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1. Introduction. Let (an) (respectively, (qn)) denote the sequence of
digits (resp., denominators of the convergents) in the regular continued frac-
tion (RCF) expansion of an irrational number. For each R > 1, consider the
renewal time nR := min{n : qn>R}, so that qnR−1≤R<qnR . As a conse-
quence of their renewal-type theorem for the natural extension of the Gauss
map associated with regular continued fractions, Sinai and Ulcigrai [15]
proved the existence of the joint limiting distribution of (qnR−1/R,R/qnR ,
anR−K , . . . , anR+K), with K a fixed nonnegative integer, as R → ∞. The
classical Gauss–Kuz’min statistics give the probability of a random x in
[0, 1] having a prescribed string of digits in its continued fraction expan-
sion at the nth position, for large n; the joint limiting distribution studied
in [15, 16] gives the probability of a random x in [0, 1] having a prescribed
string of digits in its continued fraction expansion at the first place where the
denominator of the convergent is larger than R, for large R. The joint limit-
ing distribution may therefore be considered an analogue of Gauss–Kuz’min
statistics. Employing an abstract characterization of denominators of suc-
cessive convergents in the regular continued fraction expansion RCF(x) of x,
Ustinov succeeded in explicitly computing this limiting distribution in the
RCF case [16].

Sinai and Ulcigrai’s result was subsequently extended to the situation
of continued fractions with even partial quotients (ECF) by Cellarosi [3].
The ECF limiting distribution was further used in the renormalization of
theta sums—that is, replacing the theta sum

∑
eπiωn

2
with a theta sum of
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the type
∑
e−πin

′2/ω modulo a rescaling, rotation, and small error term—
as the map ω 7→ −1/ω modulo 2 is closely related to the forward shift
of even continued fractions. This has led to some new results about the
distribution of normalized theta sums and geometrical properties of their
associated curlicues [4, 14].

This paper studies this type of limiting distributions in the case of three
types of continued fractions: ECF, OCF (continued fractions with odd par-
tial quotients), and NCFα (the Nakada α-expansions, which include NICF,
or continued fraction to the nearest integer, as a special case). In the ECF
case we provide a direct proof of the main result in [3] while making the
limiting distribution explicit. The analogous problem is also solved in the
OCF case, for which no ergodic-theoretical approach is known at this time.
As in [16], the key tool is providing an abstract characterization for pairs
of successive convergents in ECF(x) and OCF(x), which may be of inde-
pendent interest. The OCF case is the most intricate, because the sequence
of denominators of successive convergents in OCF(x) is not necessarily in-
creasing as in the RCF, ECF, or NCFα cases. Finally we provide an explicit
relation between the NCFα limiting joint distribution and the distribution
computed in [16].

Concretely, for a given type of continued fraction expansion (ECF, OCF,
or NCFα), consider the renewal time

nR = min{n ∈ N : qn > R} = min{n ∈ N : qn−1 ≤ R < qn}, R > 1,

and the joint limiting distribution of (qnR−1/R,R/qnR , ωnR−K , . . . , ωnR+K

)
with ωk = (ak, ek), for fixed K, as R → ∞. Here again, ωk denote the
continued fraction digits and qn denote the denominators of the convergents
for a given type of CF expansion (see Section 2 for more details).

We will evaluate the Lebesgue measure LE/O,±x1,x2,x3,x4(R) of the set of
numbers x ∈ Ω := [0, 1] \ Q for which there exist successive convergents
P/Q,P ′/Q′ in ECF(x) (respectively in OCF(x)) such that for given x1, x2,
x3, x4 the following conditions are satisfied:

Q

R
≤ x1,

R

Q′
≤ x2,

Q

Q′
≤ x3,(1.1)

0 ≤ Q′x− P ′

−Qx+ P
≤ x4, respectively −x4 ≤

Q′x− P ′

−Qx+ P
≤ 0,(1.2)

depending on the choice of the ± sign. In both ECF and OCF situations, we
take x1, x2, x3, x4 ∈ (0, 1] (1). In the OCF case, the ratio Q/Q′ of successive
denominators can in fact be any rational number in the interval (0, G), but
since in the definition of nR we are interested only in Q ≤ R < Q′, we

(1) If any of the parameters equals 0, then L equals 0 as well, so we ignore this
degenerate case.
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can restrict to x3 ≤ 1 in the definition of LO,±. The golden ratios G =
(1 +

√
5)/2 and g = 1/G = (−1 +

√
5)/2 will be used often.

The terms qnR−1/R and R/qnR in the joint limiting distribution clearly
relate to the parameters x1 and x2 in the function L. Likewise, the digits
ωk in the joint limiting distribution relate to the parameters x3 and x4 in L
due to equalities (2.4) and (2.6) below.

The main result of this paper shows that LE/O,±(R) has an explicitly
computable limiting distribution as R→∞.

Theorem 1.1. The joint distributions LE/O,±x1,x2,x3,x4(R) exist as R → ∞
and

LE,±x1,x2,x3,x4(R) =
2F±
3ζ(2)

+Oε(R
−1+ε),(1.3)

LO,+x1,x2,x3,x4(R) =
F+ −D1

ζ(2)
+Oε(R

−1/2+ε),

LO,−x1,x2,x3,x4(R) =
F− −D2 −D3

ζ(2)
+Oε(R

−1/2+ε),

(1.4)

where F± = F±(x1, x2, x3, x4) and Di = Di(x1, x2, x3, x4) are given by (2)

F± = ∓

{
Li2(∓x1x2x4) if x3 ≥ x1x2,
Li2(∓x3x4)− log(1± x3x4) log x1x2

x3
if x3 < x1x2,

(1.5)

D2 = F−(x1, x2, x3, x4)− F−(x1, x2,min{x3, g2}, x4),

D1 =
∑
`≥1

I+` , D3 =
∑
`≥2

I−` ,
(1.6)

with

(1.7) I±` =

A`�

1/x2

dx

B`(x)�

x/(2`+g)

x4 dy

y(y ± x4x)
,

where

A` = (2`+ g)x1, B`(x) = B`,x2,x3(x) = min

{
x3x, x1,

x

2`
,
x− 1

2`− 1

}
.

The integrals I±` can be written explicitly as a combination of logarithms
and dilogarithms.

Kraaikamp’s metric theory for S-expansions [6] provides immediate char-
acterizations of pairs of successive convergents for such continued fractions,
which are obtained from RCF only by singularization (see the remark at
the end of Section 3 for definition of singularization). In the last section we
show how to compute the joint limiting distribution associated as above with

(2) In this paper the convention is that
	b
a

= 0 when a ≥ b.
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Nakada’s α-expansions [10] for 1/2 ≤ α ≤ 1. The cases α = 1 and α = 1/2
are best known, corresponding to the RCF and NICF (continued fraction to
the nearest integer). The latter was introduced by Minnigerode [9] and was
also studied in [1, 13, 18]. Our calculations show explicit connections with
Ustinov’s RCF distribution.

