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1. Introduction

Definition 1.1. Let b and k be positive integers. A block of length k in
base b is an ordered k-tuple of integers in {0, 1, . . . , b−1}. A block of length k
is a block of length k in some base b. A block is a block of length k in base
b for some integers k and b. Given a block B, |B| will represent the length
of B.

Definition 1.2. Given an integer b ≥ 2, the b-ary expansion of a real x
in [0, 1) is the (unique) expansion of the form

(1.1) x =
∞∑
n=1

En
bn

= 0.E1E2 . . .

such that En is in {0, 1, . . . , b− 1} for all n with En 6= b− 1 infinitely often.

Denote by N b
n(B, x) the number of times a block B occurs with its start-

ing position no greater than n in the b-ary expansion of x.

Definition 1.3. A real number x in [0, 1) is normal in base b if for all
k and blocks B in base b of length k, one has

(1.2) lim
n→∞

N b
n(B, x)

n
= b−k.

A number x is simply normal in base b if (1.2) holds for k = 1.

Borel introduced normal numbers in 1909 and proved that almost all (in
the sense of Lebesgue measure) real numbers in [0, 1) are normal in all bases
[3]. The best known example of a number that is normal in base 10 is due to
Champernowne [5]. The numberH10 = 0.1 2 3 4 5 6 7 8 9 10 11 12 . . . , formed
by concatenating the digits of every natural number written in increasing
order in base 10, is normal in base 10. Any Hb, formed similarly to H10 but
in base b, is known to be normal in base b. Since then, many examples have
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been given of numbers that are normal in at least one base. One can find a
more thorough literature review in [6] and [10].

The Q-Cantor series expansion, first studied by Georg Cantor in [4], is
a natural generalization of the b-ary expansion.

Definition 1.4. Q = (qn)∞n=1 is a basic sequence if each qn is an integer
greater than or equal to 2.

Definition 1.5. Given a basic sequence Q, the Q-Cantor series expan-
sion of a real x in [0, 1) is the (unique (1)) expansion of the form

(1.3) x =

∞∑
n=1

En
q1 · · · qn

such that En is in {0, 1, . . . , qn − 1} for all n with En 6= qn − 1 infinitely
often. We abbreviate (1.3) with the notation x = 0.E1E2E3 . . . with respect
to Q.

Clearly, the b-ary expansion is a special case of (1.3) where qn = b for all
n. If one thinks of a b-ary expansion as representing an outcome of repeatedly
rolling a fair b-sided die, then a Q-Cantor series expansion may be thought
of as representing an outcome of rolling a fair q1-sided die, followed by a
fair q2-sided die and so on. For example, if qn = n + 1 for all n, then the
Q-Cantor series expansion of e− 2 is

e− 2 =
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+ · · · .

If qn = 10 for all n, then the Q-Cantor series expansion of 1/4 is

1

4
=

2

10
+

5

102
+

0

103
+

0

104
+ · · · .

For a given basic sequence Q, let NQ
n (B, x) denote the number of times

a block B occurs starting at a position no greater than n in the Q-Cantor
series expansion of x. Additionally, define

Q(k)
n =

n∑
j=1

1

qjqj+1 · · · qj+k−1
.

A. Rényi [15] defined a real number x to be normal with respect to Q if
for all blocks B of length 1,

(1.4) lim
n→∞

NQ
n (B, x)

Q
(1)
n

= 1.

If qn = b for all n, then (1.4) is equivalent to simple normality in base b, but

(1) Uniqueness can be proven in the same way as for the b-ary expansion.
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not equivalent to normality in base b. Thus, we want to generalize normality
in a way that is equivalent to normality in base b when all qn = b.

Definition 1.6. A real number x is Q-normal of order k if for all blocks
B of length k,

lim
n→∞

NQ
n (B, x)

Q
(k)
n

= 1.

We say that x is Q-normal if it is Q-normal of order k for all k. Additionally,
x is simply Q-normal if it is Q-normal of order 1.

We make the following definitions:

Definition 1.7. A basic sequence Q is k-divergent if limn→∞Q
(k)
n =∞;

fully divergent if it is k-divergent for all k; and k-convergent if it is not
k-divergent.

Definition 1.8. A basic sequence Q is infinite in limit if qn →∞.

For Q that are infinite in limit, it has been shown that the set of all x
in [0, 1) that are Q-normal of order k has full Lebesgue measure if and only
if Q is k-divergent [15]. Therefore if Q is infinite in limit, then the set of all
x in [0, 1) that are Q-normal has full Lebesgue measure if and only if Q is
fully divergent.

Definition 1.9. Let x be a number in [0, 1) and let Q be a basic se-
quence. Then TQ,n(x) is defined as q1 · · · qnx (mod 1).

Definition 1.10. A number x in [0, 1) is Q-distribution normal if the
sequence (TQ,n(x))∞n=0 is uniformly distributed in [0, 1).

Remark 1.11. For every basic sequence Q, the set of Q-distribution
normal numbers has full Lebesgue measure.

Note that in base b, where qn = b for all n, the notions ofQ-normality and
Q-distribution normality are equivalent. This equivalence is fundamental
in the study of normality in base b. It is surprising that this equivalence
breaks down in the more general context of Q-Cantor series for general Q.
Examples are given in [2] of numbers that satisfy one notion of normality
and not others.

In general, it is more difficult to give explicit constructions of normal
numbers (for various notions of normality) than it is to give typicality results.
An explicit construction of a basic sequence Q and a real number x such
that x is Q-normal and Q-distribution normal is given in [2] and [12]. In
this paper, we will construct a set of Q-distribution normal numbers for
any Q that is infinite in limit. None of these numbers will be Q-normal.
Additionally, this set of Q-distribution normal numbers will be perfect and
nowhere dense.
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We recall the following standard definition that will be useful in studying
distribution normality:

Definition 1.12. For a finite sequence z = (z1, . . . , zn), we define the
star discrepancy D∗n(z) = D∗n(z1, . . . , zn) as

sup
0<γ≤1

∣∣∣∣A([0, γ), z)

n
− γ
∣∣∣∣.

Given an infinite sequence w = (w1, w2, . . .), we furthermore define D∗n(w) =
D∗n(w1, . . . , wn). For convenience, set D∗(z1, . . . , zn) = D∗n(z1, . . . , zn).

