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1. Introduction. Given a finite set A ⊂ R, the elements of A can be
labeled in ascending order, so that a1 < · · · < an. Then A is said to be
convex if

ai − ai−1 < ai+1 − ai
for all 2 ≤ i ≤ n− 1, and it was proved by Elekes, Nathanson and Ruzsa
([ENR]) that |A± A| ≥ |A|3/2, an estimate which stood as the best known
for a decade, under various guises. Schoen and Shkredov ([SS2]) recently
made significant progress by proving that for any convex set A,

|A−A| � |A|8/5

(log |A|)2/5
and |A+A| � |A|14/9

(log |A|)2/3
.

See [SS2] and the references therein for more details on this problem and its
history.

In [ENR], a number of other results were proved connecting convexity
with large sumsets. In particular, it was shown that, for any convex or
concave function f and any finite set A ⊂ R,

max{|A+A|, |f(A) + f(A)|} � |A|5/4,(1.1)

|A+ f(A)| � |A|5/4.(1.2)

By choosing particularly interesting convex or concave functions f , these
results immediately yield interesting corollaries. For example, if we choose
f(x) = log x, then (1.1) immediately yields a sum-product estimate. Fur-
thermore, if f(x) = 1/x, then (1.2) gives information about another problem
posed by Erdős and Szemerédi ([ES]).

In this paper, the methods used by Schoen and Shkredov ([SS2]) are
developed further in order to improve on some other results from [ENR]. In
particular, the bounds in (1.1) and (1.2) are improved slightly, in the form
of the following results.
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Theorem 1.1. Let f be any continuous, strictly convex or concave func-
tion on the reals, and A,C ⊂ R be any finite sets such that |A| ≈ |C|. Then

|f(A) + C|6|A−A|5 � |A|14

(log |A|)2
.

In particular, choosing C = f(A), this implies that

max{|f(A) + f(A)|, |A−A|} � |A|14/11

(log |A|)2/11
.

Theorem 1.2. Let f be any continuous, strictly convex or concave func-
tion on the reals, and A,C ⊂ R be any finite sets such that |A| ≈ |C|. Then

|f(A) + C|10|A+A|9 � |A|24

(log |A|)2
.

In particular, choosing C = f(A), this implies that

max{|f(A) + f(A)|, |A+A|} � |A|24/19

(log |A|)2/19
.

Theorem 1.3. Let f be any continuous, strictly convex or concave func-
tion on the reals, and A ⊂ R be any finite set. Then

|A+ f(A)| � |A|24/19

(log |A|)2/19
.

Applications to sum-product estimates. By choosing f(x) = log x
and applying Theorems 1.1 and 1.2, some interesting sum-product type re-
sults can be specified, especially in the case when the product set is small.
A sum-product estimate is a bound on max{|A+A|, |A ·A|}, and it is con-
jectured that at least one of these sets should grow to a near maximal size.
Solymosi ([Sol1]) proved that max{|A + A|, |A · A|} � |A|4/3/(log |A|)1/3,
and this is currently the best known bound. See [Sol1] and the references
therein for more details on this problem and its history.

In a similar spirit, one may conjecture that at least one of |A − A| and
|A ·A| must be large, and indeed this is somewhat true. In an earlier paper
of Solymosi ([Sol2]) on sum-product estimates, it was proved that

max{|A+A|, |A ·A|} � |A|14/11

(log |A|)3/11
.

It is easy to change the proof slightly to obtain the same result with |A+A|
replaced by |A−A|, however, in Solymosi’s subsequent paper on sum-product
estimates, this substitution was not possible. So, max{|A − A|, |A · A|} �
|A|14/11/(log |A|)3/11 represents the current best known bound of this type.
Applying Theorem 1.1 with f(x) = log x, and noting that |f(A) + f(A)| =
|A ·A|, we get the following very marginal improvement.
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Corollary 1.4. We have

(1.3) |A ·A|6|A−A|5 � |A|14

(log |A|)2
.

In particular, this implies that

max{|A ·A|, |A−A|} � |A|14/11

(log |A|)2/11
.

By applying Theorem 1.2 in the same way, we establish that

(1.4) |A ·A|10|A+A|9 � |A|24

(log |A|)2
.

