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On the diaphony of some finite hybrid point sets
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1. Introduction. This work continues the exploration of the b-adic
method introduced in [6, 7]. It is motivated by recent advances on hybrid
point sets in the theory of uniform distribution of sequences in the multidi-
mensional unit cube [0, 1)s, in particular by [18].

By a point set we mean, here and in the following, a sequence of points
(either finite or infinite) in the s-dimensional unit cube, i.e., points are al-
lowed to occur repeatedly.

The b-adic method employs structural properties of the compact group
of b-adic integers to derive techniques for the analysis of the uniform distri-
bution of point sets in [0, 1)s (see [6, 7, 8, 10]). Its central elements are par-
ticular function classes derived from the characters of the compact group Zb
of b-adic integers.

Hybrid sequences are sequences of points in [0, 1)s where certain coor-
dinates of the points stem from one lower-dimensional sequence and the
remaining coordinates from a second lower-dimensional sequence. This idea
was proposed by Spanier in [34], who suggested mixing quasi-Monte Carlo
and Monte Carlo methods. Recently, considerable advances for the discrep-
ancy of hybrid sequences have been achieved, in a series of papers by Nieder-
reiter [25]–[29] (see also [30]).

Obviously, the idea of mixing different types of point sets can be extended
to more than two components, an idea that was dealt with in the recent
paper [8], where general new tools for the analysis of hybrid sequences were
introduced, based on a hybrid function system involving trigonometric, p-
adic, and Walsh functions. We are going to make use of crucial results from
[8] in this work.
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In this paper, we study a new notion of diaphony, namely the hybrid
diaphony (see [8]) of a special sort of a finite hybrid sequence that has first
been introduced in [18], the mix of a Halton sequence in prime bases and
a lattice point set modulo a prime. We derive a previously unknown upper
bound on the diaphony of such point sets. Our technique shows how to
employ the b-adic method for this kind of problems and exhibits, for the first
time, the interplay between classical techniques for estimating particular
exponential sums and the new hybrid approach.

Let us outline the problem under consideration in the next two sections.

1.1. Basic definitions and the b-adic function system. We recall
the following concepts from [7, 8, 10].

Throughout this paper, b denotes a positive integer, b ≥ 2, and b =
(b1, . . . , bs) stands for a vector of not necessarily distinct integers bi ≥ 2, 1 ≤
i ≤ s. Further, p denotes a prime, and p = (p1, . . . , ps) represents a vector
of not necessarily distinct primes pi, 1 ≤ i ≤ s. We write N for the positive
integers, and we put N0 = N ∪ {0}. We will use the standard convention
that empty sums have the value 0 and empty products the value 1.

We consider the s-dimensional torus Rs/Zs, which will be identified with
the half-open interval [0, 1)s. We put e(y) = e2πiy for y ∈ R, where i is the
imaginary unit.

For a nonnegative integer k, let k =
∑

j≥0 kjb
j , kj ∈ {0, 1, . . . , b− 1}, be

the unique b-adic representation of k in base b. With the exception of at
most finitely many indices j, the digits kj are equal to 0. Every real num-
ber x ∈ [0, 1) has a b-adic representation x =

∑
j≥0 xjb

−j−1, with digits

xj ∈ {0, 1, . . . , b− 1}. If x is a b-adic rational, which means that x = ab−g,
a and g integers, 0 ≤ a < bg, g ∈ N, and if x 6= 0, then there exist two such
representations. The b-adic representation of x is uniquely determined under
the condition that xj 6= b− 1 for infinitely many j. In the following, we will
call this particular representation the regular (b-adic) representation of x.

Let Zb denote the compact group of the b-adic integers. We refer the
reader to Hewitt and Ross [11] and Mahler [23] for details. An element z of
Zb will be written in the form z =

∑
j≥0 zjb

j , with digits zj ∈ {0, 1, . . . , b−1}.
The set Z of integers is embedded in Zb. If z ∈ N0, then at most finitely
many digits zj are different from 0. If z ∈ Z, z < 0, then at most finitely
many digits zj are different from b− 1. In particular, −1 =

∑
j≥0(b− 1)bj .