The star discrepancy will be useful to us due to the following theorem:

Theorem 1.13. The sequence w = (w1, w2, . . .) is uniformly distributed
mod 1 if and only if limn→∞D

∗
n(w) = 0.

Remark 1.14. For any sequence w, 1/n ≤ D∗n(w) ≤ 1.

The following theorem (2) was proven by N. Korobov in [9] and will be
of central importance in this paper:

Theorem 1.15. Given a basic sequence Q and a real number x with
Q-Cantor series expansion x =

∑∞
n=1

En
q1···qn , if Q is infinite in limit, then x

is Q-distribution normal if and only if (En/qn)∞n=1 is uniformly distributed
mod 1.

We note the following theorem of J. Galambos [8]:

Theorem 1.16. Let Q be a 1-divergent basic sequence. Let Ek be the
digits of the Q-Cantor series expansion of x and put θk = θk(x) = Ek/qk.
Then, for almost all x in [0, 1),

D∗n(θ) ≥ 1

2n

n∑
k=1

1

qk

for sufficiently large n.

A discrepancy estimate, valid for certain Q, will be given for the Q-
distribution normal numbers that we will construct. We will make use of
the following definition from [10]:

Definition 1.17. For 0≤ δ < 1 and ε > 0, a finite sequence x1< · · ·<xN
in [0, 1) is called an almost arithmetic progression-(δ, ε) if there exists an η,
0 < η ≤ ε, such that the following conditions are satisfied:

0 ≤ x1 ≤ η + δη;(1.5)

η − δη ≤ xn+1 − xn ≤ η + δη for 1 ≤ n ≤ N − 1;(1.6)

1− η − δη ≤ xN < 1.(1.7)

(2) T. Šalát proved a stronger result in [16], but we will not need it in this paper.
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Almost arithmetic progressions were introduced by P. O’Neil in [14].
He proved that a sequence (xn)n of real numbers in [0, 1) is uniformly dis-
tributed mod 1 if and only if the following holds: for any three positive real
numbers δ, ε, and ε′, there exists a positive integer N such that for all n > N ,
the initial segment x1, . . . , xn can be decomposed into an almost arithmetic
progression-(δ, ε) with at most N0 elements left over, where N0 < ε′N .

In [1], R. Adler, M. Keane, and M. Smorodinsky showed that the real
number whose continued fraction expansion is given by the concatenation
of the digits of the continued fraction expansion of the rational numbers

(1.8)
1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
, . . .

is normal with respect to the continued fraction expansion. For every Q
that is infinite in limit, we use Definition 1.17 to construct a set ΘQ of Q-
distribution normal numbers that are defined similarly to the concatenation
of the numbers in (1.8). We prove the following results on ΘQ:

1. If x ∈ ΘQ, then x is Q-distribution normal and not simply Q-normal
(Theorem 2.20 and Proposition 2.21).

2. ΘQ is perfect and nowhere dense (Theorems 3.8 and 3.10).
3. If x ∈ ΘQ, x = 0.E1E2 . . . with respect to Q, and X = (En/qn)∞n=1,

then for certain basic sequences Q, there exists a constant γQ such
that for all ψ > 1,

D∗n(X) < ψ · γQ · n−1/2

for large enough n (Theorem 3.3). For many basic sequences, we can
determine the constant γQ. In particular, γQ =

√
8 if qn ≥ 5n for

all n.
4. The Hausdorff dimension of ΘQ is evaluated or approximated for sev-

eral classes of basic sequences (Theorems 3.17, 3.21, 3.22, and 3.24).
Given any α ∈ [0, 1], we provide an example of a basic sequence Q
such that ΘQ has α as its Hausdorff dimension (Theorem 3.26).

2. The construction. For the rest of this section, we fix a basic se-
quence Q that is infinite in limit.

2.1. Notation and conventions. For the rest of this paper, let τ(n) =
1 + · · · + n = n(n+ 1)/2 be the nth triangular number. Given a basic
sequence Q, we will construct a sequence l1, l2, . . . of positive integers. The
following definition will be needed:

Definition 2.1. For each positive integer j, we define

νj = min{N : qm ≥ 2j2 for all m ≥ N}.
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We now recursively define the sequence l1, l2, . . .:

Definition 2.2. We set l1 = max(ν2−1, 1). Given l1, . . . , li−1, we define
li to be the smallest positive integer such that

l1 + 2l2 + 3l3 + · · ·+ ili ≥ νi+1 − 1.

Thus, we have

li = max(min{k : l1 + 2l2 + · · ·+ (i− 1)li−1 + ik ≥ νi+1 − 1}, 1).

Additionally, for any non-negative integer i, we set

Li =

i∑
j=1

jlj = l1 + 2l2 + · · ·+ ili.

Lemma 2.3. Suppose that a, c, and q are positive integers and q ≥ 2a2.
Then there exist at least two integers F such that

(2.1)
F

q
∈
[
c

a
− 1

2a2
,
c

a
+

1

2a2

]
.

Proof. We assume, for contradiction, that there are fewer than two so-
lutions to (2.1). Thus, there exists an integer F such that

F

q
<
c

a
− 1

2a2
and

c

a
+

1

2a2
<
F + 2

q
,

so

(2.2)

[
c

a
− 1

2a2
,
c

a
+

1

2a2

]
*
[
F

q
,
F + 2

q

]
.

By (2.2), we conclude that(
c

a
+

1

2a2

)
−
(
c

a
− 1

2a2

)
<
F + 2

q
− F

q
,

so

(2.3)
1

a2
<

2

q
.

Cross-multiplying (2.3) gives q < 2a2, which contradicts q ≥ 2a2.

Definition 2.4. Let SQ = {(a, b, c) ∈ N3 : b ≤ la, c ≤ a} and define
φQ : SQ → N by φQ(a, b, c) = La−1 + (b− 1)a+ c.

Lemma 2.5. The function φQ is a bijection from SQ to N.

Proof. Starting at n = 1, put l1 boxes of length 1, followed by l2 boxes
of length 2, l3 boxes of length 3, and so on. Then the position of the com-
ponent c of the bth box of length a is at

1l1 + 2l2 + · · ·+ (a− 1)la−1 + (b− 1)a+ c = φQ(a, b, c),

so φQ is a bijection from SQ to N.
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Definition 2.6. The sequence F = (F(a,b,c))(a,b,c)∈SQ is a Q-special se-
quence if F(a,b,1) = 0 for (a, b, 1) ∈ SQ and

F(a,b,c)

qφQ(a,b,c)
∈
[
c− 1

a
− 1

2a2
,
c− 1

a
+

1

2a2

]
for (a, b, c) ∈ SQ with c > 1. Let ΓQ denote the set of all Q-special sequences.

