Convexity and a sum-product type estimate

by
Liangpan Li (Loughborough) and Oliver Roche-Newton (Bristol)

1. Introduction. Given a finite set $A \subset \mathbb{R}$, the elements of A can be labeled in ascending order, so that $a_{1}<\cdots<a_{n}$. Then A is said to be convex if

$$
a_{i}-a_{i-1}<a_{i+1}-a_{i}
$$

for all $2 \leq i \leq n-1$, and it was proved by Elekes, Nathanson and Ruzsa (ENR]) that $|A \pm A| \geq|A|^{3 / 2}$, an estimate which stood as the best known for a decade, under various guises. Schoen and Shkredov ([SS2]) recently made significant progress by proving that for any convex set A,

$$
|A-A| \gg \frac{|A|^{8 / 5}}{(\log |A|)^{2 / 5}} \quad \text { and } \quad|A+A| \gg \frac{|A|^{14 / 9}}{(\log |A|)^{2 / 3}}
$$

See [SS2] and the references therein for more details on this problem and its history.

In [ENR, a number of other results were proved connecting convexity with large sumsets. In particular, it was shown that, for any convex or concave function f and any finite set $A \subset \mathbb{R}$,

$$
\begin{align*}
& \max \{|A+A|,|f(A)+f(A)|\} \gg|A|^{5 / 4}, \tag{1.1}\\
&|A+f(A)|>|A|^{5 / 4} . \tag{1.2}
\end{align*}
$$

By choosing particularly interesting convex or concave functions f, these results immediately yield interesting corollaries. For example, if we choose $f(x)=\log x$, then (1.1) immediately yields a sum-product estimate. Furthermore, if $f(x)=1 / x$, then (1.2) gives information about another problem posed by Erdős and Szemerédi ($\mathbb{E S}]$).

In this paper, the methods used by Schoen and Shkredov ([SS2]) are developed further in order to improve on some other results from [ENR]. In particular, the bounds in (1.1) and (1.2) are improved slightly, in the form of the following results.

[^0]THEOREM 1.1. Let f be any continuous, strictly convex or concave function on the reals, and $A, C \subset \mathbb{R}$ be any finite sets such that $|A| \approx|C|$. Then

$$
|f(A)+C|^{6}|A-A|^{5} \gg \frac{|A|^{14}}{(\log |A|)^{2}}
$$

In particular, choosing $C=f(A)$, this implies that

$$
\max \{|f(A)+f(A)|,|A-A|\} \gg \frac{|A|^{14 / 11}}{(\log |A|)^{2 / 11}}
$$

TheOrem 1.2. Let f be any continuous, strictly convex or concave function on the reals, and $A, C \subset \mathbb{R}$ be any finite sets such that $|A| \approx|C|$. Then

$$
|f(A)+C|^{10}|A+A|^{9} \gg \frac{|A|^{24}}{(\log |A|)^{2}}
$$

In particular, choosing $C=f(A)$, this implies that

$$
\max \{|f(A)+f(A)|,|A+A|\} \gg \frac{|A|^{24 / 19}}{(\log |A|)^{2 / 19}}
$$

ThEOREM 1.3. Let f be any continuous, strictly convex or concave function on the reals, and $A \subset \mathbb{R}$ be any finite set. Then

$$
|A+f(A)| \gg \frac{|A|^{24 / 19}}{(\log |A|)^{2 / 19}}
$$

Applications to sum-product estimates. By choosing $f(x)=\log x$ and applying Theorems 1.1 and 1.2 , some interesting sum-product type results can be specified, especially in the case when the product set is small. A sum-product estimate is a bound on $\max \{|A+A|,|A \cdot A|\}$, and it is conjectured that at least one of these sets should grow to a near maximal size. Solymosi ([Sol1]) proved that $\max \{|A+A|,|A \cdot A|\} \gg|A|^{4 / 3} /(\log |A|)^{1 / 3}$, and this is currently the best known bound. See [Sol1] and the references therein for more details on this problem and its history.

In a similar spirit, one may conjecture that at least one of $|A-A|$ and $|A \cdot A|$ must be large, and indeed this is somewhat true. In an earlier paper of Solymosi ([Sol2]) on sum-product estimates, it was proved that

$$
\max \{|A+A|,|A \cdot A|\} \gg \frac{|A|^{14 / 11}}{(\log |A|)^{3 / 11}}
$$

It is easy to change the proof slightly to obtain the same result with $|A+A|$ replaced by $|A-A|$, however, in Solymosi's subsequent paper on sum-product estimates, this substitution was not possible. So, $\max \{|A-A|,|A \cdot A|\} \gg$ $|A|^{14 / 11} /(\log |A|)^{3 / 11}$ represents the current best known bound of this type. Applying Theorem 1.1 with $f(x)=\log x$, and noting that $|f(A)+f(A)|=$ $|A \cdot A|$, we get the following very marginal improvement.