2. Basic ECF and OCF properties. For each x ∈ Ω, the ECF (re-
spectively, OCF) expansion of x is given by

(2.1) x =
1

a1 +
e1

a2 +
e2

a3 +
e3
. . .

= [[(a1, e1), (a2, e2), (a3, e3), . . .]],

where en ∈ {±1} and all an’s are even positive integers (respectively, all
an’s are odd positive integers with an + en ≥ 2). For more details see [5,
6, 8, 11, 12, 13]. As in [5, 8], consider the “flipped” continued fraction map
TD : [0, 1]→ [0, 1] for a subset D of [0, 1], defined by TD(0) = 0, TD(1) = 1,
and

TD(x) =

{ {1/x} if x ∈ (0, 1) \D,
1− {1/x} if x ∈ D,

with auxiliary functions

eD(x) =

{
1 if x ∈ [0, 1] \D,
−1 if x ∈ D,

aD(x) =

{
[1/x] if x ∈ [0, 1] \D,
1 + [1/x] if x ∈ D.

Note that

TD(x) = eD(x)

(
1

x
− aD(x)

)
, ∀x ∈ (0, 1).

Consider the sets

DO :=
⋃
n∈2N

[
1

n+ 1
,

1

n

)
, DE := [0, 1) \DO =

⋃
n∈2N−1

[
1

n+ 1
,

1

n

)
.

Denote D = DE in the ECF case, respectively D = DO in the OCF case. In
both ECF or OCF situations the signs en = en(x) and the digits an = an(x)
are given, for x ∈ Ω, by

e0 = 1, en = eD(tn−1), a0 = 0, an = aD(tn−1),

where tn = tn(x) = TnD(x). On the D-continued fraction expansion the
iterates of the Gauss type map TD act as a shift map by

TnD[[(a1, e1), (a2, e2), . . .]] = [[(an+1, en+1), (an+2, en+2), . . .]], ∀n ∈ N0.
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The D-convergents pn/qn are defined by

(2.2)

{
p−1 = 1, p0 = 0, pn = anpn−1 + en−1pn−2,

q−1 = 0, q0 = 1, qn = anqn−1 + en−2qn−2,

or in equivalent formulation(
pn−1 pn

qn−1 qn

)
=

(
pn−2 pn−1

qn−2 qn−1

)(
0 en−1

1 an

)
= · · ·(2.3)

=

(
0 e0

1 a1

)(
0 e1

1 a2

)
· · ·
(

0 en−1

1 an

)
, ∀n ∈ N.

The following elementary fundamental relations are satisfied:

pn−1qn − pnqn−1 = (−1)ke0e1 · · · en−1 =: δn,

pn−1
qn−1

− pn
qn

=
δn

qn−1qn
, ∀n ∈ N0,

x =
pn + pn−1entn
qn + qn−1entn

, ∀n ∈ N.

The latter equation is equivalent to

(2.4) entn = enT
n
D(x) =

qnx− pn
−qn−1x+ pn−1

, ∀n ∈ N.

Upon (2.4) we infer

(2.5) 0 <

∣∣∣∣ qnx− pn
−qn−1x+ pn−1

∣∣∣∣ < 1, ∀x ∈ Ω, ∀n ∈ N.

It is well-known and plain to check for every continued fraction that if x is
as in (2.1), then

(2.6)
qn−1
qn

= [[(an, en−1), (an−1, en−2), . . . , (a2, e1), (a1, ∗)]], ∀n ∈ N,

where (a1, ∗) means that the finite expansion terminates with a1.

3. Successive ECF and OCF convergents. In GL2(Z) consider the
matrices

I =

(
1 0

0 1

)
, J =

(
0 1

1 0

)
, A =

(
0 1

1 1

)
, B = A2 =

(
1 1

1 0

)
,

and denote their images in SL2(Z/2Z) by [I], [J ], [A], [B]. Clearly {[I], [J ]}
forms a subgroup on two elements and {[I], [A], [B]} forms a subgroup on



206 F. P. Boca and J. Vandehey

three elements of SL2(Z/2Z). Consider the sets

R =

{
M =

(
P P ′

Q Q′

)
: 0 ≤ P ≤ Q, 1 ≤ P ′ ≤ Q′

}
,

RE := {M ∈ R : 1 ≤ Q ≤ Q′, M ≡ I or J (mod 2)},
RO := {M ∈ R : λM > g, M ≡ I, A, or B (mod 2)}.

For M ∈ R denote

(3.1) λM =
Q′

Q
, EM (x) =

Q′x− P ′

−Qx+ P
, x /∈ Q.

3.1. Successive convergents for ECF(x)

Lemma 3.1. In the ECF expansion, qk ≥ qk−1 ≥ 1, pk+1 ≥ pk ≥ 1, and
qk − pk ≥ qk−1 − pk−1 ≥ 1 for every k ≥ 1.

Proof. Let (xn) be a sequence defined by xn = anxn−1 + en−1xn−2 with
an an even positive integer and en ∈ {±1}. Suppose that xk0 ≥ xk0−1 ≥ 1 for
some k0 ≥ 1. Then xk0+1 ≥ 2xk0 −xk0−1 ≥ xk0 . This shows inductively that
xn ≥ xn−1 ≥ 1 for every n ≥ k0. The statement follows by taking (xn, k0) =
(qn, 1), (xn, k0) = (pn, 2), and respectively (xn, k0) = (qn − pn, 1).

Furthermore, since pn−1qn−pnqn−1 = ±1, it follows that qn(x) > qn−1(x)
for all n ≥ 2 and x ∈ Ω.

Proposition 3.2. For each x ∈ Ω the following are equivalent:

(i) P/Q,P ′/Q′ are successive convergents in ECF(x).

(ii) M =
(
P P ′

Q Q′
)
∈ RE and 0 < |EM (x)| < 1.

Proof. (i)⇒(ii). Suppose M =
(
P P ′

Q Q′
)

=
( pn−1 pn
qn−1 qn

)
for some n ≥ 1.

From Lemma 3.1,
( 0 ek−1

1 ak

)
≡ J (mod 2) and equality (2.3) we infer that

M ∈ RE . The second condition in (ii) follows from (2.5).