Given a Q-special sequence F , Lemma 2.5 allows us to define EF =
(EF,n)∞n=1 as follows:

Definition 2.7. Suppose that F is a Q-special sequence. For any posi-
tive integer n, we define EF,n = Fφ−1

Q (n) and let EF = (EF,n)∞n=1.

Given finite sequences w1, w2, . . . , we let w1w2w3 . . . denote their con-
catenation.

Definition 2.8. If F is a Q-special sequence and (a, b, 1) ∈ SQ, then
we define

yF,a,b =

(
F(a,b,c)

qφQ(a,b,c)

)a
c=1

and let D∗F,a,b = D∗(yF,a,b). We also set

yF = yF,1,1yF,1,2 . . . yF,1,l1yF,2,1yF,2,2 . . . yF,2,l2yF,3,1yF,3,2 . . . yF,3,l3yF,4,1 . . . .

Definition 2.9. If F is a Q-special sequence, define

xF =

∞∑
n=1

EF,n
q1 · · · qn

.

We also let ΘQ = {xF : F ∈ ΓQ}.

Remark 2.10. By construction, yF = (EF,n/qn)∞n=1, so by Theorem 1.15,
xF is Q-distribution normal if and only if yF is uniformly distributed mod 1.

2.2. Basic lemmas. We will use the following theorem from [13]:

Theorem 2.11. Let x1 < · · · < xN be an almost arithmetic progression-
(δ, ε) and let η be the positive real number corresponding to the sequence
according to Definition 1.17. Then

D∗N ≤
1

N
+

δ

1 +
√

1− δ2
for δ > 0 and D∗N ≤ min

(
η,

1

N

)
for δ = 0.

Corollary 2.12. Let x1 < · · · < xN be an almost arithmetic progres-
sion-(δ, ε) and let η be the positive real number corresponding to the sequence
according to Definition 1.17. Then D∗N ≤ 1/N + δ.

Lemma 2.13. If F is a Q-special sequence, then the sequence yF,a,b is an
almost arithmetic progression-(1/a, 1/a) and D∗F,a,b ≤ 2/a.
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Proof. The case a = 1 is trivial, so suppose that a > 1. To show
that yF,a,b is an almost arithmetic progression-(1/a, 1/a), we first note that
F(a,b,1) = 0,

0 ≤
F(a,b,1)

qφQ(a,b,1)
≤ 1

a
+

1

a2
,

so (1.5) holds.
Next, suppose that 2 ≤ c ≤ a− 1. By construction,

F(a,b,c)

qφQ(a,b,c)
∈
[
c− 1

a
− 1

2a2
,
c− 1

a
+

1

2a2

]
,

F(a,b,c+1)

qφQ(a,b,c+1)
∈
[
c

a
− 1

2a2
,
c

a
+

1

2a2

]
so

F(a,b,c+1)

qφQ(a,b,c+1)
−

F(a,b,c)

qφQ(a,b,c)
≤
(
c

a
+

1

2a2

)
−
(
c− 1

a
− 1

2a2

)
,(2.4)

F(a,b,c+1)

qφQ(a,b,c+1)
−

F(a,b,c)

qφQ(a,b,c)
≥
(
c

a
− 1

2a2

)
−
(
c− 1

a
+

1

2a2

)
.(2.5)

Combining (2.4) and (2.5), we see that

1

a
− 1

a2
≤

F(a,b,c+1)

qφQ(a,b,c+1)
−

F(a,b,c)

qφQ(a,b,c)
≤ 1

a
+

1

a2
,

so (1.6) holds.
Lastly, by construction,

a− 1

a
− 1

a2
≤

F(a,b,a)

qφQ(a,b,a)
<
a− 1

a
+

1

a2
,

so

1− 1

a
− 1

a2
≤

F(a,b,a)

qφQ(a,b,a)
≤ 1− 1

a
+

1

a2
< 1

and we have verified (1.7). Therefore, yF,a,b is an almost arithmetic progres-
sion-(1/a, 1/a). By Corollary 2.12, D∗F,a,b ≤ 1/a+ 1/a = 2/a.

Throughout the rest of this paper, for a given n, the symbol i = i(n)
means the unique integer satisfying Li < n ≤ Li+1. Given a positive inte-
ger n, letm = n−Li. Note thatm can be written uniquely asm = α(i+1)+β
with

0 ≤ α ≤ li+1 and 0 ≤ β < i+ 1.

We define α and β as the unique integers satisfying these conditions.
The following results from [10] will be needed:

Lemma 2.14. If t is a positive integer and for 1 ≤ j ≤ t, zj is a finite
sequence in [0, 1) with star discrepancy at most εj, then

D∗(z1 · · · zt) ≤
∑t

j=1 |zj |εj∑t
j=1 |zj |
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Corollary 2.15. If t is a positive integer and for 1 ≤ j ≤ t, zj is a
finite sequence in [0, 1) with star discrepancy at most εj, then

D∗(l1z1 · · · ltzt) ≤
∑t

j=1 lj |zj |εj∑t
j=1 lj |zj |

.

Recall that D∗(z) is bounded above by 1 for all finite sequences z of real
numbers in [0, 1). By Corollary 2.15,

D∗n(yF ) ≤ fi(α, β) :=

∑i
j=1 lj · j ·

2
j + α · (i+ 1) · 2

i+1 + β∑i
j=1 jlj + (i+ 1)α+ β

=

∑i
j=1 2lj + 2α+ β∑i

j=1 jlj + (i+ 1)α+ β
.

Note that fi(α, β) is a rational function of α and β. We consider the domain
of fi to be R+

0 × R+
0 , where R+

0 is the set of all non-negative real numbers.
Given a Q-special sequence F , we now give an upper bound for D∗n(yF ).
Since D∗n(yF ) is at most fi(α, β), it is enough to bound fi(α, β) from above
on [0, li+1]× [0, i]. Set

ε̄i = fi(0, i+ 1) =

∑i
j=1 2lj + i+ 1∑i
j=1 jlj + i+ 1

.