Definition 1.1. The map ϕb : Zb → [0, 1) given by ϕb(
∑

j≥0 zjb
j) =∑

j≥0 zjb
−j−1 (mod 1) will be called the b-adic Monna map.

The restriction of ϕb to N0 is often called the radical-inverse function in
base b. The Monna map is surjective, but not injective. It may be inverted
in the following sense.
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Definition 1.2. We define the pseudoinverse ϕ+
b of the b-adic Monna

map ϕb by

ϕ+
b : [0, 1)→ Zb, ϕ+

b

(∑
j≥0

xjb
−j−1

)
=
∑
j≥0

xjb
j ,

where
∑

j≥0 xjb
−j−1 stands for the regular b-adic representation of the ele-

ment x ∈ [0, 1).

The image of [0, 1) under ϕ+
b is the set Zb\(−N). Furthermore, ϕb◦ϕ+

b is
the identity map on [0, 1), and ϕ+

b ◦ ϕb the identity on N0 ⊂ Zb. In general,
z 6= ϕ+

b (ϕb(z)) for z ∈ Zb. For example, if z = −1, then ϕ+
b (ϕb(−1)) =

ϕ+
b (0) = 0 6= −1.

A central point in the concept of b-adic function systems introduced in
[10] is the enumeration of the dual group Ẑb. Namely, Ẑb can be written
in the form Ẑb = {χb,k : k ∈ N0}, where χb,k : Zb → {c ∈ C : |c| = 1},
χb,k(

∑
j≥0 zjb

j) = e(ϕb(k)(z0 + z1b+ · · · )). We note that χb,k depends only
on a finite number of digits of z and, hence, this function is well defined.

As in [8, 10], we employ the function ϕ+
b to lift the characters χb,k to the

torus.

Definition 1.3. For k ∈ N0, let γb,k : [0, 1) → {c ∈ C : |c| = 1},
γb,k(x) = χb,k(ϕ

+
b (x)), denote the kth b-adic function. We put Γb = {γb,k :

k ∈ N0} and call it the b-adic function system on [0, 1).

The preceding notions are easily generalized to the higher-dimensional
case. Let b = (b1, . . . , bs) be a vector of not necessarily distinct integers
bi ≥ 2, let x = (x1, . . . , xs) ∈ [0, 1)s, let z = (z1, . . . , zs) denote an ele-
ment of the compact product group Zb = Zb1 × · · · × Zbs of b-adic integers,
and let k = (k1, . . . , ks) ∈ Ns0. We define ϕb(z) = (ϕb1(z1), . . . , ϕbs(zs)),
and ϕ+

b (x) = (ϕ+
b1

(x1), . . . , ϕ+
bs

(xs)). Moreover, let χb,k(z) =
∏s
i=1 χbi,ki(zi),

where χbi,ki ∈ Ẑbi , and define γb,k(x) =
∏s
i=1 γbi,ki(xi), where γbi,ki ∈ Γbi ,

1 ≤ i ≤ s. Then γb,k = χb,k ◦ ϕ+
b . Let Γ

(s)
b = {γb,k : k ∈ Ns0} denote the

b-adic function system in dimension s. It was shown in [10] that Γ
(s)
b is an

orthonormal basis of L2([0, 1)s).

Definition 1.4. Let k ∈ Z. The kth trigonometric function ek is defined
as ek : [0, 1)→ C, ek(x) = e(kx). For k = (k1, . . . , kd) ∈ Zd, the kth trigono-

metric function ek is defined as ek : [0, 1)d → C, ek(x) =
∏d
i=1 e(kixi),

x = (x1, . . . , xd) ∈ [0, 1)d. The trigonometric function system in dimension
d ≥ 1 is denoted by T (d) = {ek : k ∈ Zd}.

Remark 1.5. For given s and d, let us write a point x ∈ [0, 1)s+d in
the form x = (x(1),x(2)) with x(1) ∈ [0, 1)s and x(2) ∈ [0, 1)d. For a given
index k = (k(1),k(2)) ∈ Ns0×Zd, the functions γb,k(1) ⊗ ek(2) : [0, 1)s+d → C,
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x = (x(1),x(2)) 7→ γb,k(1)(x(1))ek(2)(x(2)), define the hybrid function sys-
tem

Γ
(s)
b ⊗ T (d) = {γb,k(1) ⊗ ek(2) : (k(1),k(2)) ∈ Ns0 × Zd}.