(ii)⇒(i). Consider first the case Q = 1. Only the matrices M =
(
0 1
1 Q′

)
and M =

( 1 Q′−1
1 Q′

)
may arise. Since M ≡ I or J (mod 2), only the former

case can occur and Q′ is necessarily an even positive integer. The corre-
sponding inequality

0 <

∣∣∣∣Q′x− 1

−x

∣∣∣∣ < 1 is equivalent to x ∈
(

1

Q′ + 1
,

1

Q′

)
∪
(

1

Q′
,

1

Q′ − 1

)
or, according to the definition of a1, to a1 = Q′, showing that 0/1, 1/Q′ are
successive convergents of x.
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When Q > 1, take (with ` ≥ 1):

eM = 1, Q0 = Q′ − 2`Q, P0 = P ′ − 2`P if [λ] = 2`,

eM = −1, Q0 = 2`Q−Q′, P0 = 2`P − P ′ if [λ] = 2`− 1,

M0 =

(
P0 P

Q0 Q

)
.

In both cases one has 0 < Q0 < Q, M = M0

(
0 eM
1 2`

)
, and so M0 ≡ I or

J (mod 2). Since Q′ > Q > Q0, the condition 0 < |EM | < 1 is equivalent

to x lying between P ′+P
Q′+Q and P ′−P

Q′−Q , while 0 < |EM0 | < 1 is equivalent to x

lying between P+P0
Q+Q0

and P−P0
Q−Q0

. When P/Q < P ′/Q′ the former implies the
latter because

P − P0

Q−Q0
=

(2`+ 1)P − P ′

(2`+ 1)Q−Q′
<
P

Q
<
P ′ + P

Q′ +Q
<
P ′

Q′
<
P ′ − P
Q′ −Q

≤ P + P0

Q+Q0
=
P ′ − (2`− 1)P

Q′ − (2`− 1)Q
<
P0

Q0
=
P ′ − 2`P

Q′ − 2`Q
when [λ] = 2`,

and

P0

Q0
=

2`P − P ′

2`Q−Q′
<
P + P0

Q+Q0
=

(2`+ 1)P − P ′

(2`+ 1)Q−Q′
<
P

Q
<
P ′ + P

Q′ +Q
<
P ′

Q′

<
P ′ − P
Q′ −Q

≤ P − P0

Q−Q0
=
P ′ − (2`− 1)P

Q′ − (2`− 1)Q
when [λ] = 2`− 1.

When P ′/Q′ < P/Q, analogous inequalities show that 0 < |EM | < 1 implies
0 < |EM0 | < 1. Furthermore, the inequalities 0 ≤ P0 ≤ P follow from
|P ′Q− PQ′| = |PQ0 − P0Q| = 1 and P ≥ 1.

3.2. Successive convergents for OCF(x). Denominators of successive
convergents for OCF(x) satisfy ([11, Eq. 2.10])

rn := qn/qn−1(3.2)

= an + en−1[[(an−1, en−2), (an−2, en−3), . . . , (a2, e1), (a1, ∗)]]
≥ an − [[(3,−1), (3,−1), . . . , (3,−1), (3, ∗)]]
> an − [[(3,−1), (3,−1), (3,−1) . . .]]

= an − 1 + 1/G = an − 2 +G.

In the opposite direction one has

(3.3) rn = an +
en−1
rn−1

< an +
en−1

an−1 − 2 +G
≤ an +

1

G− 1
= an +G.

In particular (3.2) and (3.3) show that if an ≥ 3, then rn > 1 +G, proving
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Lemma 3.3. If rn ≤ 2 + g then an = 1, and in particular en = 1 and

0 <
qnx− pn

−qn−1x+ pn−1
< 1.

Proposition 3.4. For each x ∈ Ω the following are equivalent:

(i) P/Q,P ′/Q′ are successive convergents in OCF(x).

(ii) M =
(
P P ′

Q Q′
)
∈ RO and one of the following two conditions holds:

(∗) λM := Q′/Q > 2 + g and 0 < |EM (x)| < 1.
(∗∗) g < λM ≤ 2 + g and 0 < EM (x) < 1.

Proof. (i)⇒(ii). Suppose that there is n ≥ 1 such that

(3.4) M =

(
0 e0 = 1

1 a1

)(
0 e1

1 a2

)
· · ·
(

0 en−1

1 an

)
=

(
pn−1 pn

qn−1 qn

)
.

Since
( 0 ei−1

1 ai

)
≡
(
0 1
1 1

)
= A (mod 2) and {[I], [A], [B]} forms a subgroup of

SL2(Z/2Z), it follows that M ≡ I, A, or B (mod 2). The inequality GQ′ > Q
follows from (3.2), while 0 ≤ P = pn−1 ≤ Q = qn−1, 0 < P ′ = pn ≤ Q′ = qn
are well-known (they follow as a result of the RCF→ OCF algorithm or can
be directly deduced from pn−1qn − pnqn−1 = ±1). Properties (∗) and (∗∗)
follow from (2.4), (2.5), and from Lemma 3.3.

(ii)⇒(i). Consider the partition (g,∞) = S1 ∪ S2 ∪ S3, where

S1 = (g, 1) ∪ (2 + g, 3) ∪ (4 + g, 5) ∪ · · · ,
S2 = [1, 2) ∪ [3, 4) ∪ [5, 6) ∪ · · · ,
S3 = [2, 2 + g) ∪ [4, 4 + g) ∪ [6, 6 + g) ∪ · · · .

For each matrix M =
(
P P ′

Q Q′
)
∈ RO with λ = λM , define

kM =


2`− 1 if λ ∈ S2, [λ] = 2`− 1, ` ≥ 1,

2`+ 1 if λ ∈ S1, [λ] = 2`, ` ≥ 0, and {λ} > g,

2`− 1 if λ ∈ S3, [λ] = 2`, ` ≥ 1, and {λ} < g.

Note that

kM ≥ 3 ⇐⇒ λ > 2 + g = G2.

We prove the following statement:

Lemma 3.5. Let x∈Ω and M =
(
P P ′

Q Q′
)
∈ RO with Q̃ = min{Q,Q′}>1

and M satisfying (∗) or (∗∗). There exist eM ∈ {±1} and M0 =
(
P0 P
Q0 Q

)
∈

RO such that

(3.5) M = M0

(
0 eM

1 kM

)
,
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eM + kM0 ≥ 2, M0 satisfies the corresponding property (∗) or (∗∗), and

Q̃0 = min{Q0, Q} ≤ Q̃. Furthermore, if λ = λM ∈ S1∪S2, then we can take

Q̃0 < Q̃.