The following lemma is proven similarly to Lemma 11 in [2]:

Lemma 2.16. If i > 2 and

(2.6)
i∑

j=1

jlj >
i∑

j=1

2lj

and

(w, z) ∈ {0, . . . , li+1} × {0, . . . , i},

then

fi(w, z) < fi(0, i+ 1) = ε̄i.

We will now prove a series of lemmas to show that ε̄i → 0. The following
was proven by O. Toeplitz in [17]:

Theorem 2.17. Let (γn,k : 1 ≤ k ≤ n, n ≥ 1) be an array of real numbers
such that:

(1) limn→∞ γn,k = 0 for each k ∈ N;

(2) limn→∞
∑n

k=1 γn,k = 1;
(3) there exists C > 0 such that

∑n
k=1 |γn,k| ≤ C for all positive inte-

gers n.
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Then for any convergent sequence (αn), the transformed sequence (βn) given
by

βn =
n∑
k=1

γn,kαk, n ≥ 1,

is also convergent and limn→∞ βn = limn→∞ αn.

We will need the following result that follows from Theorem 2.17:

Lemma 2.18. Let L be a real number and (an)∞n=1 and (bn)∞n=1 be two se-
quences of positive real numbers such that

∑∞
n=1 bn =∞ and limn→∞ an/bn

= L. Then

lim
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

= L.

We may now show that ε̄i → 0.

Lemma 2.19. limn→∞ ε̄i = 0.

Proof. We will first show that limi→∞ ε̄i → 0. The lemma will then follow
as i = i(n) satisfies limn→∞ i(n) =∞.

We apply Lemma 2.18 with a1 = 2l1 + 2, b1 = l1 + 2 and for j > 1,
aj = 2lj + 1 and bj = jlj + 1. Thus,

a1 + · · ·+ ai =

i∑
j=1

2lj + i+ 1 and b1 + · · ·+ bi =

i∑
j=1

jlj + i+ 1.

Since limi→∞
ai
bi

= limi→∞
2li+1
ili+1 = 0, we see that

lim
i→∞

ε̄i = lim
i→∞

∑i
j=1 2lj + i+ 1∑i
j=1 jlj + i+ 1

= lim
i→∞

ai
bi

= 0.

2.3. Main theorem

Theorem 2.20. Suppose that F is a Q-special sequence. Then xF is
Q-distribution normal.

Proof. Suppose that n is large enough so that i > 2 and (i − 2)li > l1.
Then

(2.7) ili + 2l2 + l1 > 2li + 2l2 + 2l1.

We also note that

(2.8) jlj > 2lj for j > 2.

Combining (2.7) and (2.8) gives

i∑
j=1

jlj >
i∑

j=1

2lj .
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By Lemma 2.16, D∗n(yF ) < ε̄i(n), and by Lemma 2.19, ε̄i(n) → 0, so the
sequence yF is uniformly distributed mod 1. Thus, by Theorem 1.15, xF is
Q-distribution normal.

We will now show that while Theorem 2.20 allows us to construct Q-
distribution normal numbers, none of these numbers will be simply Q-
normal.

Proposition 2.21. If F is a Q-special sequence, then xF is not simply
Q-normal.

Proof. If Q is 1-convergent, then xF is not simply Q-normal as the digit
0 occurs infinitely often in the Q-Cantor series expansion of xF .

Next, suppose that Q is 1-divergent. We will show that the digit 1 may
only occur finitely often in the Q-Cantor series expansion of xF . Suppose
that (a, b, 2) ∈ F and a ≥ 2. Then, by construction, we have

F(a,b,2)

qφQ(a,b,2)
∈
[

1

a
− 1

2a2
,

1

a
+

1

2a2

]
and qφQ(a,b,2) ≥ 2a2. Thus, we see that

F(a,b,2)

qφQ(a,b,2)
≥ 1

a
− 1

2a2

so

(2.9) F(a,b,2) ≥
(

1

a
− 1

2a2

)
qφQ(a,b,2) ≥

(
1

a
− 1

2a2

)
· 2a2 = 2a− 1 > 1.

Thus, by (2.9), F(a,b,2) > 1 when a ≥ 2. Since F(a,b,1) = 0 whenever (a, b, 1)
∈ SQ, there are at most finitely many n such that EF,n = 1, so xF is not
simply Q-normal.

3. Other properties of ΘQ

3.1. Discrepancy results

Lemma 3.1. Suppose that Q is a basic sequence such that there exist
constants M and t with νi+1− νi ≤Mi for all i > t. Then li ≤ dM + 1e for
all i > t.

Proof. Suppose that i > t and li ≥ 2. Then by definition of (li)i, we
have (3)

νi+1 − 1 ≤ Li < νi+1 + i− 1 and νi − 1 ≤ Li−1.
Thus,

Li = Li−1 + ili < νi+1 + i− 1

(3) Note that we cannot conclude that Li < νi+1 + i − 1 if li = 1: consider qn = 8n,
where li = 1, Li = i(i+ 1)/2, and νi = dlog8(2i2)e for all i.
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so

li <
νi+1 + i− 1− Li−1

i
≤ νi+1 + i− 1− (νi − 1)

i
= 1 +

νi+1 − νi
i

≤ 1 +
Mi

i
= 1 +M ≤ d1 +Me.

Proposition 3.2. Suppose that Q is a basic sequence such that there
exist constants M and t where lj ≤ M for j > t. Then for all Q-special
sequences F and real numbers ψ > 1, we have

D∗n(yF ) < ψ
√

2M(2M + 1) · n−1/2,

for large enough n.

Proof. By Lemma 2.16, for large enough n, we have

D∗n(yF ) <

∑i
j=1 2lj + i+ 1∑i
j=1 jlj + i+ 1

.

Set κ =
∑t

j=1 jlj . Since lj ≥ 1 for all j, we see that

D∗n(yF ) <
2κ+

∑i
j=1 2M + i+ 1∑i

j=1 j · 1 + i+ 1
(3.1)

=
2κ+ 2Mi+ i+ 1

i(i+ 1)/2 + i+ 1
=

(2κ+ 1) + (2M + 1)i

i2 + 3i+ 3/2

<
2(2κ+ 1) + 2(2M + 1)i

i2 + 3i/2
=

2(2κ+ 1)/i+ 2(2M + 1)

i+ 3/2
.