Corollary 1.4. We have

$$
\begin{equation*}
|A \cdot A|^{6}|A-A|^{5} \gg \frac{|A|^{14}}{(\log |A|)^{2}} \tag{1.3}
\end{equation*}
$$

In particular, this implies that

$$
\max \{|A \cdot A|,|A-A|\} \gg \frac{|A|^{14 / 11}}{(\log |A|)^{2 / 11}}
$$

By applying Theorem 1.2 in the same way, we establish that

$$
\begin{equation*}
|A \cdot A|^{10}|A+A|^{9} \gg \frac{|A|^{24}}{(\log |A|)^{2}} \tag{1.4}
\end{equation*}
$$

In the case when the productset is small, (1.3) and (1.4) show that the sumset and difference set grow non-trivially. This was shown in [L] , and here we get a more explicit version of the same result.
2. Notation and preliminaries. Throughout this paper, the symbols \ll, \gg and \approx are used to suppress constants. For example, $X \ll Y$ means that there exists some absolute constant C such that $X<C Y$, and $X \approx Y$ means that $X \ll Y$ and $Y \ll X$. Also, all logarithms are to base 2 .

For sets A and B, let $E(A, B)$ be the additive energy of A and B, defined in the usual way. So, denoting by $\delta_{A, B}(s)$ (and respectively $\sigma_{A, B}(s)$) the number of representations of an element s of $A-B$ (respectively $A+B$), and writing $\delta_{A}(s)=\delta_{A, A}(s)$, we define

$$
E(A, B)=\sum_{s} \delta_{A}(s) \delta_{B}(s)=\sum_{s} \delta_{A, B}(s)^{2}=\sum_{s} \sigma_{A, B}(s)^{2} .
$$

Given a set $A \subset \mathbb{R}$ and some $s \in \mathbb{R}$, let $A_{s}:=A \cap(A+s)$. A crucial observation is that $\left|A_{s}\right|=\delta_{A}(s)$. In this paper, following [SS2], the third moment energy $E_{3}(A)$ will also be studied, where

$$
E_{3}(A)=\sum_{s} \delta_{A}(s)^{3} .
$$

In much the same way, we define

$$
E_{1.5}(A)=\sum_{s} \delta_{A}(s)^{1.5} .
$$

Later on, we will need the following lemma, which was proved in L . Note that the proof made use of the Katz-Koester transform (see [KK]).

Lemma 2.1. Let A, B be any sets. Then

$$
E_{1.5}(A)^{2}|B|^{2} \leq E_{3}(A)^{2 / 3} E_{3}(B)^{1 / 3} E(A, A+B)
$$

3. Some consequences of the Szemerédi-Trotter theorem. The main preliminary result is an upper bound on the number of high multiplicity elements of a sumset, a result which comes from an application of the Szemerédi-Trotter incidence theorem ([ST]).

Theorem 3.1. Let \mathcal{P} be a set of points in the plane and \mathcal{L} a set of curves such that any pair of curves intersect at most once. Then

$$
|\{(p, l) \in \mathcal{P} \times \mathcal{L}: p \in l\}| \leq 4(|\mathcal{P}||\mathcal{L}|)^{2 / 3}+4|\mathcal{P}|+|\mathcal{L}|
$$

REmARK. While this paper was in the process of being drafted, a very similar result to the following lemma was included in a paper of Schoen and Shkredov ([SS1, Lemma 24]) which was posted on the arXiv. See their paper for an alternative description of this result and proof. A weaker version of this result was also proved in [L].