In the case when the productset is small, (1.3) and (1.4) show that the
sumset and difference set grow non-trivially. This was shown in [L], and here
we get a more explicit version of the same result.

2. Notation and preliminaries. Throughout this paper, the symbols
�, � and ≈ are used to suppress constants. For example, X � Y means
that there exists some absolute constant C such that X < CY , and X ≈ Y
means that X � Y and Y � X. Also, all logarithms are to base 2.

For sets A and B, let E(A,B) be the additive energy of A and B, defined
in the usual way. So, denoting by δA,B(s) (and respectively σA,B(s)) the
number of representations of an element s of A − B (respectively A + B),
and writing δA(s) = δA,A(s), we define

E(A,B) =
∑
s

δA(s)δB(s) =
∑
s

δA,B(s)2 =
∑
s

σA,B(s)2.

Given a set A ⊂ R and some s ∈ R, let As := A ∩ (A + s). A crucial
observation is that |As| = δA(s). In this paper, following [SS2], the third
moment energy E3(A) will also be studied, where

E3(A) =
∑
s

δA(s)3.

In much the same way, we define

E1.5(A) =
∑
s

δA(s)1.5.

Later on, we will need the following lemma, which was proved in [L]. Note
that the proof made use of the Katz–Koester transform (see [KK]).

Lemma 2.1. Let A,B be any sets. Then

E1.5(A)2|B|2 ≤ E3(A)2/3E3(B)1/3E(A,A+B).
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3. Some consequences of the Szemerédi–Trotter theorem. The
main preliminary result is an upper bound on the number of high multiplic-
ity elements of a sumset, a result which comes from an application of the
Szemerédi–Trotter incidence theorem ([ST]).

Theorem 3.1. Let P be a set of points in the plane and L a set of curves
such that any pair of curves intersect at most once. Then

|{(p, l) ∈ P × L : p ∈ l}| ≤ 4(|P| |L|)2/3 + 4|P|+ |L|.

Remark. While this paper was in the process of being drafted, a very
similar result to the following lemma was included in a paper of Schoen and
Shkredov ([SS1, Lemma 24]) which was posted on the arXiv. See their paper
for an alternative description of this result and proof. A weaker version of
this result was also proved in [L].

Lemma 3.2. Let f be a continuous, strictly convex or concave function
on the reals, and A,B,C ⊂ R be finite sets such that |B| |C| � |A|2. Then
for all τ ≥ 1,

|{x : σf(A),C(x) ≥ τ}| � |A+B|2|C|2

|B|τ3
,(3.1)

|{y : σA,B(y) ≥ τ}| � |f(A) + C|2|B|2

|C|τ3
.(3.2)

Proof. Let G(f) denote the graph of f in the plane. For any (α, β) ∈ R2,
put Lα,β = G(f) + (α, β). Define a set of points P = (A+B)× (f(A) +C)
and a set of curves L = {Lb,c : (b, c) ∈ B × C}. By convexity or concavity,
|L| = |B| |C|, and any pair of curves from L intersect at most once. Let Pτ
be the set of points of P belonging to at least τ curves from L. Applying
the aforementioned Szemerédi–Trotter theorem to Pτ and L, we get

τ |Pτ | ≤ 4(|Pτ | |B| |C|)2/3 + 4|Pτ |+ |B| |C|.

Now we claim for any τ > 0 one has

(3.3) |Pτ | � |B|2|C|2/τ3.

The reason is as follows. Firstly, since there is no point of P belonging to
at least min{|B|+ 1, |C|+ 1} curves from L, to prove (3.3) we may assume
that τ ≤

√
|B| |C|. Secondly, if τ < 8, then (3.3) holds true since

|Pτ | ≤ |P| = |(A+B)× (f(A)+C)| ≤ |A|2|B| |C| � |B|2|C|2 ≤ 64
|B|2|C|2

τ2
.

Finally, we may assume that 8 ≤ τ ≤
√
|B| |C|. In this case we have

τ |Pτ |/2 ≤ 4(|Pτ | |B| |C|)2/3 + |B| |C|.



Convexity and a sum-product type estimate 251

Thus

|Pτ | � max{|B|2|C|2/τ3, |B| |C|/τ} = |B|2|C|2/τ3.