However,

i(i+ 1)

2
=

i∑
j=1

j · 1 ≤
i∑

j=1

jlj

< n ≤ κ+

i+1∑
j=1

jlj ≤ κ+

i+1∑
j=1

jM = κ+
(i+ 1)(i+ 2)

2
M.

Thus, we see that i ≥ p, where p is the positive solution to n = κ +
(p+ 1)(p+ 2)M/2. Therefore,

(3.2) p =
−3 +

√
(8/M)n+ (1− 8κ/M)

2
.

Substituting (3.2) into (3.1), we arrive at the inequality

D∗n(yF ) <
2(κ+ 1)/i+ 2(2M + 1)

−3+
√

(8/M)n+(1−8κ/M)

2 + 3
2

=
4(κ+ 1)/i+ 4(2M + 1)√

(8/M)n+ (1− 8κ/M)
.
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Let ψ > 1. Then for large enough n,

4(κ+ 1)/i(n) + 4(2M + 1)√
(8/M)n+ (1− 8κ/M)

< ψ
4(2M + 1)√

(8/M)n
= ψ
√

2M (2M + 1)n−1/2,

so D∗n(yF ) < ψ
√

2M (2M + 1)n−1/2.

Theorem 3.3. Suppose that Q is a basic sequence such that there exist
constants M and t where νi+1 − νi ≤ Mi for j > t. Then for all Q-special
sequences F and real numbers ψ > 1, we have

D∗n(yF ) < ψ
√

2dM + 1e (2dM + 1e+ 1)n−1/2

for large enough n.

Proof. This follows directly from Lemma 3.1 and Proposition 3.2.

Remark 3.4. If qm ≥ 2n2 for τ(n− 1) < m ≤ τ(n), then li = 1 for all i
and Theorem 3.3 implies that for all ψ > 1 and large enough n, we have

(3.3) D∗n(yF ) < ψ
√

8n−1/2.

For example, (3.3) holds if qn ≥ 5n for all n.

3.2. ΘQ is perfect and nowhere dense. The goal of this subsection
will be to show that ΘQ is a perfect, nowhere dense subset of [0, 1). We first
remark that the existence of a set of normal numbers that is perfect and
nowhere dense should not be surprising. However, constructing a specific
example of such a set may not lend itself to an obvious solution.

We will now work towards showing that ΘQ is perfect and nowhere dense.
In order to proceed, we define a function, d, from ΓQ × ΓQ to R:

Definition 3.5. Suppose F1 and F2 are Q-special sequences. If F1 6= F2,
we define ζF1,F2 = min{n : EF1,n 6= EF2,n}. Define (4) d : ΓQ × ΓQ → R by

d(F1, F2) =


1

q1 · · · qζF1,F2−1
if F1 6= F2,

0 if F1 = F2.

Lemma 3.6. If F1, F2 ∈ ΓQ, then |xF1 − xF2 | ≤ d(F1, F2).

Proof. Let n = ζF1,F2 . We write the Q-Cantor series expansions of xF1

and xF2 as follows:

xF1 =
E1

q1
+

E2

q1q2
+ · · ·+ En−1

q1 · · · qn−1
+

EF1,n

q1 · · · qn
+

EF1,n+1

q1 · · · qn+1
+ · · · ,

xF2 =
E1

q1
+

E2

q1q2
+ · · ·+ En−1

q1 · · · qn−1
+

EF2,n

q1 · · · qn
+

EF2,n+1

q1 · · · qn+1
+ · · · ,

(4) (ΓQ, d) is a metric space.
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so

|xF1 − xF2 |

=

∣∣∣∣( EF1,n

q1 · · · qn−1
−

EF2,n

q1 · · · qn−1

)
+

(
EF1,n+1

q1 · · · qn+1
−

EF2,n+1

q1 · · · qn+1

)
+ · · ·

∣∣∣∣
≤
|EF1,n − EF2,n|

q1 · · · qn
+
|EF1,n+1 − EF2,n+1|

q1 · · · qn+1
+ · · · ≤ 1

q1 · · · qn−1
= d(F1, F2).

Lemma 3.7. If F ∈ ΓQ, then there exists a sequence of Q-special se-
quences F1, F2, F3, . . . such that F 6= Fn for all n and limn→∞ d(F, Fn) = 0.

Proof. By Lemma 2.3, we may define a sequence of Q-special sequences
as follows. Let n be any positive integer and put (α, β, γ) = φ−1Q (n). We
must now consider three cases. First, if γ 6= 1, then for m 6= n, we set
En,m = EF,m and we let En,n 6= EF,n be any value that satisfies

En,n
qn
∈
[
γ − 1

α
− 1

2α2
,
γ − 1

α
+

1

2α2

]
.

Second, we suppose that γ = 1 and α > 1. Put (α′, β′, γ′) = φ−1Q (n+ 1).
Then for m 6= n + 1, we set En,m = EF,m and we let En,n+1 6= EF,n+1 be
any value that satisfies

En,n+1

qn+1
∈
[
γ′ − 1

α′
− 1

2α′2
,
γ′ − 1

α′
+

1

2α′2

]
.

Third, we consider the case where α = γ = 1. Set t = φQ(2, 1, 2) and
note that t > n. Then for m 6= t, put En,m = EF,m and let En,t 6= EF,t be
any value that satisfies

En,t
qt
∈
[

2− 1

2
− 1

2 · 22
,
2− 1

2
+

1

2 · 22

]
=

[
3

8
,
5

8

]
.

Now that we have determined (En,m)∞m=1, set Fn = (En,φQ(a,b,c))(a,b,c)∈SQ .
Thus, F 6= Fn for all n, and for large enough m we have

d(F, Fm) ≤ max

(
1

q1 · · · qm
,

1

q1 · · · qm−1

)
=

1

q1 · · · qm−1
,

so Fn → F .

Theorem 3.8. The set ΘQ is perfect.

Proof. Suppose that x ∈ ΘQ and that x = xF . By Lemma 3.7, there
exists a sequence of Q-special sequences F1, F2, . . . , none of which are equal
to F , with Fn → F . Thus, x 6= xFn for all n. Let ε > 0 and suppose that
N is large enough so that for all n > N , we have d(F, Fn) < ε. Clearly,
|x− xFn | ≤ d(F, Fn) < ε, so xFn → xF and ΘQ is perfect.