Lemma 3.2. Let f be a continuous, strictly convex or concave function on the reals, and $A, B, C \subset \mathbb{R}$ be finite sets such that $|B||C| \gg|A|^{2}$. Then for all $\tau \geq 1$,

$$
\begin{align*}
& \left|\left\{x: \sigma_{f(A), C}(x) \geq \tau\right\}\right| \ll \frac{|A+B|^{2}|C|^{2}}{|B| \tau^{3}} \tag{3.1}\\
& \quad\left|\left\{y: \sigma_{A, B}(y) \geq \tau\right\}\right| \ll \frac{|f(A)+C|^{2}|B|^{2}}{|C| \tau^{3}} \tag{3.2}
\end{align*}
$$

Proof. Let $G(f)$ denote the graph of f in the plane. For any $(\alpha, \beta) \in \mathbb{R}^{2}$, put $L_{\alpha, \beta}=G(f)+(\alpha, \beta)$. Define a set of points $\mathcal{P}=(A+B) \times(f(A)+C)$ and a set of curves $\mathcal{L}=\left\{L_{b, c}:(b, c) \in B \times C\right\}$. By convexity or concavity, $|\mathcal{L}|=|B||C|$, and any pair of curves from \mathcal{L} intersect at most once. Let \mathcal{P}_{τ} be the set of points of \mathcal{P} belonging to at least τ curves from \mathcal{L}. Applying the aforementioned Szemerédi-Trotter theorem to \mathcal{P}_{τ} and \mathcal{L}, we get

$$
\tau\left|\mathcal{P}_{\tau}\right| \leq 4\left(\left|\mathcal{P}_{\tau}\right||B||C|\right)^{2 / 3}+4\left|\mathcal{P}_{\tau}\right|+|B||C|
$$

Now we claim for any $\tau>0$ one has

$$
\begin{equation*}
\left|\mathcal{P}_{\tau}\right| \ll|B|^{2}|C|^{2} / \tau^{3} \tag{3.3}
\end{equation*}
$$

The reason is as follows. Firstly, since there is no point of \mathcal{P} belonging to at least $\min \{|B|+1,|C|+1\}$ curves from \mathcal{L}, to prove (3.3) we may assume that $\tau \leq \sqrt{|B||C|}$. Secondly, if $\tau<8$, then 3.3 holds true since

$$
\left|\mathcal{P}_{\tau}\right| \leq|\mathcal{P}|=|(A+B) \times(f(A)+C)| \leq|A|^{2}|B||C| \ll|B|^{2}|C|^{2} \leq 64 \frac{|B|^{2}|C|^{2}}{\tau^{2}}
$$

Finally, we may assume that $8 \leq \tau \leq \sqrt{|B||C|}$. In this case we have

$$
\tau\left|\mathcal{P}_{\tau}\right| / 2 \leq 4\left(\left|\mathcal{P}_{\tau}\right||B||C|\right)^{2 / 3}+|B||C|
$$

Thus

$$
\left|\mathcal{P}_{\tau}\right| \ll \max \left\{|B|^{2}|C|^{2} / \tau^{3},|B||C| / \tau\right\}=|B|^{2}|C|^{2} / \tau^{3}
$$

This proves the claim (3.3).
Next, suppose $\sigma_{f(A), C}(x) \geq \tau$. There exist τ distinct elements $\left\{a_{i}\right\}_{i=1}^{\tau}$ from A and τ distinct elements $\left\{c_{i}\right\}_{i=1}^{\tau}$ from C such that $x=f\left(a_{i}\right)+c_{i}$ for all i. Now we define $B_{i}:=a_{i}+B$ for all i, and $\mathcal{M}_{x}(s):=\sum_{i=1}^{\tau} \chi_{B_{i}}(s)$, where $\chi_{B_{i}}(\cdot)$ is the characteristic function of B_{i}. Since

$$
\left(a_{i}+b, x\right)=\left(a_{i}+b, f\left(a_{i}\right)+c_{i}\right)=\left(a_{i}, f\left(a_{i}\right)\right)+\left(b, c_{i}\right) \in L_{b, c_{i}}
$$

for all i and b, we have $(s, x) \in \mathcal{P}_{\mathcal{M}_{x}(s)}$. Note also

$$
\sum_{s \in A+B} \mathcal{M}_{x}(s)=\sum_{i=1}^{\tau} \sum_{s \in A+B} \chi_{B_{i}}(s)=\tau|B| .
$$

Let $M:=\tau|B| /(2|A+B|)$. Then

$$
\sum_{s \in A+B: \mathcal{M}_{x}(s)<M} \mathcal{M}_{x}(s)<|A+B| M=\tau|B| / 2
$$

and hence

$$
\sum_{s \in A+B: \mathcal{M}_{x}(s) \geq M} \mathcal{M}_{x}(s) \geq \tau|B| / 2
$$

