ACTA ARITHMETICA
156.3 (2012)

Cantor series constructions of sets of normal numbers
by

B MANCE (Columbus, OH)

1. Introduction

DEFINITION 1.1. Let b and k be positive integers. A block of length k in
base b is an ordered k-tuple of integers in {0,1,...,b—1}. A block of length k
is a block of length k in some base b. A block is a block of length k in base
b for some integers k and b. Given a block B, |B| will represent the length
of B.

DEFINITION 1.2. Given an integer b > 2, the b-ary expansion of a real x
in [0, 1) is the (unique) expansion of the form

00 En
(1.1) xzzb—n:OElEg...
n=1

such that E,, isin {0,1,...,b— 1} for all n with E,, # b — 1 infinitely often.

Denote by N2(B, z) the number of times a block B occurs with its start-
ing position no greater than n in the b-ary expansion of x.

DEFINITION 1.3. A real number z in [0,1) is normal in base b if for all
k and blocks B in base b of length k, one has

Nb(B
(1.2) lim M
n—o00 n

A number z is simply normal in base b if (1.2)) holds for k£ = 1.

Borel introduced normal numbers in 1909 and proved that almost all (in
the sense of Lebesgue measure) real numbers in [0, 1) are normal in all bases
[3]. The best known example of a number that is normal in base 10 is due to
Champernowne [5]. The number H1p =0.123456789101112..., formed
by concatenating the digits of every natural number written in increasing
order in base 10, is normal in base 10. Any Hj, formed similarly to Hyg but
in base b, is known to be normal in base b. Since then, many examples have

=bk
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224 B. Mance

been given of numbers that are normal in at least one base. One can find a
more thorough literature review in [6] and [10].

The Q-Cantor series expansion, first studied by Georg Cantor in [4], is
a natural generalization of the b-ary expansion.

DEFINITION 1.4. @ = (gn)52; is a basic sequence if each g, is an integer
greater than or equal to 2.

DEFINITION 1.5. Given a basic sequence @, the QQ-Cantor series expan-
sion of a real z in [0, 1) is the (unique D[) expansion of the form

> E
(1.3) =) ——

=g dn
such that E, is in {0,1,...,¢q, — 1} for all n with E, # ¢, — 1 infinitely
often. We abbreviate (1.3)) with the notation x = 0.E1 E3FEj3 ... with respect

to Q.

Clearly, the b-ary expansion is a special case of where ¢, = b for all
n. If one thinks of a b-ary expansion as representing an outcome of repeatedly
rolling a fair b-sided die, then a Q)-Cantor series expansion may be thought
of as representing an outcome of rolling a fair ¢i-sided die, followed by a
fair go-sided die and so on. For example, if ¢, = n + 1 for all n, then the
@-Cantor series expansion of e — 2 is

9 _ 1 N 1 N 1
T T2T 237234
If g, = 10 for all n, then the Q-Cantor series expansion of 1/4 is

12 5 0 0

4 10 102 103 104

For a given basic sequence @, let N,? (B, x) denote the number of times

a block B occurs starting at a position no greater than n in the Q-Cantor

series expansion of . Additionally, define

W

4o,

n

Q=3 ——

= 44q5+1 " 4j+k—1

A. Rényi [15] defined a real number = to be normal with respect to @ if
for all blocks B of length 1,

(1.4) lim w

e o =L

If g, = b for all n, then (|1.4)) is equivalent to simple normality in base b, but

(*) Uniqueness can be proven in the same way as for the b-ary expansion.



Cantor series constructions 225

not equivalent to normality in base b. Thus, we want to generalize normality
in a way that is equivalent to normality in base b when all ¢, = b.

DEFINITION 1.6. A real number x is Q-normal of order k if for all blocks
B of length £,
Q
lim Ni (B, z)

n—o0 %k)

We say that x is Q-normal if it is Q-normal of order & for all k. Additionally,
x is simply Q-normal if it is @Q-normal of order 1.

=1.

We make the following definitions:

DEFINITION 1.7. A basic sequence @Q is k-divergent if lim,,_, o Q%k) = 00;
fully divergent if it is k-divergent for all k; and k-convergent if it is not
k-divergent.

DEFINITION 1.8. A basic sequence Q is infinite in limit if ¢, — oo.

For ) that are infinite in limit, it has been shown that the set of all z
in [0,1) that are @-normal of order k has full Lebesgue measure if and only
if @ is k-divergent [15]. Therefore if @) is infinite in limit, then the set of all
x in [0,1) that are @-normal has full Lebesgue measure if and only if @ is
fully divergent.

DEFINITION 1.9. Let x be a number in [0,1) and let @ be a basic se-
quence. Then T () is defined as ¢ - - - gpx (mod 1).

DEFINITION 1.10. A number x in [0,1) is Q-distribution normal if the
sequence (1 ,(x))72 is uniformly distributed in [0, 1).

REMARK 1.11. For every basic sequence @), the set of Q-distribution
normal numbers has full Lebesgue measure.

Note that in base b, where ¢, = b for all n, the notions of Q-normality and
Q-distribution normality are equivalent. This equivalence is fundamental
in the study of normality in base b. It is surprising that this equivalence
breaks down in the more general context of Q-Cantor series for general Q.
Examples are given in [2] of numbers that satisfy one notion of normality
and not others.