This proves the claim (3.3).

Next, suppose σf(A),C(x) ≥ τ . There exist τ distinct elements {ai}τi=1

from A and τ distinct elements {ci}τi=1 from C such that x = f(ai) + ci for
all i. Now we define Bi := ai+B for all i, andMx(s) :=

∑τ
i=1 χBi(s), where

χBi(·) is the characteristic function of Bi. Since

(ai + b, x) = (ai + b, f(ai) + ci) = (ai, f(ai)) + (b, ci) ∈ Lb,ci
for all i and b, we have (s, x) ∈ PMx(s). Note also∑

s∈A+B
Mx(s) =

τ∑
i=1

∑
s∈A+B

χBi(s) = τ |B|.

Let M := τ |B|/(2|A+B|). Then∑
s∈A+B:Mx(s)<M

Mx(s) < |A+B|M = τ |B|/2,

and hence ∑
s∈A+B:Mx(s)≥M

Mx(s) ≥ τ |B|/2.

Dyadically decompose this sum, so that

(3.4)
∑
j

Xj(x)� τ |B|,

where

Xj(x) :=
∑

s:M2j≤Mx(s)<M2j+1

Mx(s),

Yj(x) := |{s ∈ A+B : M2j ≤Mx(s) < M2j+1}|.

By (3.3), ∑
x:σf(A),C(x)≥τ

Yj(x) ≤ |PM2j | �
|B|2|C|2

M323j
.

Note that Xj(x) ≈ Yj(x)M2j , thus∑
x:σf(A),C(x)≥τ

Xj(x)� |B|
2|C|2

M222j
,

which followed by first summing all j’s, then applying (3.4), gives

τ |B| |{x : σf(A),C(x) ≥ τ}| � |B|2|C|2/M2.
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Equivalently,

|{x : σf(A),C(x) ≥ τ}| � |A+B|2|C|2

|B|τ3
.

This finishes the proof of (3.1).

In the same way one can prove (3.2). We only sketch the proof and leave
the details to the interested readers. Suppose σA,B(y) ≥ τ . There exist τ
distinct elements {ai}τi=1 from A and τ distinct elements {bi}τi=1 from B such
that y = ai+bi. Then we define Ci := f(ai)+C andMy(s) :=

∑τ
i=1 χCi(s),

and as before, (y, s) ∈ PMy(s). In precisely the same way as in the proof
of (3.1), one can prove that∑

s∈f(A)+C:My(s)≥M

My(s) ≥
τ |C|

2
,

∑
y:σA,B(y)≥τ

Yj(y) ≤ |PM2j | �
|B|2|C|2

M323j
,

∑
y:σA,B(y)≥τ

Xj(y)� |B|
2|C|2

M222j
,

τ |C| |{y : σA,B(y) ≥ τ}| � |B|
2|C|2

M2
,

|{y : σA,B(y) ≥ τ}| � |f(A) + C|2|B|2

|C|τ3
,

where M := τ |C|/(2|f(A) + C|), Xj(y) :=
∑

s:M2j≤My(s)<M2j+1My(s),

Yj(y) := |{s ∈ f(A) + C : M2j ≤ My(s) < M2j+1}|. This finishes the
whole proof.

Corollary 3.3. Let f be a continuous, strictly convex or concave func-
tion on the reals, and A,C, F ⊂ R be finite sets such that |A| ≈ |C| � |F |.
Then

E(A,A)� E1.5(A)2/3|f(A) + C|2/3|A|1/3,(3.5)

E(A,F )� |f(A) + C| |F |3/2,(3.6)

E3(A)� |f(A) + C|2|A| log |A|,(3.7)

E(f(A), f(A))� E1.5(f(A))2/3|A+ C|2/3|A|1/3,(3.8)

E(f(A), F )� |A+ C| |F |3/2,(3.9)

E3(f(A))� |A+ C|2|A| log |A|.(3.10)
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Proof. Let 4 > 0 be an arbitrary real number. First decomposing E(A),
then applying Lemma 3.2 with B = −A, gives

E(A,A) =
∑

s: δA(s)<4

δA(s)2 +

blog |A|c∑
j=0

∑
s: 2j4≤δA(s)<2j+14

δA(s)2

�
√
4E1.5(A) +

blog |A|c∑
j=0

|f(A) + C|2|A|
23j43j

· 22j42j

�
√
4E1.5(A) +

|f(A) + C|2|A|
4

.

