As Z.-H. Sun observed,(

(p− 5)/6 + k

2k

)(
2k

k

)
≡
(
k − 5/6

2k

)(
2k

k

)
=

(
3k
k

)(
6k
3k

)
(−432)k

(mod p)

for all k = 0, 1, 2, . . . . If p/6 < k < p/3 then p |
(
6k
3k

)
; if p/3 < k < p/2 then
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p |
(
3k
k

)
; if p/2 < k < p then p |

(
2k
k

)
. Thus

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡
(p−5)/6∑
k=0

(
(p− 5)/6 + k

2k

)(
2k

k

)2(
−1

4

)k
= D2n

(
−1

2

)2

(mod p) (by (1.3)),

where n = (p− 5)/12. Note that

D2n

(
−1

2

)
=

1

(−4)n

(
2n

n

)
by [G, (3.133) and (3.135)], and(

(p− 1)/2

(p− 1)/4

)
≡ 12(−432)n

(
2n

n

)
(mod p)

by P. Morton [Mo]. Therefore

D2n

(
−1

2

)2

=
1

16n

(
2n

n

)2

≡

((p−1)/2
(p−1)/4

)2
126n+2

≡
(

12

p

)(
(p− 1)/2

(p− 1)/4

)2

(mod p).

Thus, by applying Gauss’ congruence
((p−1)/2
(p−1)/4

)
≡ 2x (mod p) (cf. [BEW,

(9.0.1)] or [HW]) we immediately get the mod p form of (1.23) from the
above.

The proof of Theorem 1.3 is now complete.
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