Dyadically decompose this sum, so that

$$
\begin{equation*}
\sum_{j} X_{j}(x) \gg \tau|B| \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{j}(x) & :=\sum_{s: M 2^{j} \leq \mathcal{M}_{x}(s)<M 2^{j+1}} \mathcal{M}_{x}(s) \\
Y_{j}(x) & :=\left|\left\{s \in A+B: M 2^{j} \leq \mathcal{M}_{x}(s)<M 2^{j+1}\right\}\right|
\end{aligned}
$$

By (3.3),

$$
\sum_{x: \sigma_{f(A), C}(x) \geq \tau} Y_{j}(x) \leq\left|\mathcal{P}_{M 2^{j}}\right| \ll \frac{|B|^{2}|C|^{2}}{M^{3} 2^{3 j}}
$$

Note that $X_{j}(x) \approx Y_{j}(x) M 2^{j}$, thus

$$
\sum_{x: \sigma_{f(A), C}(x) \geq \tau} X_{j}(x) \ll \frac{|B|^{2}|C|^{2}}{M^{2} 2^{2 j}}
$$

which followed by first summing all j 's, then applying (3.4), gives

$$
\tau|B|\left|\left\{x: \sigma_{f(A), C}(x) \geq \tau\right\}\right| \ll|B|^{2}|C|^{2} / M^{2}
$$

Equivalently,

$$
\left|\left\{x: \sigma_{f(A), C}(x) \geq \tau\right\}\right| \ll \frac{|A+B|^{2}|C|^{2}}{|B| \tau^{3}}
$$

This finishes the proof of (3.1).
In the same way one can prove (3.2). We only sketch the proof and leave the details to the interested readers. Suppose $\sigma_{A, B}(y) \geq \tau$. There exist τ distinct elements $\left\{a_{i}\right\}_{i=1}^{\tau}$ from A and τ distinct elements $\left\{b_{i}\right\}_{i=1}^{\tau}$ from B such that $y=a_{i}+b_{i}$. Then we define $C_{i}:=f\left(a_{i}\right)+C$ and $\mathcal{M}_{y}(s):=\sum_{i=1}^{\tau} \chi_{C_{i}}(s)$, and as before, $(y, s) \in \mathcal{P}_{\mathcal{M}_{y}(s)}$. In precisely the same way as in the proof of (3.1), one can prove that

$$
\begin{gathered}
\sum_{s \in f(A)+C: \mathcal{M}_{y}(s) \geq M} \mathcal{M}_{y}(s) \geq \frac{\tau|C|}{2}, \\
\sum_{y: \sigma_{A, B}(y) \geq \tau} Y_{j}(y) \leq\left|\mathcal{P}_{M 2^{j}}\right|
\end{gathered}<\frac{|B|^{2}|C|^{2}}{M^{3} 2^{3 j}}, ~ \begin{aligned}
& \sum_{y: \sigma_{A, B}(y) \geq \tau} X_{j}(y) \ll \frac{|B|^{2}|C|^{2}}{M^{2} 2^{2 j}} \\
& \tau|C|\left|\left\{y: \sigma_{A, B}(y) \geq \tau\right\}\right| \ll \frac{|B|^{2}|C|^{2}}{M^{2}}, \\
&\left|\left\{y: \sigma_{A, B}(y) \geq \tau\right\}\right| \ll \frac{|f(A)+C|^{2}|B|^{2}}{|C| \tau^{3}}
\end{aligned}
$$

where $M:=\tau|C| /(2|f(A)+C|), X_{j}(y):=\sum_{s: M 2^{j} \leq \mathcal{M}_{y}(s)<M 2^{j+1}} \mathcal{M}_{y}(s)$, $Y_{j}(y):=\left|\left\{s \in f(A)+C: M 2^{j} \leq \mathcal{M}_{y}(s)<M 2^{j+1}\right\}\right|$. This finishes the whole proof.

Corollary 3.3. Let f be a continuous, strictly convex or concave function on the reals, and $A, C, F \subset \mathbb{R}$ be finite sets such that $|A| \approx|C| \ll|F|$. Then

$$
\begin{align*}
E(A, A) & \ll E_{1.5}(A)^{2 / 3}|f(A)+C|^{2 / 3}|A|^{1 / 3}, \tag{3.5}\\
E(A, F) & \ll|f(A)+C||F|^{3 / 2} \tag{3.6}\\
E_{3}(A) & \ll|f(A)+C|^{2}|A| \log |A| \tag{3.7}\\
E(f(A), f(A)) & \ll E_{1.5}(f(A))^{2 / 3}|A+C|^{2 / 3}|A|^{1 / 3}, \tag{3.8}\\
E(f(A), F) & \ll|A+C||F|^{3 / 2}, \tag{3.9}\\
E_{3}(f(A)) & \ll|A+C|^{2}|A| \log |A| \tag{3.10}
\end{align*}
$$