We need the following simple lemma:
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Lemma 3.9. If a ≥ 1, then

a− 1

a
+

1.5

2a2
< 1.

Theorem 3.10. The set ΘQ is nowhere dense.

Proof. Let I ⊂ [0, 1) be any interval such that ΘQ∩ I 6= ∅. We will show
that there exists an interval K ⊂ I such that ΘQ∩K = ∅. Thus, there exists
a positive integer n and an interval J ⊂ I with

J =

[
E1

q1
+

E2

q1q2
+ · · ·+ En

q1 · · · qn
,
E1

q1
+

E2

q1q2
+ · · ·+ En + 1

q1 · · · qn

)
and Ej ∈ [0, qj − 1) ∩ Z for j = 1, . . . , n. Put (a, b, c) = φ−1Q (n + 1). By
Lemma 3.9, we may set

K =

[
E1

q1
+ · · ·+ En

q1 · · · qn
+

(
a− 1

a
+

1.5

2a2

)
1

q1 · · · qn
,
E1

q1
+ · · ·+ En + 1

q1 · · · qn

)
.

If ΘQ ∩ J = ∅, we are finished, so assume that ΘQ ∩ J 6= ∅. Suppose that
F ∈ ΓQ is such that xF ∈ J and

x = 0.E1 . . . EnEn+1 . . . with respect to Q.

By construction, if c 6= 1, we have

En+1

qn+1
∈
[
c− 1

a
− 1

2a2
,
c− 1

a
+

1

2a2

]
.

If c = 1, then En+1 = 0. Therefore,

xF ≤
E1

q1
+

E2

q1q2
+ · · ·+ En

q1 · · · qn
+

(
c− 1

a
+

1

2a2

)
1

q1 · · · qn

<
E1

q1
+

E2

q1q2
+ · · ·+ En

q1 · · · qn
+

(
a− 1

a
+

1.5

2a2

)
1

q1 · · · qn
,

so xF /∈ K. Hence, K ∩ΘQ = ∅ and ΘQ is nowhere dense.

3.3. Hausdorff dimension of ΘQ. Given a basic sequence Q and
a positive integer n, we will define the functions a(n), b(n), and c(n) by
(a(n), b(n), c(n)) = φ−1Q (n). Set ωn = #{EF,n : F ∈ ΓQ},

A(k) =

{
1 if 1 ≤ k ≤ l1,
p if l1 + · · ·+ lp−1 < k ≤ l1 + · · ·+ lp,

and γ(k) = A(1) + · · ·+A(k).

Note that ωn = 1 if and only if c(n) = 1. By Lemma 2.3, we are guaran-
teed that ωn ≥ 2 if c(n) 6= 1. Additionally, we can say that

(3.4)
qn

a(n)2
≤ ωn ≤

qn
a(n)2

+ 1 <
2qn
a(n)2
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when ωn 6= 1. If qn grows quickly enough that l1 = l2 = · · · = 1, then
A(k) = k and γ(k) = τ(k), so a(n) = b(1 +

√
8n− 7)/2c. Thus, we have

(3.5)
√
n ≤ a(n) <

√
3n.

Combining (3.4) and (3.5), we see that

(3.6)
qn
3n
≤ ωn <

2qn
n
.

Definition (3.6) (5). A basic sequence Q grows nicely if ns = o(qn) for
all positive integers s, and

log qτ(k−1)+1 + log qτ(k) = o
(

log

τ(k−1)−1∏
n=1

qn

)
,

log
k−2∏
n=0

qτ(k)+1 = o
(

log

τ(k−1)−1∏
n=1

qn

)
.

A basic sequence Q grows slowly if there exists a constant M such that
ωn ≤M for all n ≥ 1. Lastly, Q grows quickly if

log

τ(k)−1∏
n=1

qn = o(log qτ(k)).

Example 3.12. The basic sequences given by qn = n + 1 and by qn =
max(2, blog nc) grow slowly. If t ≥ 2, then qn = btnc and qn = 22

n
are

examples of nicely growing basic sequences. If we let q1 = 2 and qn+1 =
2q1···qn , then Q grows quickly.

If J ⊂ [0, 1) is a subset of [0, 1), we will denote its Hausdorff dimension
by dimH J . In this section, we will compute the Hausdorff dimension of ΘQ
for a few classes of basic sequences. We will show that dimHΘQ = 0 when
Q grows slowly or quickly. When Q grows nicely, we will have dimHΘQ = 1.

Definition 3.13. Let J be any non-empty subset of [0, 1) and let Cδ(J)
be the smallest number of sets of diameter at most δ which can cover J .
Then the box-counting dimension of J , if it exists, is defined as

dimB J = lim
δ→0

logCδ(J)

− log δ
.

The lower box-counting dimension and upper box-counting dimension of J
are defined as

dimB J = lim inf
δ→0

logCδ(J)

− log δ
and dimB J = lim sup

δ→0

logCδ(J)

− log δ
,

respectively.

(5) A basic sequence may still grow slowly no matter how fast qn grows when n is
restricted to those values for which ωn = 1.
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The following standard result (see [7]) will be used frequently and with-
out mention:

Theorem 3.14. Let J be a non-empty subset of [0, 1]. Then

0 ≤ dimH J ≤ dimB J ≤ dimB J ≤ 1.

We will make use of the following general construction found in [7].
Suppose that [0, 1] = I0 ⊃ I1 ⊃ I2 ⊃ · · · is a decreasing sequence of sets,
with each Ik a union of a finite number of disjoint closed intervals (called
kth level basic intervals). Then we will consider the set

⋂∞
k=0 Ik. We will

construct a set Θ′Q that may be written in this form such that dimHΘQ =

dimHΘ
′
Q.

Given a block of digits B = (b1, . . . , bs) and a positive integer n, define

SQ,B = {x = 0.E1E2 . . . with respect to Q : E1 = b1, . . . , Et = bs}.
Let Pn be the set of all possible values of En(x) for x ∈ ΘQ. Put J0 = [0, 1)
and

Jk =
⋃

B∈
∏γ(k)
n=1 Pn

SQ,B.

Then Jk ⊂ Jk−1 for all k ≥ 0 and ΘQ =
⋂∞
k=0 Jk, which gives the following:

Proposition 3.15. ΘQ can be written in the form
⋂∞
k=0 Jk, where each

Jk is the union of a finite number of disjoint half-open intervals.