In general, it is more difficult to give explicit constructions of normal
numbers (for various notions of normality) than it is to give typicality results.
An explicit construction of a basic sequence () and a real number x such
that x is @-normal and @-distribution normal is given in [2] and [12]. In
this paper, we will construct a set of ()-distribution normal numbers for
any () that is infinite in limit. None of these numbers will be @Q-normal.
Additionally, this set of @-distribution normal numbers will be perfect and
nowhere dense.
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We recall the following standard definition that will be useful in studying
distribution normality:

DEFINITION 1.12. For a finite sequence z = (z1,..., z,), we define the
star discrepancy D} (z) = D}(z1,...,2n) as
A([0
oy [A002)2)
0<~<1 n

Given an infinite sequence w = (wy, wa, . . .), we furthermore define D} (w) =
D} (wy,...,wy,). For convenience, set D*(z1,...,2,) = D} (z1,..., 2n).

The star discrepancy will be useful to us due to the following theorem:

THEOREM 1.13. The sequence w = (w1, wa,...) is uniformly distributed
mod 1 if and only if lim,,_,o D} (w) = 0.

REMARK 1.14. For any sequence w, 1/n < D} (w) < 1.

The following theorem @ was proven by N. Korobov in [9] and will be
of central importance in this paper:

THEOREM 1.15. Given a basic sequence Q and a real number x with
Q-Cantor series expansion x =Y > | qfflqn , if Q is infinite in limit, then x
is Q-distribution normal if and only if (Eyn/qn)5, is uniformly distributed

mod 1.

We note the following theorem of J. Galambos [§]:

THEOREM 1.16. Let @ be a 1-divergent basic sequence. Let Ej be the
digits of the Q-Cantor series expansion of x and put 0y = O(z) = Ex/qx.
Then, for almost all x in [0, 1),

1 <1
DO > —Y —
0250

for sufficiently large n.

A discrepancy estimate, valid for certain (Q, will be given for the Q-
distribution normal numbers that we will construct. We will make use of
the following definition from [10]:

DEFINITION 1.17. For 0 <d <1 and € > 0, a finite sequence z1 < - - - < Ty
in [0,1) is called an almost arithmetic progression-(J,€) if there exists an 7,
0 < n < ¢, such that the following conditions are satisfied:

(1.5) 0 <z <n+dn;
(1.6) N—0n<api1—x, <n+don forl<n<N-1I;

(1.7) 1-n—-dn<zy<Ll

(%) T. Salét proved a stronger result in [16], but we will not need it in this paper.
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Almost arithmetic progressions were introduced by P. O’Neil in [14].
He proved that a sequence (z,), of real numbers in [0,1) is uniformly dis-
tributed mod 1 if and only if the following holds: for any three positive real
numbers 4§, €, and €, there exists a positive integer N such that for alln > N,
the initial segment x1,...,x, can be decomposed into an almost arithmetic
progression-(d, €) with at most Ny elements left over, where Ny < ¢ N.

In [I], R. Adler, M. Keane, and M. Smorodinsky showed that the real
number whose continued fraction expansion is given by the concatenation
of the digits of the continued fraction expansion of the rational numbers

(1'8) %7%7%’%727%’ %’%’g?%?"‘

is normal with respect to the continued fraction expansion. For every @
that is infinite in limit, we use Definition to construct a set ©¢g of Q-
distribution normal numbers that are defined similarly to the concatenation

of the numbers in (1.8]). We prove the following results on Og:

1. If z € O, then x is Q-distribution normal and not simply ()-normal
(Theorem and Proposition [2.21)).

2. Oq is perfect and nowhere dense (Theorems and .

3. If x € Og, = 0.E1Es ... with respect to @, and X = (E,/qn)52,
then for certain basic sequences @, there exists a constant g such
that for all ¢ > 1,

Di(X) <t -ng-n~ Y2

for large enough n (Theorem . For many basic sequences, we can
determine the constant vyg. In particular, vo = V8 if ¢, > 5n for
all n.

4. The Hausdorff dimension of O, is evaluated or approximated for sev-
eral classes of basic sequences (Theorems [3.17] (3.21} [3.22] and [3.24]).
Given any a € [0, 1], we provide an example of a basic sequence @
such that ©¢ has « as its Hausdorff dimension (Theorem .

2. The construction. For the rest of this section, we fix a basic se-
quence () that is infinite in limit.

2.1. Notation and conventions. For the rest of this paper, let 7(n) =
1+---4+n = n(n+1)/2 be the nth triangular number. Given a basic
sequence (), we will construct a sequence Iy, s, ... of positive integers. The
following definition will be needed:

DEFINITION 2.1. For each positive integer j, we define

vj = min{N : g, > 252 for all m > N}.
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We now recursively define the sequence [y, s, . . .:

DEFINITION 2.2. We set [} = max(vp—1,1). Given [y, ...,l;_1, we define
l; to be the smallest positive integer such that

h+20+4+3l3+ -+ > v — 1.
Thus, we have
li = max(min{k . l1 + 2[2 +---+ (l - 1)11'_1 + ik 2 Viy1l — 1}, 1).