Choosing an optimal value of 4 to balance the two terms completes the
proof of (3.5).

Similarly, applying Lemma 3.2 with B = −F gives

E(A,F ) =
∑

s: δA,F (s)<4

δA,F (s)2 +

blog |A|c∑
j=0

∑
s: 2j4≤δA,F (s)<2j+14

δA,F (s)2

�4E1(A,F ) +

blog |A|c∑
j=0

|f(A) + C|2|F |2

|C|23j43j
· 22j42j

�4|A| |F |+ |f(A) + C|2|F |2

|C|4
.

Choosing an optimal value of 4 to balance the two terms completes the
proof of (3.6).

Once again applying Lemma 3.2 with B = −A gives

E3(A) =

blog |A|c∑
j=0

∑
s: 2j≤δA(s)<2j+1

δA(s)3

�
blog |A|c∑
j=0

|f(A) + C|2|A| = |f(A) + C|2|A| log |A|,

which proves (3.7); and (3.8)–(3.10) can be established in the same way.

4. Proofs of the main results

4.1. Proof of Theorem 1.1. First, apply Hölder’s inequality to bound
E1.5(A) from below:

|A|6 =
( ∑
s∈A−A

δA(s)
)3
≤
( ∑
s∈A−A

δA(s)1.5
)2
|A−A| = E1.5(A)2|A−A|.
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Using this bound and Lemma 2.1 with B = −A gives

|A|8

|A−A|
≤ E1.5(A)2|A|2 ≤ E3(A)E(A,A−A).

Finally, apply (3.7), and (3.6) with F = A−A, to conclude that

|A|8

|A−A|
� |f(A) + C|3|A−A|3/2|A| log |A|,

and hence

|f(A) + C|6|A−A|5 � |A|14

(log |A|)2
,

as required.

4.2. Proof of Theorem 1.2. Using the standard Cauchy–Schwarz
bound on the additive energy, and then (3.5), we see that

|A|12

|A+A|3
≤ E(A,A)3 � E1.5(A)2|f(A) + C|2|A|

=
|f(A) + C|2

|A|
E1.5(A)2|A|2.

Next, apply Lemma 2.1 with B = A to get

|A|12

|A+A|3
� |f(A) + C|2

|A|
E3(A)E(A,A+A),

and then apply (3.7), and (3.6) with F = A+A, to get

|A|12

|A+A|3
� |f(A) + C|2

|A|
|f(A) + C|3|A+A|3/2|A| log |A|,

which, after rearranging, gives

|f(A) + C|10|A+A|9 � |A|24

(log |A|)2
.

4.3. Proof of Theorem 1.3. Observe that the Cauchy–Schwarz in-
equality applied twice tells us that

|A|24

|A+ f(A)|6
≤ E(A, f(A))6 ≤ E(A,A)3E(f(A), f(A))3,

so that after applying (3.5) and (3.8), with either C = A or C = f(A),

|A|26

|A+ f(A)|6
≤ |A|2E1.5(A)2|A+ f(A)|2|A|E1.5(f(A))2|A+ f(A)|2|A|

= (E1.5(A)2|f(A)|2)(E1.5(f(A))2|A|2)|A+ f(A)|4

≤ E3(A)E3(f(A))E(A,A+ f(A))

× E(f(A), A+ f(A))|A+ f(A)|4,
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where the last inequality is a consequence of two applications of Lemma 2.1.
Next apply (3.7) and (3.10), again with either C = A or C = f(A), to get

|A|26

|A+ f(A)|6
≤ |A+ f(A)|8|A|2(log |A|)2E(A,A+ f(A))E(f(A), A+ f(A)).

Finally, apply (3.6) and (3.9), still with either C = A or C = f(A), to obtain

|A|26

|A+ f(A)|6
≤ |A+ f(A)|13|A|2(log |A|)2.

Then, after rearranging, we get

|A+ f(A)| � |A|24/19

(log |A|)2/19
.
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