We now set Ik = Jk for all k ≥ 0 and put Θ′Q =
⋂∞
k=0 Ik. Since each set

Jk consists of only a finite number of intervals, the set Ik \ Jk is finite.

Lemma 3.16. dimHΘQ = dimHΘ
′
Q.

Proof. The lemma follows as Θ′Q \ΘQ is a countable set.

For k ≥ 1, we note that, by construction, there are ω1 · · ·ωγ(k)−1 kth

level intervals and they are all of length (q1 · · · qγ(k))−1. Additionally, they

are all separated by a distance of at least (q1 · · · qγ(k))−1(1 + 2/A(k)2). This
gives

dimBΘQ = lim inf
k→∞

log (ω1 · · ·ωγ(k)−1)
log (q1 · · · qγ(k))

,

dimBΘQ = lim sup
k→∞

log (ω1 · · ·ωγ(k)−1)
log (q1 · · · qγ(k))

,

dimBΘQ = lim
k→∞

log (ω1 · · ·ωγ(k)−1)
log (q1 · · · qγ(k))

.

(3.7)

Theorem 3.17. Suppose that Q grows slowly. Then

dimHΘQ = dimBΘQ = 0.
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Proof. Since Q is infinite in limit, for all z > M , there exists a positive
integer t such that q1 · · · qγ(k) ≥ zγ(k) for all k > t. Substituting ωn ≤ M
into (3.7), we see that

dimBΘQ ≤ lim sup
k→∞

logMγ(k)−1

log zγ(k)
=

logM

log z
,

so dimBΘQ = 0.

We will use the following result from [7]:

Theorem 3.18. Suppose that each (k − 1)th level interval of Ik−1 con-
tains at least mk kth level intervals (k = 1, 2, . . .) which are separated by
gaps of at least εk, where 0 ≤ εk+1 < εk for each k. Then

dimH

( ∞⋂
k=0

Ik

)
≥ lim inf

k→∞

log (m1 · · ·mk−1)

− log (mkεk)
.

Lemma 3.19.

dimHΘ
′
Q ≥ lim inf

k→∞

log (ω1 · · ·ωγ(k−1)−1)
log

q1···qγ(k)
ωγ(k−1)ωγ(k−1)+1···ωγ(k)−1

.

Proof. We substitute

m1 · · ·mk−1 = ω1 · · ·ωγ(k−1)−1, mk = ωγ(k−1)ωγ(k−1)+1 · · ·ωγ(k)−1,
and

εk = (q1 · · · qγ(k))−1(1 + 2/A(k)2)

into Theorem 3.18. Since limk→∞A(k) = ∞, we see that 1 < 1 + 2/A(k)2

≤ 3, so

lim inf
k→∞

log (m1 · · ·mk−1)

− log (mkεk)
= lim inf

k→∞

log (ω1 · · ·ωγ(k−1)−1)
log
( q1···qγ(k)
ωγ(k−1)ωγ(k−1)+1ωγ(k)−1

(1+2/A(k))−1
)

= lim inf
k→∞

log (ω1 · · ·ωγ(k−1)−1)
log

q1···qγ(k)
ωγ(k−1)ωγ(k−1)+1···ωγ(k)−1

.

Lemma 3.20. Suppose that li = 1 for all i. Then

(3.8) dimHΘ
′
Q ≥ lim inf

k→∞

N

D
,

where

N = log

τ(k−1)−1∏
n=1

qn − log 3τ(k−2)−1 − log (τ(k − 1)− 1)!− log
k−2∏
n=0

qτ(n)+1

D = log

τ(k−1)−1∏
n=1

qn + log qτ(k−1)+1

+ log qτ(k) + log 3k−1 + log
(τ(k)− 1)!

(τ(k − 1)− 1)!(τ(k − 1) + 1)
.
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Proof. Since li = 1 for all i, (3.6) holds and γ(k) = τ(k) for all k. Note
that ωn = 1 if and only if n = τ(k) + 1 for some k. Therefore,

ω1ω2 · · ·ωγ(k−1)−1

≥ q1
3 · 1

q2
3 · 2
· · ·

qτ(k−1)−1

3(τ(k − 1)− 1)

k−2∏
n=0

3(τ(n) + 1)

qτ(n)+1

≥
( τ(k−1)−1∏

n=1

qn

)
· 3−(τ(k−1)−1)(τ(k − 1)− 1)!−1 · 3k−1

k−2∏
n=0

q−1τ(n)+1

=
( τ(k−1)−1∏

n=1

qn

)
· 3−(τ(k−2)−1)(τ(k − 1)− 1)!−1

k−2∏
n=0

q−1τ(n)+1,

so

log (ω1 · · ·ωγ(k−1)−1)

≥ log

τ(k−1)−1∏
n=1

qn − log 3τ(k−2)−1 − log (τ(k − 1)− 1)!− log

k−2∏
n=0

qτ(n)+1.

Next, since ωγ(k−1)+1 = 1, we arrive at the estimate

q1 · · · qγ(k)
ωγ(k−1)ωγ(k−1)+1 · · ·ωγ(k)−1

≤
q1 · · · qτ(k)( qτ(k−1)

3τ(k−1)
qτ(k−1)+1

3(τ(k−1)+1) · · ·
qτ(k)−1

3(τ(k)−1)
)3(τ(k−1)+1)

qτ(k−1)+1

=
( τ(k−1)−1∏

n=1

qn

)
qτ(k−1)+1qτ(k) · 3k−1

(τ(k)− 1)!

(τ(k − 1)− 1)!(τ(k − 1) + 1)
.

Thus, Lemma 3.19 yields the conclusion.

Theorem 3.21. Suppose that Q grows nicely. Then dimHΘQ = 1.

Proof. We will show that dimHΘ
′
Q = 1, so that dimHΘQ = 1 immedi-

ately follows. We need only consider the case where li = 1 for all i. Since
Q grows nicely, the dominant term of both the numerator and denominator

in (3.8) is log
∏τ(k−1)−1
n=1 qn, so dimHΘ

′
Q = 1 by Lemma 3.20.

Theorem 3.22. Suppose that Q grows quickly. Then dimHΘQ =
dimBΘQ = 0.