Additionally, for any non-negative integer ¢, we set

i
j=1
LEMMA 2.3. Suppose that a, ¢, and q are positive integers and q > 2a>.
Then there exist at least two integers F' such that

F c 1 ¢ 1
2.1 —€|l-——,—+—.
(21) q [a 2a? a+2a2}
Proof. We assume, for contradiction, that there are fewer than two so-
lutions to (2.1]). Thus, there exists an integer F' such that

F<C 1 q C+ 1 <F+2
qg a 2a? a 2a? q
SO
c 1 ¢ 1 F F+2
2.2 O T o e
(22) [a 2a2’a+2a2]g[q’ q ]

By , we conclude that
<C+1>_<c_1> JF+2_F
a 2a? a 2a? q q’
1 2
pER
Cross-multiplying gives ¢ < 2a?, which contradicts ¢ > 2a?. w
DEFINITION 2.4. Let Sg = {(a,b,c) € N> : b < [,, ¢ < a} and define
g : Sg = N by ¢g(a,b,¢c) = Lqg—1+ (b—1)a+c.

LEMMA 2.5. The function ¢q is a bijection from Sg to N.

SO

(2.3)

Proof. Starting at n = 1, put [; boxes of length 1, followed by l» boxes
of length 2, I3 boxes of length 3, and so on. Then the position of the com-
ponent ¢ of the bth box of length «a is at

U424+ (a=1Dlg—1+ (b—1)a+c = ¢g(a,b,c),
so ¢q is a bijection from Sg to N. =
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DEFINITION 2.6. The sequence F' = (Fiap.c)) (ab,c)esS, 18 & Q-special se-
quence if Fqy 1) = 0 for (a,b,1) € Sg and

F(a,b,c) c c—1 1 ¢—1 1

g (abic) a 2 a 242
for (a,b,c) € Sg with ¢ > 1. Let Iy denote the set of all -special sequences.

Given a Q-special sequence F, Lemma [2.5 allows us to define Fp =
(EFn)o, as follows:

DEFINITION 2.7. Suppose that F' is a Q-special sequence. For any posi-
tive integer n, we define Ep,, = F¢51(n) and let Ep = (Epn)o2,.

Given finite sequences wi, wo, ..., we let wjwows ... denote their con-
catenation.

DEFINITION 2.8. If F' is a Q-special sequence and (a,b,1) € Sg, then

we define
< Flabe )
YFab =
q¢Q(a7bvc) c=1

and let D}, ., = D*(ypap). We also set

Yr = YF1,1YF1,2 - - YF1,1YF2,1YF22 - - - YF 2,1, YF31YF32 .- YF3I13YF4,1----

DEFINITION 2.9. If F'is a ()-special sequence, define

o0
E
= an

We also let ©g = {xp : F € I}

REMARK 2.10. By construction, yr = (EFn/qn)pe1, so by Theorem
xp is Q-distribution normal if and only if yz is uniformly distributed mod 1.

2.2. Basic lemmas. We will use the following theorem from [13]:

THEOREM 2.11. Letxy < --- < xn be an almost arithmetic progression-
(6,€) and let n be the positive real number corresponding to the sequence

according to Definition [I.17. Then

D}k\f < i + #
TN 14V

COROLLARY 2.12. Let x1 < --- < xn be an almost arithmetic progres-
sion-(d, €) and let n be the positive real number corresponding to the sequence

according to Definition . Then Dy < 1/N + 6.

1
for 6§ >0 and D}‘ngin(n,N> for 6 =0.

LEMMA 2.13. If F' is a Q-special sequence, then the sequence yrqp s an
almost arithmetic progression-(1/a,1/a) and D% ,, < 2/a.



230 B. Mance

Proof. The case a = 1 is trivial, so suppose that a > 1. To show
that ypgqp is an almost arithmetic progression-(1/a,1/a), we first note that
Flap1) =0,

F,
0< —labd 1 iz,
Upqap1) @ @

so (1.5]) holds.

Next, suppose that 2 < ¢ < a — 1. By construction,

F c—1 1 e¢—1 1 F c 1 ¢ 1
(abe) _ L +2} WHUE[_ }
U (ab,c) a 2a a 2a )

Upq(ab,ct1
S0
d F 1 11
(2.4) (@bet) _ Tlabo) <c N 2) B (c - 2>7
q¢Q(a,b,C+1) q¢Q(a,b7C) a 2(1 Qa 2a
F F B
(2.5) wwﬂ_'mM)ZC_IQ—<CI+IJ
Qpg(abetl)  dpg(ab.c) a 2a a 2

Combining (2.4]) and (2.5)), we see that
U1 Fabery  Flapeg 11

-— 5= — < -+
a a quQ(a,b,c—i-l) Q¢Q(a,b,c) a a
so (|1.6)) holds.
Lastly, by construction,
-1 1 F, -1
0 1 1 F, 1 1
R L R Y|
a a QQSQ(a,b,a) a a

and we have verified ([1.7]). Therefore, yr 44 is an almost arithmetic progres-
sion-(1/a, 1/a). By Corollary Di.y<1l/a+1/a=2/a. =

Throughout the rest of this paper, for a given n, the symbol i = i(n)
means the unique integer satisfying L; < n < L;y1. Given a positive inte-
ger n, let m = n—L;. Note that m can be written uniquely as m = a(i+1)+0
with

0<a<liy and 0<fF<i+ 1

We define v and S as the unique integers satisfying these conditions.