Proof of Lemma 3.5. Consider the following integers:

eM =

{
1 if λ ∈ S2 ∪ S3,
−1 if λ ∈ S1,

Q0 =


Q′ − (2`− 1)Q if λ ∈ S3, [λ] = 2`, ` ≥ 1, and {λ} < g,

Q′ − (2`− 1)Q if λ ∈ S2, [λ] = 2`− 1, ` ≥ 1,

(2`+ 1)Q−Q′ if λ ∈ S1, [λ] = 2`, ` ≥ 0, and {λ} > g,

=


(1 + {λ})Q if λ ∈ S3,
{λ}Q if λ ∈ S2,
(1− {λ})Q if λ ∈ S1,

P0 =


P ′ − (2`− 1)P if λ ∈ S3, [λ] = 2`, ` ≥ 1, and {λ} < g,

P ′ − (2`− 1)P if λ ∈ S2, [λ] = 2`− 1, ` ≥ 1,

(2`+ 1)P − P ′ if λ ∈ S1, [λ] = 2`, ` ≥ 0, and {λ} > g.

Equality (3.5) holds in all cases with this choice of Q0 and P0. One
plainly checks that

λ0 :=
Q

Q0
∈


(2 + g,∞) if λ ∈ S1,
(1,∞) if λ ∈ S2,
(g, 1] if λ ∈ S3.

In particular this shows that λ0 > g. The inequality eM + kM0 ≥ 2 is trivial
when λ ∈ S2 ∪ S3. When λ ∈ S1 we have λ0 > 2 + g, hence kM0 ≥ 3 and
eM + kM0 ≥ 2.

Clearly
( 0 eM
1 kM

)
≡ A (mod 2). The inequalities 0 ≤ P0 ≤ Q0 follow imme-

diately from P0Q−PQ0 = ±1 and P < Q, the latter being a consequence of
the assumption Q̃ > 1. The fact that M0 satisfies either (∗) or (∗∗) follows
from Lemma 3.6.

Back to the proof of Proposition 3.4, note that when λ ∈ (g, 1] one has
0 < Q0 = Q−Q′ < Q′ < Q (the first inequality holds because G < 2), while
for λ ∈ (S1 ∪ S2) \ (g, 1) it is plain that 0 < Q0 < Q < Q′. Hence whenever
λ ∈ S1 ∪ S2 one has min{Q0, Q} < min{Q,Q′}.

When λ ∈ S3 one only has min{Q0, Q} = min{Q,Q′} (actually Q <
Q0 < Q′). However, in this case eM = −1 so kM0 ≥ 3, and λM0 = Q/Q0 ∈
(g, 1). Thus one can apply the same procedure to M0 and find M−1 =( P−1 P0

Q−1 Q0

)
∈ R0 that satisfies (∗) or (∗∗), and such that M0 = M−1

( 0 eM0
1 kM0

)
,

eM0 + kM−1 ≥ 2, and Q̃−1 := min{Q−1, Q0} < Q̃0 = Q̃ (this inequality is
strict because λ0 ∈ (g, 1) ⊆ S1).
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We next discuss the case Q̃ = 1. When Q′ = 1 ≤ Q, the inequality
Q′/Q = 1/Q ≥ g yields Q = 1. Hence M =

(
0 1
1 1

)
, with 0/1, 1/1 successive

convergents of every x ∈ (0, 1) that satisfies 0 < x−1
−x < 1, i.e. of every

x ∈ (1/2, 1). Suppose now Q = 1 < Q′. When 1/G < Q′/Q = Q′ < 2 + g,
one has Q′ = 2 and only the matrices M =

(
0 1
1 2

)
and M =

(
1 1
1 2

)
may

arise. But the former matrix is not admissible being ≡
(
0 1
1 0

)
(mod 2), while

the latter corresponds to 0 < 2x−1
−x+1 < 1, hence x ∈ (1/2, 2/3), e1 = 1 and

a1 = [1/x] = 1, and indeed 1/1, 1/2 are successive convergents in OCF(x)
for every x ∈ (1/2, 2/3). When 2 + g < Q′/Q = Q′ the only matrices that

may arise are M =
(
0 1
1 Q′

)
with Q′ ≥ 3 odd, and respectively M =

( 1 Q′−1
1 Q′

)
with Q′ ≥ 4 even. The inequality for the former is

0 <

∣∣∣∣Q′x− 1

−x

∣∣∣∣ < 1, which gives x ∈
(

1

Q′ + 1
,

1

Q′

)
∪
(

1

Q′
,

1

Q′ − 1

)
with Q′ odd, so that a1 = Q′ (and e1 = 1 respectively e1 = −1). The
inequality for the latter is

0 <

∣∣∣∣Q′x−Q′ + 1

−x+ 1

∣∣∣∣ < 1, giving
Q′

Q′ + 1
> x >

Q′ − 2

Q′ − 1
≥ 2

3
,

so e1 = 1, a1 = 1. Furthermore one has

1/Q′ < 1/x− 1 = TD(x) < 1/(Q′ − 2)

with Q′−1 ≥ 3 odd integer, so a2 = Q′−1 and M =
(
0 1
1 1

)(
0 1
1 Q′−1

)
, showing

that indeed 1/1, (Q′ − 1)/Q′ are successive convergents in OCF(x) for every

x with Q′

Q′+1 > x > Q′−2
Q′−1 and Q′ ≥ 4 even.

This inductive process on Q̃ now implies that (3.4) holds for some e1, . . . ,
en−1 ∈ {±1} and a1, . . . , an odd positive integers with ei + ai ≥ 2 for all
i ∈ {1, . . . , n−1}. Conditions (∗) and (∗∗) show that x lies between pn−pn−1

qn−qn−1

and pn+pn−1

qn+qn−1
when qn > qn−1, and between pn

qn
and pn+pn−1

qn+qn−1
when qn < qn−1.

So x is of the form [[(a1, e1), (a2, e2), . . . , (an−1, en−1), (an + t, ∗)]] for some
t ∈ (−1, 1) when qn > qn−1, and t ∈ (0, 1) when qn < qn−1. Therefore
pn−1/qn−1 = P/Q, pn/qn = P ′/Q′ are successive convergents of x.

Lemma 3.6. With the definitions from the proof of the implication
(ii)⇒(i) in Proposition 3.4, one has:

(i) If g < λ < 1, then 0 < EM (x) < 1⇒ |EM0(x)| < 1.

(ii) If 1 ≤ λ < 2 + g, then 0 < EM (x) < 1⇒ 0 < EM0(x) < 1.

(iii) If 2`+g < λ < 2`+1, ` ≥ 1, then |EM (x)| < 1⇒ −1 < EM0(x) < 0.

(iv) If 2`−1 ≤ λ < 2`+g, ` ≥ 2, then |EM (x)| < 1⇒ 0 < EM0(x) < 1.