Proof. Let $\triangle>0$ be an arbitrary real number. First decomposing $E(A)$, then applying Lemma 3.2 with $B=-A$, gives

$$
\begin{aligned}
E(A, A) & =\sum_{s: \delta_{A}(s)<\triangle} \delta_{A}(s)^{2}+\sum_{j=0}^{\lfloor\log |A|\rfloor} \sum_{s: 2^{j} \triangle \leq \delta_{A}(s)<2^{j+1} \triangle} \delta_{A}(s)^{2} \\
& \ll \sqrt{\triangle} E_{1.5}(A)+\sum_{j=0}^{\lfloor\log |A|\rfloor\rfloor} \frac{|f(A)+C|^{2}|A|}{2^{3 j} \triangle^{3 j}} \cdot 2^{2 j} \triangle^{2 j} \\
& \ll \sqrt{\triangle} E_{1.5}(A)+\frac{|f(A)+C|^{2}|A|}{\triangle} .
\end{aligned}
$$

Choosing an optimal value of \triangle to balance the two terms completes the proof of 3.5).

Similarly, applying Lemma 3.2 with $B=-F$ gives

$$
\begin{aligned}
E(A, F) & =\sum_{s: \delta_{A, F}(s)<\triangle} \delta_{A, F}(s)^{2}+\sum_{j=0}^{\lfloor\log |A|\rfloor} \sum_{s: 2^{j} \triangle \leq \delta_{A, F}(s)<2^{j+1} \triangle} \delta_{A, F}(s)^{2} \\
& \ll \triangle E_{1}(A, F)+\sum_{j=0}^{\lfloor\log |A|\rfloor} \frac{|f(A)+C|^{2}|F|^{2}}{|C| 2^{3 j} \triangle^{3 j}} \cdot 2^{2 j} \triangle^{2 j} \\
& \ll \triangle|A||F|+\frac{|f(A)+C|^{2}|F|^{2}}{|C| \triangle}
\end{aligned}
$$

Choosing an optimal value of \triangle to balance the two terms completes the proof of (3.6).

Once again applying Lemma 3.2 with $B=-A$ gives

$$
\begin{aligned}
E_{3}(A) & =\sum_{j=0}^{\lfloor\log |A|\rfloor} \sum_{s: 2^{j} \leq \delta_{A}(s)<2^{j+1}} \delta_{A}(s)^{3} \\
& \ll \sum_{j=0}^{\lfloor\log |A|\rfloor}|f(A)+C|^{2}|A|=|f(A)+C|^{2}|A| \log |A|
\end{aligned}
$$

which proves (3.7); and $(3.8)-(3.10)$ can be established in the same way.

4. Proofs of the main results

4.1. Proof of Theorem 1.1. First, apply Hölder's inequality to bound $E_{1.5}(A)$ from below:

$$
|A|^{6}=\left(\sum_{s \in A-A} \delta_{A}(s)\right)^{3} \leq\left(\sum_{s \in A-A} \delta_{A}(s)^{1.5}\right)^{2}|A-A|=E_{1.5}(A)^{2}|A-A|
$$

Using this bound and Lemma 2.1 with $B=-A$ gives

$$
\frac{|A|^{8}}{|A-A|} \leq E_{1.5}(A)^{2}|A|^{2} \leq E_{3}(A) E(A, A-A)
$$

Finally, apply (3.7), and (3.6) with $F=A-A$, to conclude that

$$
\frac{|A|^{8}}{|A-A|} \ll|f(A)+C|^{3}|A-A|^{3 / 2}|A| \log |A|
$$

and hence

$$
|f(A)+C|^{6}|A-A|^{5} \gg \frac{|A|^{14}}{(\log |A|)^{2}}
$$

as required.
4.2. Proof of Theorem 1.2, Using the standard Cauchy-Schwarz bound on the additive energy, and then (3.5), we see that

$$
\begin{aligned}
\frac{|A|^{12}}{|A+A|^{3}} \leq E(A, A)^{3} & \ll E_{1.5}(A)^{2}|f(A)+C|^{2}|A| \\
& =\frac{|f(A)+C|^{2}}{|A|} E_{1.5}(A)^{2}|A|^{2}
\end{aligned}
$$