The following results from [10] will be needed:

LEMMA 2.14. If t is a positive integer and for 1 < j <t, z; is a finite
sequence in [0,1) with star discrepancy at most €;, then

t
Zj:l |25€;

D*(z1+-2z) <
22:1 2]
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COROLLARY 2.15. If t is a positive integer and for 1 < j < 't, z; is a
finite sequence in [0,1) with star discrepancy at most €;, then

t
> =1 lilzsle
e
> =147l

Recall that D*(z) is bounded above by 1 for all finite sequences z of real
numbers in [0,1). By Corollary

Sicilii-dta-(i+1)-Fy+ 5
Sl i+ Da+ 8
S 2l 420+ 8
Sl i+ Da+ 8

Note that f;(«, ) is a rational function of o and 5. We consider the domain
of f; to be Ry x Rg , where ]RSr is the set of all non-negative real numbers.
Given a @-special sequence F', we now give an upper bound for D} (yr).
Since D} (yr) is at most f;(a, 8), it is enough to bound f;(a, 8) from above
on [0,l;4+1] x [0,1]. Set

D*(llzl ce ltZt) <

D (yr) < fila, B) =

2 +i+1
Sl +i+1

The following lemma is proven similarly to Lemma 11 in [2]:

LEMMA 2.16. Ifi > 2 and

(2.6) > il >y 2
j=1 j=1
and
(w,z) S {07~--7li+1} X {0,...,i},
then
fi(w,z) < fZ(O,Z + 1) = €.
We will now prove a series of lemmas to show that €; — 0. The following

was proven by O. Toeplitz in [17]:

THEOREM 2.17. Let (’ymk :1 <k <n,n>1) bean array of real numbers
such that:

(1) limy—o0 Yne = 0 for each k € N;

(2) hmn—>oo ZZ:l Tn,k = 1;

(3) there exists C' > 0 such that > ., |y x| < C for all positive inte-
gers n.
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Then for any convergent sequence (o), the transformed sequence (3,) given
by

n
Bn = mkok, n>1,
k=1

s also convergent and lim,_ o By, = limy,_ o0 Qipy.
We will need the following result that follows from Theorem [2.1

LEMMA 2.18. Let L be a real number and (ay)3>, and (b,)52; be two se-
quences of positive real numbers such that Zzozl by, = 00 and limy,_,o0 an /by

= L. Then
i LT A g

We may now show that € — 0.

LEMMA 2.19. lim,, o € = 0.

Proof. We will first show that lim; ., € — 0. The lemma will then follow
as 1 = i(n) satisfies lim,, o i(n) = oco.

We apply Lemma [2.18 with a1 = 2l; +2, by = 1 + 2 and for j > 1,
aj = 2l; + 1 and b; = jl; + 1. Thus,

7 [
a1+"'+a¢222l]’+i+1 and b1+~-+bizz_ﬂj+i+1.

=1 =1
Since lim;_, o ‘;—: = lim; o0 fllz—ill =0, we see that
L2+ .
lim ¢ = lim Zj.*l ‘] : = lim Y% _ 0 .
i—00 i—00 Z;’:l]lj 1id1 i by

2.3. Main theorem

THEOREM 2.20. Suppose that F is a Q-special sequence. Then zp is
Q-distribution normal.

Proof. Suppose that n is large enough so that ¢ > 2 and (i — 2)l; > 1.
Then

(2.7) il; + 2l + 11 > 2l; + 219 + 214.
We also note that
(2.8) jlj > QZj fOl“j > 2.

Combining (2.7) and (2.8) gives
>t > )2
j=1 j=1
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By Lemma Dy (yr) < &), and by Lemma €i(n) — 0, so the
sequence yr is uniformly distributed mod 1. Thus, by Theorem [1.15] zF is
QQ-distribution normal. =

We will now show that while Theorem [2.20] allows us to construct Q-
distribution normal numbers, none of these numbers will be simply Q-
normal.

ProrosiTIiON 2.21. If F is a QQ-special sequence, then g is not simply
Q-normal.

Proof. If  is 1-convergent, then x g is not simply (-normal as the digit
0 occurs infinitely often in the (-Cantor series expansion of zp.

Next, suppose that @ is 1-divergent. We will show that the digit 1 may
only occur finitely often in the Q-Cantor series expansion of zg. Suppose
that (a,b,2) € F and a > 2. Then, by construction, we have

F, 1 1 1 1
el |

e 22 a 222

4o (a,b,2)
and Ao (ab,2) > 2q2. Thus, we see that
Fopy 1L
Upo(ab2) @ 2a

SO

11 11 )
(29) F(a,b,Z) Z (a — M)q(bQ(avva) Z <a — 2a2) -2a° =2a—1>1.

Thus, by (2.9), Flq2) > 1 when a > 2. Since F(,,1) = 0 whenever (a,b, 1)
€ Sq, there are at most finitely many n such that Er, = 1, so xr is not
simply (Q-normal. =

3. Other properties of O

3.1. Discrepancy results

LEMMA 3.1. Suppose that @) is a basic sequence such that there exist
constants M and t with viy1 —v; < Mi for alli >t. Thenl; < [M +1] for
all 1 > t.

Proof. Suppose that ¢ > t and [; > 2. Then by definition of (;);, we
have

Vis1 — 1< L;<viy1+i—1 and v;—1< Lig.
Thus,
Li=L; 1 +il; <vigp +1—1

(3) Note that we cannot conclude that L; < v;11 +1¢ — 1 if I; = 1: consider ¢, = 8",
where I; =1, Ly = i(i + 1)/2, and v; = [logg(2i?)] for all 4.
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SO
Visi+1—1— L _ 4w
) 1 )

Mi
§1+—_Z:1+M§(1+M1..
1

<Z/Z'+1+Z'—1'—(Vi—1)

l; <

PROPOSITION 3.2. Suppose that @ is a basic sequence such that there
exist constants M and t where l; < M for j > t. Then for all Q)-special
sequences F' and real numbers ¢ > 1, we have

Di(yr) < oV2M(©2M +1)-n~ /2
for large enough n.