Continued fractions with even and with odd partial quotients 211

Proof. In all cases 0 < EM (x) = Q′x−P ′
−Qx+P < 1 is equivalent to x lying

between P ′

Q′ and P ′+P
Q′+Q , while 0 < EM0(x) = Qx−P

−Q0x+P0
< 1 is equivalent to x

lying between P
Q and P+P0

Q+Q0
.

(i) In this case Q0 = Q−Q′ < Q and so −1 < EM0(x) < 1 is equivalent

to x lying between P+P0
Q+Q0

= 2P−P ′
2Q−Q′ and P−P0

Q−Q0
= P ′

Q′ . The conclusion follows
because

2P − P ′

2Q−Q′
<
P

Q
<
P ′ + P

Q′ +Q
<
P ′

Q′
when

P

Q
<
P ′

Q′
, and

P ′

Q′
<
P ′ + P

Q′ +Q
<
P

Q
<

2P − P ′

2Q−Q′
when

P ′

Q′
<
P

Q
.

(ii) In this case P+P0
Q+Q0

= P ′

Q′ and x between P ′

Q′ and P ′+P
Q′+Q implies x between

P
Q and P ′

Q′ .

(iii) In this case 0 < Q0 = (2`+1)Q−Q′ < Q < Q′, and −1 < EM (x) < 1

is equivalent to x lying between P ′+P
Q′+Q and P ′−P

Q′−Q , while −1 < EM0(x) < 0

is equivalent to x lying between P
Q and P−P0

Q−Q0
= P ′−2`P

Q′−2`Q . The implication
follows because either

P

Q
<
P ′ + P

Q′ +Q
<
P ′

Q′
<
P ′ − P
Q′ −Q

<
P ′ − 2`P

Q′ − 2`Q
or

P ′ − 2`P

Q′ − 2`Q
<
P ′ − P
Q′ −Q

<
P ′

Q′
<
P ′ + P

Q′ +Q
<
P

Q
.

(iv) In this case Q′ > Q and P+P0
Q+Q0

= P ′−(2`−2)P
Q′−(2`−2)Q . The implication follows

because −1 < EM (x) < 1 is equivalent to x lying between P ′+P
Q′+Q and P ′−P

Q′−Q ,

0 < EM0(x) < 1 is equivalent to x lying between P
Q and P+P0

Q+Q0
, and either

P

Q
<
P ′ + P

Q′ +Q
<
P ′

Q′
<
P ′ − P
Q′ −Q

<
P ′ − (2`− 2)P

Q′ − (2`− 2)Q
or

P ′ − (2`− 2)P

Q′ − (2`− 2)Q
<
P ′ − P
Q′ −Q

<
P ′

Q′
<
P ′ + P

Q′ +Q
<
P

Q
.

The following statement will also be useful:

Lemma 3.7. Denominators of successive convergents in OCF satisfy

(i) qn+2 > qn.
(ii) qn+3 > qn.

(iii) qn+2 > min{qn, qn+1}.

Proof. By Proposition 3.4 and its proof qn+2/qn+1 > 2 ⇒ qn+2/qn >
2g > 1, qn+2/qn+1 ∈ (1, 2)⇒ qn+1/qn > 1⇒ qn+2/qn > 1, and qn+2/qn+1 ∈
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(g, 1) ⇒ qn+1/qn > 2 + g ⇒ qn+2/qn > g(2 + g) > 1. Thus in all possible
cases qn+2 > qn, which establishes (i).

(ii) follows from qn+3/qn+2 ∈ (g, 1) ⇒ qn+2/qn+1 > 2 + g ⇒ qn+3/qn >
(2 + g)g2 = 1, qn+3/qn+2 = λ ∈ (1, 2) ⇒ qn+2/qn+1 = 1/(λ− 1) ⇒
qn+3/qn > λg/(λ− 1) > 2g > 1, qn+3/qn+2 ∈ (2, 2 + g) ⇒ qn+2/qn+1 ∈
(g, 1) ⇒ qn+1/qn > 2 + g ⇒ qn+3/qn > 2g(2 + g) > 1, and qn+3/qn >
2 + g ⇒ qn+3/qn > (2 + g)g2 = 1.

To prove (iii) suppose that qn+2 ≤ qn+1. Then qn+2/qn+1 ∈ (g, 1), which
gives in turn qn+1/qn > 2 + g, and therefore qn+2/qn > g(2 + g) > 1.

Remark. Proposition 3.2 was originally proved, using a different method,
by Kraaikamp and Lopes [7], but Proposition 3.4 is, to the best of our
research, new. Our proofs have an additional benefit of implying how to
derive an and en−1 (and hence qn−2) if only qn−1 and qn are known.

Our investigations yielded yet another method of proof, significantly
longer but more direct, which we sketch here. Examples 1.8 in [8] explain
how to algorithmically generate the OCF expansion of x from the RCF
expansion of x using insertion,

replacing [[. . . , (an, 1), (an+1, en+1), . . .]]

with [[. . . , (an + 1,−1), (1, 1), (an+1 − 1, en+2), . . .]],

and singularization,

replacing [[. . . , (an, en), (1, 1), (an+2, en+2), . . .]]

with [[. . . , (an + en,−en), (an+2 + 1, en+2), . . .]].

Both of these operations alter the sequence of convergents: insertion adds
a new convergent, while singularization deletes one. Nevertheless, it can
be shown that if P/Q,P ′/Q′ are successive RCF convergents to some x,
then either P/Q,P ′/Q′ are successive OCF convergents to x, or (Q− P )/Q,
(Q′ − P ′)/Q′ are successive OCF convergents to 1 − x. (Only one of these
pairs forms a matrix that is congruent to I, A, or B modulo 2.) By carefully
following how insertion and singularization change the last en−1 and an in
the RCF expansion of P ′/Q′ into the last em−1 and am of the OCF expansion
of P ′/Q′, we can determine exactly what e(M) and a(M) must be and hence
how to derive P0 and Q0. A similar proof works for the ECF case as well.