Proof. It will be sufficient to consider the case where lk = 1 for all k. We
will show that dimBΘQ = 0. Recall that ωn < 2qn/n, so γ(k) = τ(k) and

ω1 · · ·ωγ(k)−1 <
2q1
1

2q2
2
· · ·

2qτ(k)−1

τ(k)− 1
=
( τ(k)−1∏

n=1

qn

)
· 2τ(k)−1/(τ(k)− 1)!,
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so

(3.9) dimBΘQ ≤ lim sup
k→∞

log
∏τ(k)−1
n=1 qn + log 2τ(k)−1 − log (τ(k)− 1)!

log
∏τ(k)−1
n=1 qn + log qτ(k)

.

However, the dominant terms in the numerator and denominator of (3.9)

are log
∏τ(k)−1
n=1 qn and log qτ(k), respectively, so

dimBΘQ ≤ lim sup
k→∞

log
∏τ(k)−1
n=1 qn

log qτ(k)
= 0.

The Hausdorff dimension of ΘQ is less certain when qn grows like a
polynomial. The following lemma will be needed:

Lemma 3.23.

log
(τ(k)− 1)!

(τ(k − 1)− 1)!(τ(k − 1) + 1)
= o(log (τ(k − 1)− 1)!).

Proof. Suppose that k > 2. Then

(τ(k)− 1)!

(τ(k − 1)− 1)!(τ(k − 1) + 1)

<
(τ(k)− 1)!

(τ(k − 1)− 1)!
< (τ(k)− 1)k = ek log (

1
2
(k2+k−2)) < ek log (k

2) = e2k log k,

so

log
(τ(k)− 1)!

(τ(k − 1)− 1)!(τ(k − 1) + 1)
< 2k log k.

By Stirling’s formula,

(τ(k − 1)− 1)! >
√

2π (τ(k − 1)− 1)τ(k−1)−1/2e−(τ(k−1)−1)

=
√

2π

(
1

2
(k2 − k − 2)

) 1
2
(k2−k−1)

e−
1
2
(k2−k−2)

=
√

2πe
1
2
(k2−k−2) log ( 1

2
(k2−k−1))− 1

2
(k2−k−2),

so

log (τ(k − 1)− 1)! >
1

2
(k2 − k − 2)

(
log

(
1

2
(k2 − k − 1)

)
− 1

)
.

Since limk→∞
2k log k

1
2
(k2−k−2)(log ( 1

2
(k2−k−1))−1) = 0, the lemma follows.

Theorem 3.24. Suppose that there exists reals number t > 1 and λ1, λ2
≥ 1 such that λ1n

t ≤ qn ≤ λ2n
t for all n and qm ≥ 2p2 for τ(p − 1) <

m ≤ τ(p). Then dimBΘQ = 1 and

1− 1/t ≤ dimHΘQ ≤ 1.
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Proof. Since λ1n
t ≤ qn ≤ λ2nt,

log λ
τ(k−1)−1
1 + t log (τ(k − 1)− 1)!

≤ log

τ(k−1)−1∏
n=1

qn ≤ log λ
τ(k−1)−1
2 + t log (τ(k − 1)− 1)!,

so

log

τ(k−1)−1∏
n=1

qn− log (τ(k−1)−1)! ≥ (t−1) log (τ(k−1)−1)!+log λ
τ(k−1)−1
1 .

Note that li = 1 for all i, so by Lemmas 3.20 and 3.23,

dimHΘ
′
Q ≥ lim inf

k→∞

(t− 1) log (τ(k − 1)− 1)! + log λ
τ(k−1)−1
1

t log (τ(k − 1)− 1)! + log λ
τ(k−1)−1
2

= lim inf
k→∞

(t− 1) log (τ(k − 1)− 1)!

t log (τ(k − 1)− 1)!
= 1− 1

t
.

A similar computation gives dimBΘQ = 1, so dimBΘQ = 1.

Let α∈(0, 1). We will now work towards constructing a basic sequenceQα
such that dimHΘQα = α. Define the basic sequence Qα = (qα,n)n by

(3.10)

qα,n =

max
(⌊( n−1∏

m=1

qα,m

)(1−α)/α⌋
, 2n2

)
if n = τ(k) for even k,

2n2 for all other values of n.

We will write Vk = qα,τ(k) and Pk =
∏τ(k)−1
n=1 qα,n, so for large enough integers

k that are even,

(3.11) Vk = bP (1−α)/α
k c.

Lemma 3.25. If k is even, then

1− α
α

logPk−1 < log Vk <
1− α
α

logPk−1 +
4− 4α

α
k log k.

Proof. We have

log Vk ≤ log
(
Pk−1

τ(k)−1∏
n=τ(k−1)

2n2
)(1−α)/α

=
1−α
α

logPk−1 +
1−α
α

log

τ(k)−1∏
n=τ(k−1)

2n2

<
1− α
α

logPk−1 +
1− α
α

log (2τ(k)2)k

<
1− α
α

logPk−1 +
1− α
α

k log k4 =
1− α
α

logPk−1 +
4− 4α

α
k log k.

The lower bound follows similarly.



244 B. Mance

Theorem 3.26. If α ∈ (0, 1), then dimHΘQα = dimBΘQα = α and
dimBΘQα = 1.

Proof. For this basic sequence, li = 1 for all i, so we may use our usual
estimates. Thus, by (3.7) and (3.11),

dimBΘQα =lim inf
k→∞

log (ω1 · · ·ωγ(k)−1)
log (qα,1 · · · qα,γ(k))

≤ lim inf
k→∞

log
∏τ(k)−1
n=1

2qα,n
n

log
∏τ(k)−1
n=1 qα,n+log qα,τ(n)

= min

(
lim

k→∞, k even

logPk

logPk + 1−α
α logPk

, lim
k→∞, k odd

logPk
logPk + log (2τ(k)2)

)
.

= min

(
1

1 + 1−α
α

, 1

)
= α.

Following a similar computation, dimBΘQα = 1. By Lemmas 3.20 and 3.25,

dimHΘ
′
Qα ≥ lim inf

k→∞

logPk−1
logPk−1 + log Vk

= min

(
lim

k→∞, k even

logPk−1

logPk−1 + 1−α
α logPk−1

,

lim
k→∞, k odd

logPk−1
logPk−1 + log (2τ(k)2)

)
= α,

so dimHΘQα = dimBΘQα = α.
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