Proof. By Lemma for large enough n, we have
Y2 +i+1
Z;‘=1 Jgli+i+1
Set k = Z;Zl Jjl;. Since [; > 1 for all j, we see that

D;(yr) <

26+ 35 2M +i+1
S jl+i+]
L2+ 2Mi+i+1l (26 +1) 4+ (2M + 1)i

(3.1 Dy(yr) <

i+ /24+04+1 i2 +3i+3/2
226+ 1) 4+22M +1)i 226+ 1)/i+2(2M + 1)
< T = :
i?2 4 3i/2 i+3/2
However,
i(i4+1) N
SRR WAE I
j=1 j=1
i+1 i+1 . .
‘ ’ (i+1)(E+2)
<n< < — g TSy
n_m—i—Z]lj_/i—i-ZjM K+ 5 M
7=1 7j=1
Thus, we see that ¢ > p, where p is the positive solution to n = k +

(p +1)(p + 2) M /2. Therefore,

(3.2) p= 3% \/(8/M)721 + (1 — 8k/M)

Substituting (3.2)) into (3.1]), we arrive at the inequality
2(k+1)/i+2(2M + 1) A4k+1)/i+4(2M + 1)

Dy, < = :
wr) —3+4/(8/M)n+(1-8r/M) .3 V/(8/M)n + (1 —8k/M)
2 2
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Let ¢ > 1. Then for large enough n,
A(k+1)/i(n) +42M +1)  4(2M +1) L1y
JEADnt A=snin) ey Y AM M
so DX (yp) < YV2M (2M 4+ 1)n=/2. u

THEOREM 3.3. Suppose that QQ is a basic sequence such that there exist
constants M and t where vy —v; < M1 for j > t. Then for all Q-special
sequences F' and real numbers b > 1, we have

Di(yr) < ¥/2[M + 171 (2[M + 1] + 1)n~1/2
for large enough n.
Proof. This follows directly from Lemma [3.1] and Proposition .

REMARK 3.4. If g, > 2n? for 7(n — 1) < m < 7(n), then [; = 1 for all i
and Theorem [3.3] implies that for all ¢ > 1 and large enough n, we have

(3.3) Dji(yr) < yv8n~'/2,
For example, (3.3) holds if ¢, > 5n for all n.

3.2. O is perfect and nowhere dense. The goal of this subsection
will be to show that O is a perfect, nowhere dense subset of [0,1). We first
remark that the existence of a set of normal numbers that is perfect and
nowhere dense should not be surprising. However, constructing a specific
example of such a set may not lend itself to an obvious solution.

We will now work towards showing that @ is perfect and nowhere dense.
In order to proceed, we define a function, d, from I'g x I'p to R:

DEFINITION 3.5. Suppose F} and F are Q-special sequences. If F} # Fb,
we define (g, p, = min{n : Ep, », # Ep, n}. Define |(*)|d : I'g x I — R by
1

d(Fy, Fy) = m
0 if F1 :F2-

LEMMA 3.6. IfFl,FQ (S FQ, then |.’L'F1 _ng‘ < d(Fl,Fg).

ifFl#F%

Proof. Let n = (g k. We write the ()-Cantor series expansions of xp,
and zp, as follows:

E E E,_ E E

T :714_ 2 4y n—1 + Fin + Fi1,n+1 NN
q1 q192 q1 - qdn-1 q1- - qn q1 - gdn+1
E E E,_ E E

Tp, = 714_ 2 4t n—1 + Fon + Fon+1 N
q1 q192 g1 qdn-1 g1 qn q1 - qdn+1

(") (I'g, d) is a metric space.
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SO
|:UF1 _xF2|
_ ‘( EFl,n - EFzJL > + ( EFl,nJrl _ EF27"+1 > _|_‘
q1- " gn—-1 q1 - qn-1 q1 - gn+1 q1 - qn+1
E - F E - F 1
< Brin = Bronl | Brine =Bl o Ly ).
q1--qn q1 - 4dn+1 q1 - qn-1

LemMA 3.7. If F' € I, then there ewists a sequence of Q-special se-
quences Fy, Fy, F3, ... such that F' # F,, for all n and lim,, o d(F, F,) = 0.

Proof. By Lemma [2.3] we may define a sequence of ()-special sequences
as follows. Let m be any positive integer and put («, 3,7) = gZ)él (n). We
must now consider three cases. First, if v # 1, then for m # n, we set
E,m = Epy, and we let E, , # Ef,, be any value that satisfies

Enn v—1 1 v-1 1
" c —-——, — .
Gn a 2027 « 202

Second, we suppose that v =1 and « > 1. Put (/, 5',7/) = gbél(n +1).
Then for m # n + 1, we set E, ,, = EF,, and we let F, 11 # Epnq1 be
any value that satisfies

Epnt1 c v -1 1 A+ -1 1
Gni1 o 2027 o 202 |

Third, we consider the case where @ = v = 1. Set t = ¢g(2,1,2) and
note that ¢ > n. Then for m # t, put £, ,, = Er,, and let E,; # Er; be
any value that satisfies

By [2-1 1 2-1, 17 _[35
q 2 2.227 2 2.22|  |8'8]

Now that we have determined (En,m)p—1, set Fy = (Ep, ¢4 (ab,0)) (a,b,c)eSo -

Thus, F' # F, for all n, and for large enough m we have

1 1 1
d(F,F,,) < max< , ) = ,
q1-qdm 41" "dm-1 q1° " dm-1

soF, - F.nu

THEOREM 3.8. The set O is perfect.