4. Estimating the limiting joint distribution for ECF and OCF.
For each M =

(
P P ′

Q Q′
)
∈ R and ξ ∈ (0, 1] denote by I+ξ (M) (respectively,

I−ξ (M)) the set of solutions x of 0 ≤ EM (x) ≤ ξ (respectively, of −ξ ≤
EM (x) ≤ 0). The Lebesgue measure of I±ξ (M) is

f±ξ (Q,Q′) =

∣∣∣∣P ′ ± ξPQ′ ± ξQ
− P ′

Q′

∣∣∣∣ =
ξ

Q′(Q′ ± ξQ)
.
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The integral

F± = F±(x1, x2, x3, x4) :=

∞�

R/x2

dv

min{x3v,x1R}�

0

du f±x4(u, v)

= ±
∞�

R/x2

dv

v
log

∣∣∣∣v ± x4 min{x3v, x1R}
v

∣∣∣∣
= ±

∞�

x3/x2

dw

w
log

∣∣∣∣w ± x3x4 min{w, x1}
w

∣∣∣∣
can be expressed when x3 ≥ x1x2 as

F± = ±
x1x2x4�

0

dt

t
log(1± t) = ∓Li2(∓x1x2x4),

and when x3 < x1x2 as

F± =

x1�

x3/x2

dw

w
log(1± x3x4)±

∞�

x1

dw

w
log

w ± x1x3x4
w

= ± log(1± x3x4) log
x1x2
x3
∓ Li2(∓x3x4),

so F± is as in (1.5).

4.1. The ECF case. By Lemma 3.1 and Proposition 3.2, for each R > 1
and x ∈ Ω there is a unique M =

(
P P ′

Q Q′
)
∈ RE with Q ≤ R < Q′ and

|EM (x)| < 1. Given x1, x2, x3, x4 ∈ (0, 1) consider NE,±
x1,x2,x3,x4(x,R), the

number of matrices M ∈ RE that satisfy (1.1) and (1.2). One has

LE,±(R) = LE,±x1,x2,x3,x4(R) =

1�

0

NE,±
x1,x2,x3,x4(x,R) dx.

For Γ ∈ {I, J,A,B} we shall estimate

L±Γ (R) :=
∑

M=
(
P P ′

Q Q′
)
∈RE

Q′≥R/x2
Q≤min{x3Q′,x1R}
M≡Γ (mod 2)

f±x4(Q,Q′).

This can be done by Möbius summation, as in the following standard lemmas
(for Lemma 4.2 see, e.g., [2, Lemma 2.1]).

Lemma 4.1. For every interval J , every function g ∈ C1(J) of total
variation TJg, and every integer x, with σ0 the divisor counting function,
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∑
a∈J, b∈[1,q]
ab≡x (mod q)

(a,q)=1

g(a) =
∑
a∈J

(a,q)=1

g(a) =
ϕ(q)

q

�

J

g(u) du+O(σ0(q)(‖g‖∞ + TJg)).

Lemma 4.2. For every interval J , every V ∈ C1[0, N ], and every ` ∈ N,∑
1≤q≤N
(q,`)=1

ϕ(q)

q
V (q) = C(`)

N�

0

V (u) du+O`((‖V ‖∞ + TN0 V ) logN),

with

C(`) =
1

ζ(2)

∏
p∈P
p|`

(
1 +

1

p

)−1
.

Changing b to q − b in Lemma 4.1, we obtain

Corollary 4.3. Suppose q is an odd positive integer. For every interval
J , every g ∈ C1(J), and every integer x,∑

a∈J, b∈[1,q/2]
ab≡x or −x (mod q)

(a,q)=1

g(a) =
ϕ(q)

q

�

J

g(u) du+O((‖g‖∞ + TJg)σ0(q)).

Since P ′Q − PQ′ = ±1, P ′, Q even and Q′ odd entail P odd, we infer
(with Q = 2q, P ′ = 2p′, x̄ the multiplicative inverse of x (mod Q′))

(4.1) L±I (R) =
∑

Q′≥R/x2
Q′≡1 (mod 2)

∑
q∈[1,min{x3Q′,y1R}/2]

p′∈[1,Q′/2]
p′q≡±4 (modQ′)

f±x4(2q,Q′)

=
∑

Q′≥R/x2
Q′≡1 (mod 2)

(
ϕ(Q′)

Q′

min{x3Q′,x1R}/2�

0

f±x4(2q,Q′) dq +Oε(Q
′−2+ε)

)

=
1

2

∑
Q′≥R/x2

Q′≡1 (mod 2)

ϕ(Q′)

Q′

min{x3Q′,x1R}�

0

f±x4(u,Q′) du+Oε(R
−1+ε)

=
C(2)F±

2
+Oε(R

−1+ε) =
F±

3ζ(2)
+Oε(R

−1+ε).

On the other hand, we have that P ′Q − PQ′ = ±1 and Q′ even entail
that both Q and P ′ are odd, and the condition that P is even is equivalent
to P ′Q ≡ ±1 (mod 2Q′). Since in this case ϕ(2Q′) = 2ϕ(Q′), we infer
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L±J (R) =
∑

Q′≥R/x2
Q′≡0 (mod 2)

∑
Q∈[1,min{x3Q′,x1R}]

P ′∈[1,Q′]
P ′Q≡±1 (mod 2Q′)

f±x4(Q,Q′)

=
∑

Q′≥R/x2
Q′≡0 (mod 2)

(
ϕ(2Q′)

2Q′

min{x3Q′,x1R}�

0

f±x4(u,Q′) du+Oε(Q
′−2+ε)

)

=

(
1

ζ(2)
− C(2)

)
F± +Oε(R

−1+ε) =
F±

3ζ(2)
+Oε(R

−1+ε),

leading to

LE,±(R) = L±I (R) + L±J (R) =
2F±
3ζ(2)

+Oε(R
−1+ε),

and concluding the proof of (1.3).

The corresponding estimates for L±B(R) and L±A(R) are useful for the
OCF situation. To estimate L±B(R), note that P ′Q−PQ′ = ±1 and Q′ even
entail that both P ′ and Q are odd, ϕ(2Q′) = 2ϕ(Q′), and thus

(4.2) L±B(R) =
∑

Q′≥R/x2
Q′≡0 (mod 2)

∑
Q∈[1,min{x3Q′,x1R}]

P ′∈[1,Q′], P ′Q≡±1 (modQ′)
P ′Q∓1

Q′ ≡1 (mod 2)

f±x4(Q,Q′)

=
∑

Q′≥R/x2
Q′≡0 (mod 2)

( ∑
Q∈[1,min{x3Q′,x1R}]

P ′∈[1,Q′], P ′Q≡±1 (modQ′)

f±x4(Q,Q′)−
∑

Q∈[1,min{x3Q′,x1R}]
P ′∈[1,Q′], P ′Q≡±1 (mod 2Q′)

f±x4(Q,Q′)

)

=
∑

Q′≥R/x2
Q′≡0 (mod 2)

((
2ϕ(Q′)

Q′
− ϕ(2Q′)

2Q′

)min{x3Q′,x1R}�

0

f±x4(u,Q′) du+Oε(Q
′−2+ε)

)

=
∑

Q′≥R/x2
Q′≡0 (mod 2)

(
ϕ(Q′)

Q′

min{x3Q′,x1R}�

0

f±x4(u,Q′) du+Oε(Q
′−2+ε)

)

=

(
1

ζ(2)
− C(2)

)
F± +Oε(R

−1+ε) =
F±

3ζ(2)
+Oε(R

−1+ε).