Next, apply Lemma 2.1 with $B=A$ to get

$$
\frac{|A|^{12}}{|A+A|^{3}} \ll \frac{|f(A)+C|^{2}}{|A|} E_{3}(A) E(A, A+A)
$$

and then apply (3.7), and 3.6 with $F=A+A$, to get

$$
\frac{|A|^{12}}{|A+A|^{3}} \ll \frac{|f(A)+C|^{2}}{|A|}|f(A)+C|^{3}|A+A|^{3 / 2}|A| \log |A|
$$

which, after rearranging, gives

$$
|f(A)+C|^{10}|A+A|^{9} \gg \frac{|A|^{24}}{(\log |A|)^{2}}
$$

4.3. Proof of Theorem 1.3. Observe that the Cauchy-Schwarz inequality applied twice tells us that

$$
\frac{|A|^{24}}{|A+f(A)|^{6}} \leq E(A, f(A))^{6} \leq E(A, A)^{3} E(f(A), f(A))^{3}
$$

so that after applying (3.5) and (3.8), with either $C=A$ or $C=f(A)$,

$$
\begin{aligned}
\frac{|A|^{26}}{|A+f(A)|^{6} \leq} \leq & |A|^{2} E_{1.5}(A)^{2}|A+f(A)|^{2}|A| E_{1.5}(f(A))^{2}|A+f(A)|^{2}|A| \\
= & \left(E_{1.5}(A)^{2}|f(A)|^{2}\right)\left(E_{1.5}(f(A))^{2}|A|^{2}\right)|A+f(A)|^{4} \\
\leq & E_{3}(A) E_{3}(f(A)) E(A, A+f(A)) \\
& \times E(f(A), A+f(A))|A+f(A)|^{4}
\end{aligned}
$$

where the last inequality is a consequence of two applications of Lemma 2.1 . Next apply (3.7) and (3.10), again with either $C=A$ or $C=f(A)$, to get $\frac{|A|^{26}}{|A+f(A)|^{6}} \leq|A+f(A)|^{8}|A|^{2}(\log |A|)^{2} E(A, A+f(A)) E(f(A), A+f(A))$. Finally, apply (3.6) and (3.9), still with either $C=A$ or $C=f(A)$, to obtain

$$
\frac{|A|^{26}}{|A+f(A)|^{6}} \leq|A+f(A)|^{13}|A|^{2}(\log |A|)^{2}
$$

Then, after rearranging, we get

$$
|A+f(A)| \gg \frac{|A|^{24 / 19}}{(\log |A|)^{2 / 19}}
$$

Acknowledgements. The first-named author was supported by the NSF of China (11001174). The second-named author would like to thank Misha Rudnev for many helpful conversations.

References

[ENR] G. Elekes, M. Nathanson and I. Ruzsa, Convexity and sumsets, J. Number Theory 83 (1999), 194-201.
[ES] P. Erdős and E. Szemerédi, On sums and products of integers, in: Studies in Pure Mathematics; to the Memory of Paul Turán, Birkhäuser, Basel, 1983, 213-218.
[KK] N. H. Katz and P. Koester, On additive doubling and energy, SIAM J. Discrete Math. 24 (2010), 1684-1693.
[L] L. Li, On a theorem of Schoen and Shkredov on sumsets of convex sets, arXiv:1108. 4382.
[SS1] T. Schoen and I. Shkredov, Higher moments of convolutions, arXiv:1110.2986.
[SS2] T. Schoen and I. Shkredov, On sumsets of convex sets, Combin. Probab. Comput. 20 (2011), 793-798.
[Sol1] J. Solymosi, Bounding multiplicative energy by the sumset, Adv. Math. 222 (2009), 402-408.
[Sol2] J. Solymosi, On the number of sums and products, Bull. London Math. Soc. 37 (2005), 491-494.
[ST] E. Szemerédi and W. T. Trotter Jr., Extremal problems in discrete geometry, Combinatorica 3 (1983), 381-392.

Liangpan Li
Department of Mathematical Sciences
Loughborough University
Loughborough, LE11 3TU, UK
E-mail: liliangpan@gmail.com

Oliver Roche-Newton
Department of Mathematics
University of Bristol University Walk
Bristol, BS8 1TW, UK
E-mail: maorn@bristol.ac.uk

[^0]: 2010 Mathematics Subject Classification: Primary 11B75.
 Key words and phrases: sumset, difference set, productset, convexity, additive energy.