Proof. Suppose that x € ©¢g and that x = zp. By Lemma there
exists a sequence of ()-special sequences F1i, Fo, ..., none of which are equal
to F, with F,, — F. Thus, ¢ # xp, for all n. Let ¢ > 0 and suppose that
N is large enough so that for all n > N, we have d(F, F,) < e. Clearly,
|z —xp,| < d(F,F,) <€, soxp, = xp and Og is perfect. m

We need the following simple lemma:
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LEMMA 3.9. Ifa > 1, then

a—1+1.5 <1
a 2a? '

THEOREM 3.10. The set O¢ is nowhere dense.

Proof. Let I C [0,1) be any interval such that ©g NI # (). We will show
that there exists an interval K C I such that ©gNK = (). Thus, there exists
a positive integer n and an interval J C I with

BB B B B Bl

, ot
@ Qg @G @ Qg @ an

and E; € [0,¢; —1)NZ for j = 1,...,n. Put (a,b,c) = (ﬁél(n—i- 1). By
Lemma [3.9] we may set

FE E, a—1 1.5 1 FEq E,+1
it + + it .
qi1---dn

K: 72 5
Q1 a 20 ) q1-qn Q1 q1- " qn

If ©g N J = 0, we are finished, so assume that ©g N J # 0. Suppose that
F € I'g is such that zp € J and

x=0FE...E,E,1q... with respect to Q.
By construction, if ¢ # 1, we have
En_HE[c—l 1 ¢—1 1}

Gn+1 a  2d2 a 2a2 |’
If c =1, then E, 1 = 0. Therefore,
E1 EQ En c—1 1 1
rtp<—+—+-+ + +—
@ q1q2 Q- an a 20% ) q1- " Gn
Ei Es E, a—1 15 1
< — 4+ —4-+ + + 53
a1 1q2 q1- " Gn a 20 ) q1- - qn

so zp ¢ K. Hence, K N Og = () and O is nowhere dense. =

3.3. Hausdorff dimension of ©g. Given a basic sequence ) and
a positive integer n, we will define the functions a(n), b(n), and ¢(n) by
a(n),b(n),c(n)) = gbél(n) Set wy, = #{Ep, : F € Iy},
1 if1<k<l,
A(k) = )
p il Al <k<lh+-+1,
and (k) = A1) +--- + A(k).

Note that w, = 1 if and only if ¢(n) = 1. By Lemma we are guaran-
teed that w, > 2 if ¢(n) # 1. Additionally, we can say that

2
(3.4) I gy < S

~ a(n)? a(n)?

e
—~

S
~—
[\

e
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when w, # 1. If ¢, grows quickly enough that [y = [ = --- = 1, then
A(k) =k and y(k) = 7(k), so a(n) = [(1 4+ +/8n — 7)/2]. Thus, we have

(3.5) Vvn < a(n) < V3n.
Combining (3.4]) and (3.5]), we see that

qn 2qn,
3.6 — <w, < —.
(36) 3n — “n n
DEFINITION (3.6) @ A basic sequence @ grows nicely if n® = o(gy,) for
all positive integers s, and

T(k—1)—1
log ¢r(k—1)+1 + 10g ¢r (k) = o(log H Qn)a
n=1
k—2 T(k—1)—1
log [ ¢rg+1 =o(log [] an
n=0 n=1

A basic sequence Q) grows slowly if there exists a constant M such that
wp < M for all n > 1. Lastly, @ grows quickly if

T(k)—1

log [] ¢n=o(logg )
n=1
ExAMPLE 3.12. The basic sequences given by ¢, = n + 1 and by ¢, =

max(2, [logn|) grow slowly. If t > 2, then ¢, = [t"] and ¢, = 22" are
examples of nicely growing basic sequences. If we let ¢ = 2 and ¢,11 =
20149 then () grows quickly.

If J C[0,1) is a subset of [0,1), we will denote its Hausdorff dimension
by dimy J. In this section, we will compute the Hausdorff dimension of O¢
for a few classes of basic sequences. We will show that dimy ©g = 0 when
Q grows slowly or quickly. When @ grows nicely, we will have dimy ©¢g = 1.

DEFINITION 3.13. Let J be any non-empty subset of [0, 1) and let Cy(J)
be the smallest number of sets of diameter at most & which can cover J.
Then the boz-counting dimension of J, if it exists, is defined as

dimg J = lim M.
6—0 —logd
The lower box-counting dimension and upper box-counting dimension of J
are defined as
dimp J = liminf w and dimpJ = limsupw,
6—0 —logd 50  —logod

respectively.

(®) A basic sequence may still grow slowly no matter how fast ¢, grows when n is
restricted to those values for which w, = 1.
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The following standard result (see [7]) will be used frequently and with-
out mention:

THEOREM 3.14. Let J be a non-empty subset of [0,1]. Then
0 < dimy J < dimg J < dimg J < 1.

We will make use of the following general construction found in [7].
Suppose that [0,1] = Iy D I} D I D --- is a decreasing sequence of sets,
with each Ij a union of a finite number of disjoint closed intervals (called
kth level basic intervals). Then we will consider the set (;—q Ix. We will
construct a set @b that may be written in this form such that dimy O¢g =
dimg @b.