Finally, P ′Q−PQ′ = ±1 and P even entail that both P ′ and Q are odd,
and so

L±A(R) =
∑

Q′≥R/x2
Q′≡1 (mod 2)

∑
Q∈[1,min{x3Q′,x1R}]

P ′∈[1,Q′], P ′Q≡±1 (mod 2Q′)

f±x4(Q,Q′)(4.3)
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=
∑

Q′≥R/x2
Q′≡1 (mod 2)

(
ϕ(2Q′)

2Q′

min{x3Q′,x1R}�

0

f±x4(u,Q′) du+Oε(Q
′−2+ε)

)

=
C(2)

2
F± +Oε(R

−1+ε) =
F±

3ζ(2)
+Oε(R

−1+ε).

4.2. The OCF case. This requires more caution as the sequence of
denominators of successive convergents is not increasing in general. We wish
to characterize those matrices M ∈ RO for which P/Q,P ′/Q′ are successive
convergents of x ∈ Ω and Q = qnR ≤ R < Q′ = qnR+1. A priori, Lemma 3.7
shows that for each R > 1 there is at least one and at most two pairs (Q,Q′)
of denominators of successive convergents of x with Q ≤ R < Q′. Moreover,
if there are two such pairs, then they must be of the form (qnR , qnR+1) or
(qnR+2, qnR+3). We wish to precisely distinguish nR from nR + 2. Because
all predecessors of Q0 in the sequence of denominators of OCF convergents
are < Q by Lemma 3.7, equality (Q,Q′) = (qnR , qnR+1) occurs exactly
when

Q ≤ R < Q′ and R > Q0.

Note that if λ = Q′/Q ∈ S1 ∪ S2, then necessarily Q > Q0. Furthermore,
if λ ∈ S3, then Q < Q0. The contribution of those pairs (Q,Q′) with
λ ∈ S3 and Q0 = Q(1 + {λ}) > R should be subtracted, and so we can
write

LO,+(R) = L+I (R) + L+A(R) + L+B(R)−D1(R),

LO,−(R) = L−I (R) + L−A(R) + L−B(R)−D2(R)−D3(R),

with

D1(R) =
∑

M∈RO, Q
′>R/x2

Q≤min{x3Q′,x1R}
λ=Q′/Q∈S3, Q(1+{λ})>R

f+x4(Q,Q′) =
∑
`≥1

∑
M∈RO, Q

′>R/x2
Q≤min{x3Q′,x1R}
2`Q≤Q′<(2`+g)Q
Q′>R+(2`−1)Q

x4
Q′(Q′ + x4Q)

,

D2(R) =
∑

M∈RO, Q
′>R/x2

Q≤min{x3Q′,x1R}
λ=Q′/Q∈[2,2+g), Q′>R+Q

x4
Q′(Q′ − x4Q)

,

D3(R) =
∑

M∈RO, Q
′>R/x2

Q≤min{x3Q′,x1R}
λ=Q′/Q∈S3, λ>G2

Q(1+{λ})>R

f−x4(Q,Q′) =
∑
`≥2

∑
M∈RO, Q

′>R/x2
Q≤min{x3Q′,x1R}
2`Q≤Q′<(2`+g)Q
Q′>R+(2`−1)Q

x4
Q′(Q′ − x4Q)

.
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Clearly D2(R) = 0 when min{x1x2, x3} ≤ g2. When min{x1x2, x3} > g2,
the method employed in (4.1)–(4.3) leads, with D2 as in (1.6), to

D2(R) =
D2(x1, x2, x3, x4)

ζ(2)
+Oε(R

−1+ε).

The estimation of D1(R) is slightly more involved because ` can
take infinitely many values. Note that D1(R) = 0 unless min{x1x2, x3}
> 1/(2`+ g). For each ` ∈ N consider the integral

I+` (R) :=
� �

v≥R/x2, u≤min{x3v,x1R}
2`u≤v≤(2`+g)u
v>R+(2`−1)u

x4 du dv

v(v + x4u)
.

The change of variables (v, u) = (Ry,Rx) shows that I+` (R) does not depend
on R and is given by (1.7). Note also that

(4.4) I+` (R) ≤
x1�

0

dx

(2`+1)x�

2`x

dy

y2
� 1

`2
.

A trivial estimate yields∑
`≥R1/2

R/x2≤Q′≤(2`+1)R

∑
Q′/(2`+1)≤Q≤Q′/(2`)

1

Q′(Q′ + x4Q)

≤
∑

`≥R1/2

1≤Q′≤(2`+1)R

∑
Q′/(2`+1)≤Q≤Q′/(2`)

1

Q2`2

�
∑

`≥R1/2

1

`2

∑
Q∈[1,2R]

∑
Q′∈[2`Q,(2`+1)Q]

1

Q2
� logR

R1/2
,

and thus in the definition of D1(R) we may take ` ∈ [1, R1/2] inserting
an error term � R−1/2 logR. Employing Lemma 4.1, we can express the
resulting main term as

∑
`≤R1/2

∑
Q′≥R/x2

Q′<(2`+g)x1R

(
ϕ(Q′)

Q′

min{Q
′

2`
,x3Q′,x1R,

Q′−R
2`−1

}�

Q′/(2`+g)

x4 du

Q′(Q′ + x4u)
+O(Q′−2+ε)

)

=

( ∑
`≤R1/2

∑
Q′≥R/x2

Q′<(2`+g)x1R

ϕ(Q′)

Q′

min{Q
′

2`
,x3Q′,x1R,

Q′−R
2`−1

}�

Q′/(2`+g)

x4 du

Q′(Q′ + x4u)

)
+Oε(R

−1/2+ε).
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By Lemma 4.2, the main term above becomes∑
`≤R1/2

(
I+`
ζ(2)

+O

(
logR

R1/2

))
,

and so

(4.5) D1(R) =
1

ζ(2)

∑
`≤R1/2

I+` +Oε(R
−1/2+ε).

From (4.5) and (4.4) we eventually infer

D1(R) =
1

ζ(2)

∑
`≥1

I+` +Oε(R
−1/2+ε).

The sum D3(R) is similarly estimated as in formulas (1.6) and (1.7).