Given a block of digits B = (by,...,bs) and a positive integer n, define

8o, ={x =0.E1E;... with respect to Q : E1 = b1,..., Ey = bs}.

Let P, be the set of all possible values of E,(x) for z € Og. Put Jy = [0,1)

and
k= U Sqs
Be[l,%) Pu
Then Jj, C Ji—1 for all k > 0 and Og = ()~ Jk, which gives the following:

PROPOSITION 3.15. Og can be written in the form (\i—y Ji, where each
Ji. is the union of a finite number of disjoint half-open intervals.

We now set I, = J}, for all k£ > 0 and put 822 = (Nieo Ix- Since each set
Ji, consists of only a finite number of intervals, the set I} \ Ji is finite.

LEMMA 3.16. dimpg @Q = dimy @b
Proof. The lemma follows as (9&2 \ O is a countable set. m

For k > 1, we note that, by construction, there are wy - --wy)—1 kth
level intervals and they are all of length (g - - qy(k))*l. Additionally, they

are all separated by a distance of at least (g1 - - gy ) ' (1 +2/A(k)?). This
gives

)

1 . B
dimp ©g = liminf 0g (w1 “r(k) )
k—oo  log (g1 qyk))

— log (w1 -+ wy(k)-1)
3.7 dimp ©@¢g = lim sup 2
3.7) B T e log (g1 Ty (k))

lo 3
dimg O = Tim EWL T @r®-1)
k—oo  log (q1 - qy())
THEOREM 3.17. Suppose that QQ grows slowly. Then

)

dimyg Og = dimp B¢ = 0.
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Proof. Since @) is infinite in limit, for all z > M, there exists a positive
integer ¢ such that ¢ ---qyx) > 278 for all k > t. Substituting w, < M

into (3.7)), we see that
log M(k)—1 _ logM

dimp B¢ < li = ,
B e = 1km_)s¥p log 27(k) log z

so dimp @Q =0. =
We will use the following result from [7]:

THEOREM 3.18. Suppose that each (k — 1)th level interval of Ij—1 con-
tains at least my, kth level intervals (k = 1,2,...) which are separated by
gaps of at least e, where 0 < €x11 < € for each k. Then

(o]
1 M
dimH<ﬂ Ik) > liminf 0g (my - mk—1)
- k—oo  — log (myeg)

LEMMA 3.19.

log (w1 - Wy (k—1)-1)
a0y (k)

Wry(k=1)Wry(k—1)41""Wry(k)—1

dimy @b > lign inf 1
— 00 Og

Proof. We substitute

My M = W1 Wey(p—1)—15 M = Way(k—1)Wry(k—1)+1 " " Wry(k)—15
and
ek = (q1 - qym) (14 2/A(K)?)
into Theorem Since limy_,o A(k) = 00, we see that 1 < 1+ 2/A(k)?
<3, so
1 M 1 o
lim inf 0g (1 -+ M 1) = liminf ?f,,(,:}lk “rk-1) )
k—oo  —log (myey) koo log ( 1) (1+2/A(k)71)

Wy (k=1)Wry (k—1)+1%y(k)~1

log (w1 ++ * Wy (k—1)—1)
91~ (k)
Wy (k—1)Wry(k—1)+1""Wy (k)1

LEMMA 3.20. Suppose that l; = 1 for all i. Then

= lim inf
k—o0 log

N
. di 5 > liminf —
(3.8) imy @ > iminf =,
where
r(k—1)—1 k—2
N = log H an —1og37* D71 _log (7(k —1) = 1)! —log H Tr(n)+1
n=1 n=0
T(k—1)—1
D=1log [[ @n+loggr-1)41
n=1
(r(k) = 1)!

1 log3F 1 +1 .
108 47y +log 3™+ log Ty T iR 1+ 1)
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Proof. Since l; = 1 for all ¢, (3.6) holds and (k) = 7(k) for all k. Note
that wy, = 1 if and only if n = 7(k) + 1 for some k. Therefore,

W2« Wey(k—1)—1

QG2 Gr(k-1)-1 i 3(r(n)+1)
—3-13-2 3(r(k—-1)-1)

n—0 dr(n)+1

7(k—1) k—2
> ( 4a) 37D (k= 1) - 1)t g IL oz
1
T(k—1)—1
= ( 0n) -3 CEDD (k1) — 11! H .
n=1

> log H gn —1og 37* D=1 _log (7(k —1) —1)! —log H Gr(n)+1

Next, since wy_1)41 = 1, we arrive at the estimate

q1 - Gy (k)
Wy (k=1)Wry(k—=1)+1 """ Wry(k)—1
< q1 - qr(k)
- (QT(kfl) r(k—1)+1  _Gr(k)—1 )3(7(k—1)+1)
37(k—1) 3(r(k—1)+1) 3(r(k)—1)/ Gr—1)+1
T(k—1)—1
- ( H qﬂ)‘lr(k—l)ﬂqf(k) '3k_1( (k — 1)(Z<lf))'(_<lzz!_ 1)+1)
el T 7T

Thus, Lemma yields the conclusion. m
THEOREM 3.21. Suppose that () grows nicely. Then dimy Og = 1.

Proof. We will show that dimyg QIQ = 1, so that dimy Og = 1 immedi-
ately follows. We need only consider the case where [; = 1 for all 7. Since
Q i rows nicely, the domlnant term of both the numerator and denominator

in 1 is log HT(k -

THEOREM 3.22. Suppose that Q) grows quickly. Then dimpOg =
dimp O = 0.

" g, s0 dimgg Op =1 by Lemma |3.20, =

Proof. 1t will be sufficient to consider the case where [ = 1 for all k. We
will show that dimp @¢g = 0. Recall that w,, < 2¢y/n, so y(k) = 7(k) and

k)—1
21 2¢2 2qr@) i

Wi Wy k)1 < T 7 W__ll — ( H Qn> 'QT(k)_l/(T(k) . 1)!’



242 B. Mance

SO

T log [T2%) ™" g, + log 271 _log (7 (k) — 1)!
(39) dlmB @Q S hm Sup Og anl qn t(ko)%l Og (T( ) ) .
hveo logIT,=1  an +10g )
However, the dominant terms in the numerator and denominator of ([3.9)

are log H:L(:k%_l ¢n and log ¢, (x), respectively, so

L 1 T(k)—1
dimp O < limsup w =0. =
k—o00 log 4r(k)

The Hausdorff dimension of ©¢ is less certain when ¢, grows like a
polynomial. The following lemma will be needed:

LEMMA 3.23.

(r(k) —1)! _
log N E o(log (7(k—1) — 1)!).

Proof. Suppose that k > 2. Then
(r(k) —1)!
(r(k—=1)=D!(r(k—=1)+1)
(r(k) —1)! - < (r(k) — 1)k _ eklog(%(kQ—f—k—Z)) < eklog(k2) _ erlogk"

(r(k—1)-1)
h (r()— 1)
7(k) — 1)!
1 2k1 .
8 =) = Di(r(k — 1)+ 1)~ 2rlosk
By Stirling’s formula,
((k —1) = D! > V2 (7(k — 1) — 1)7k-1D=1/2=(7(k=1)—1)
L(k?2—k—1)
=V2m (;(k2 —k— 2)) i o3 (K —k=2)
_ meé(kkkfz) log(%(szkfl))f%(k27k72)7
SO

log (r(k — 1) — 1)1 > %(k:Q _k—2) <log<;(k:2 . 1)) - 1).

Since limy_,o0 T 2k log = 0, the lemma follows. =

(R —k—2)(log (1 (K2 —k—1)—1)

THEOREM 3.24. Suppose that there exists reals number t > 1 and Ay, A2
> 1 such that \in' < q, < X\an® for all n and ¢ > 2p? for 7(p — 1) <
m < 7(p). Then dimg Og =1 and

1—1/t < dimgOg < 1.
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Proof. Since A\in! < ¢, < \ont,

log /\I(k_l)_1 +tlog (t(k—1) —1)!

T(k—1)—1
<log [ an<logA® V" 4 tlog(r(k—1) - 1)),
n=1
SO
T(k—1)—1
log H qn—log (r(k—1)—=1)! > (t—1)log (T (k—l)—l)!+log)q(k*1)*1.

Note that [; = 1 for all 4, so by Lemmas and
1)1 — 1) = 1)l 4+ log A]RD
dimy QQ > lim inf (t — 1) log (r(k ) )+ Og(i\il)A
k—=oo tlog (t(k—1) — 1)! + log Ay

. (t—1)log(r(k—1) —1)! 1
= = 1 - .
B e r (= 1) = 1)1 t

A similar computation gives dimp ©g =1, so dimp g =1. =

Let a€(0,1). We will now work towards constructing a basic sequence @,
such that dimy ©g, = «. Define the basic sequence Qo = (ga,n)n by

(3.10)

Gan = max (M H Qo m) e /QJ 2712) if n = 7(k) for even k,

on? for all other values of n.

We will write Vi, = qq () and P, = H (:ki ! da,n, 5o for large enough integers

k that are even,

(3.11) Vi = [P
LEMMA 3.25. If k is even, then
1— 4-—
Y log Py < log Vi < - Vlog Po g + 4% 1og k.

Proof. We have

7(k)—1 (—a)ja 1—q —a 7(k)—1
log Vi, < log (Pk_l H 2n2> =— log Pr_1 + log H 2n?

n=7(k—1) n=r(k—1)
_ 1—
Y log Py + —log (27(/6)2)’“

1
<

1
<

- 1— 4—
Y og Pey 4+ = Yhloght = 27 % 10g Py + 27 10g k.
(6%

The lower bound follows similarly. =
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_ THEOREM 3.26. If a € (0,1), then dimyOq, = dimpOq, = a and
dimB @Qa =1.

Proof. For this basic sequence, [; = 1 for all ¢, so we may use our usual

estimates. Thus, by (3.7)) and (3.11)),

dimp, O, —liminf 2 (1 @wm1) g o
k—o0 log (QCx,l T q()c,'y(k)) k—o0 log H:L:1 da,n -+ log Qo7 (n)

. i log P, I log P
= min 1m 1m .
k—00, k even log Pk + 1?TOJ log Pk ’ k—o00, kodd log Pk + IOg (27’(]6‘)2)

1
= min(la , 1> = a.
1+

Following a similar computation, dimp Oq, = 1. By Lemmas and
log Py,

IOg HT(:kifl 2¢a,n

n n

dimg @, > liminf
HHBQq = lkrggé log P,_1 + log V}

= min lim - 5
k—oo,keven log P, 1 + =% log P_1

«

lim og Pi—1 =«
k—so0, kodd log Py_1 + log (27(k)2) )~

so dimy Og, = dimg Op, = . =

log Py—1
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