5. Joint distribution for Nakada’s α-expansions. We illustrate
how explicit renewal type results can be obtained in the case of Nakada’s
α-expansions NCFα, α ∈ [1/2, 1]. Such continued fractions, defined in [10],
have been studied in [10, 6]. Here the unit interval is replaced by Ωα =
[α − 1, α) and the Gauss shift by the map Tα : Ωα → Ωα defined for x 6= 0
by (3)

Tα(x) =

∣∣∣∣1x
∣∣∣∣− [∣∣∣∣1x

∣∣∣∣+ 1− α
]
.

A construction of the natural extension Tα on a space Ωα ⊂ R2, together
with an explicit invariant Borel probability measure µα on Ωα, was found
by Nakada [10]. He also proved that (Ωα, Tα, µα) is a Kolmogorov automor-
phism. With g = 1/G = 1− g2 the set Ωα is given for g < α ≤ 1 by

[α− 1, (1− α)/α]× [0, 1/2) ∪ ((1− α)/α, α)× [0, 1] ∪ [α− 1, 0)× {1/2},
and for 1/2 ≤ α ≤ g by

[α− 1, (1− 2α)/α]× [0, g2) ∪ ((1− 2α)/α, (2α− 1)/(1− α)]× [0, 1/2)

∪ ((2α− 1)/(1− α), α)× [0, g) ∪ [−g2, (1− 2α)/α]× {g2}
∪ ((1− 2α)/α, 0)× {1/2}.

Kraaikamp’s thoughtful analysis (see especially Theorem (5.3) and Defini-
tions (5.7) and (5.8) of [6]) also provides characterizations of pairs of suc-
cessive convergents for such continued fractions if α ∈ [1/2, 1].

Proposition 5.1. For each x ∈ Ωα \Q the following are equivalent:

(i) P/Q,P ′/Q′ are successive convergents in NCFα(x) with Q,Q′ > 0.

(ii) M =
(
P P ′

Q Q′
)
∈ GL2(Z) and (EM (x), 1/λM ) ∈ Ωα.

(3) Here we use the notation from Sections 5 and 6 of [6].
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This dynamical system was studied by Kraaikamp [6] in the more general
setting of S-expansions, and the above proposition can be likewise general-
ized if we replace NCFα(x) with CFS(x), the S-expansion of x, and replace
Ωα with ΩS , the space of the natural extension associated to S.

We wish to estimate the Lebesgue measure L(α),±x1,x2,x3,x4(R) of the set of
numbers x ∈ Ωα\Q for which there exist successive convergents P/Q, P ′/Q′

in NCFα(x) that satisfy (1.1) and (1.2). We shall require that x1, x2, x3
are in the set (0, 1] if g < α ≤ 1, in (0, 1/2] if α = g, and in (0, g] if
1/2 ≤ α < g; moreover, we require x4 ∈ (0, α] when we look at L+ and
x4 ∈ (0, 1−α] when we look at L−. The set Ωα is a union of rectangles and
horizontal line segments, but we may ignore the line segments for large R:
in particular, the inequality Q′ ≥ R/x2 shows that the pair (Q′, Q) = (2, 1)
makes no contribution to L± for R > 2, so the situation λ−1M = 1/2 can be

ignored, and λM is always rational, so the situation λ−1M = g2 can also be

ignored. Therefore, the cases that appear in L(α),±x1,x2,x3,x4(R) for R > 2 are
exactly:

For g < α ≤ 1:

{
λM = Q′/Q > 2 and α− 1 ≤ EM (x) < α, or

1 ≤ λM < 2 and 1−α
α < EM (x) < α.

For 1/2 ≤ α ≤ g:


λM > G2 and α− 1 ≤ EM (x) < α, or

2 < λM < G2 and 1−2α
α < EM (x) < α, or

G < λM < 2 and 2α−1
1−α < EM (x) < α.

The varying lower bounds on λM depending on the value of α are the reason
for our case-based restrictions on the values of x1, x2, x3.

Let L+x1,x2,x3,x4(α;R) denote the Lebesgue measure of the set of numbers

x ∈ [0, 1] \Q for which there exists M =
(
P P ′

Q Q′
)
∈ GL2(Z) with Q,Q′ > 0,

P/Q,P ′/Q′ ∈ [α − 1, α) and (1.1) together with 0 ≤ Q′x−P ′
−Qx+P ≤ x4 hold.

The corresponding set where the latter inequality is replaced by −x4 ≤
Q′x−P ′
−Qx+P ≤ 0 is denoted by L−x1,x2,x3,x4(α;R). In both cases, x1, x2, x3, x4 are

parameters in (0, 1]. When α = 1, it is clear that L+ is exactly the joint
distribution considered in [16] (the notation there is N(R)). However, as

L±x1,x2,x3,x4(α;R) =
∑

Q′≥R/x2

∑
Q∈(0,min{x3Q′,x1R}]
P ′∈(α−1)Q′+[0,Q′)
P ′Q≡±1 (modQ′)

x4
Q′(Q′ ± x4Q)

= 2
∑

Q′≥R/x2

∑
Q∈(0,min{x3Q′,x1R}]

(Q,Q′)=1

x4
Q′(Q′ ± x4Q)

= L±x1,x2,x3,x4(R),
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we see that L±(α;R) does not depend on α. As R tends to infinity, L±
converges to 2F±/ζ(2).

The joint distributions L(α),± and L± can now be directly related as
below. For brevity and readability we omit the appearance of x1, x2, and R,
which are assumed to be the same on the left- and right-hand sides of the
equations.

When g < α ≤ 1, we have

L(α),+x3,x4 =

{
L+min{x3,1/2},x4 if 0 ≤ x4 ≤ (1−α)/α,

L+x3,x4− L
+
x3,(1−α)/α+ L+min{x3,1/2},(1−α)/α if (1−α)/α ≤ x4 < α,

L(α),−x3,x4 = L−min{x3,1/2},x4 if 0 ≤ x4 ≤ 1− α.

When 1/2 ≤ α ≤ g, we have

L(α),+x3,x4 =


L+min{x3,1/2},x4 if 0 ≤ x4 ≤ (2α− 1)/(1− α),

L+x3,x4 − L
+
x3,(2α−1)/(1−α)

+ L+min{x3,1/2},(2α−1)/(1−α) if (2α− 1)/(1− α) ≤ x4 < α.

L(α),−x3,x4 =


L−min{x3,1/2},x4 if 0 ≤ x4 ≤ (2α− 1)/α,

L−
min{x3,g2},x4 + L−min{x3,1/2},(2α−1)/α
− L−

min{x3,g2},(2α−1)/α if (2α− 1)/α ≤ x4 ≤ 1− α.

Recall that x3 ≤ g in this case.
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