This system is an orthonormal basis of the space L2([0, 1)s+d). We refer to
[8] for this kind of notions and generalizations.

1.2. The problem dealt with in this paper. In many applications of
mathematics, such as numerical integration by means of quasi-Monte Carlo
methods (see, e.g., [1, 2, 20, 22, 24, 33]), or function approximation (see,
e.g, [21]), one is in need of point sets which are evenly distributed in the
unit cube. There are several well-known types of point sets with this dis-
tribution property, one of the most important being the Halton sequences
(cf. [4]).

Definition 1.6. Let b = (b1, . . . , bs) be a vector of s not necessarily
distinct integers bi ≥ 2. The s-dimensional Halton sequence to the bases
b1, . . . , bs (or to the base b) is defined to be the sequence ω = (ωn)n≥0 in
[0, 1)s, where

ωn = ϕb(n), n ≥ 0.

A Halton sequence is uniformly distributed if the bases b1, . . . , bs are
coprime, which can, e.g., be conveniently achieved by choosing the bases
as distinct primes (see, e.g., [20]). We shall use this assumption in this pa-
per.

In addition to infinite point sets, such as Halton sequences, there are
important finite sequences of, say, N elements in [0, 1)d, where N is fixed
and their definition depends in some way on N . One prominent example is
that of lattice point sets. We refer to [24] or [33] for excellent introductions
to this topic. The definition of a lattice point set, introduced by Korobov
[16] and Hlawka [12], is as follows.

Definition 1.7. Let N be a positive integer and let g = (g1, . . . , gd)
be a d-dimensional vector of positive integers. The lattice point set ω =
(ωn)N−1

n=0 with generating vector g, consisting of N points in [0, 1)d, is de-
fined by

ωn =

({
ng1

N

}
, . . . ,

{
ngd
N

})
, 0 ≤ n ≤ N − 1,

where {·} denotes the fractional part of a number. For short, we write

ωn =

({
ng

N

})
, 0 ≤ n ≤ N − 1.

It is of great interest to find out how well the points of a given point
set are spread in the unit cube. There are different quality measures for
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assessing the uniformity of distribution of a point set. For example, there is
the well-known concept of discrepancy (see, e.g., [1], [20], or [24]). Apart from
discrepancy, there are other ways for assessing the quality of distribution of
a point set, such as diaphony. The diaphony of a point set is one of the
most common assessment criteria for the quality of distribution of a given
point set, and it is closely related to the worst case integration error of a
QMC integration rule based on this point set (see, e.g, [31]). The classical
diaphony was first introduced by Zinterhof [35], and it was later modified
to the concepts of dyadic (Walsh) diaphony by Hellekalek and Leeb [9],
to the b-adic (Walsh) diaphony by Grozdanov and Stoilova [3], and to the
so-called p-adic diaphony by Hellekalek [7]. For assessing the diaphony of
hybrid point sets, we need the more general notion of hybrid diaphony, which
was introduced in [8]. The following notation stems from [8] and has been
adapted for our purposes.

For a given base b = (b1, . . . , bs) of integers bi ≥ 2, and a vector k ∈ Ns0,
k = (k1, . . . , ks), define

ρbi(ki) =

{
1 if ki = 0,

b
−2(j−1)
i if bj−1

i ≤ ki < bji for j ∈ N,

for 1 ≤ i ≤ s, and put ρb(k) =
∏s
i=1 ρbi(ki).

Furthermore, for a positive integer t and a vector k ∈ Zd, define

rt(ki) =

{
1 if ki = 0,

|ki|−t if ki 6= 0,

for 1 ≤ i ≤ d and put rt(k) =
∏d
i=1 rt(ki).

For an integer vector k = (k(1),k(2)) ∈ Ns0 × Zd, we define the weight

function ρ(k) = ρb(k(1))r2(k(2)).

Moreover, we put

(1) σ =
( s∏
i=1

(1 + bi)
)(

1 +
π2

3

)d
.

We are now ready to define the measure of uniform distribution that will
be studied in this paper.

Definition 1.8. Let ω(1) = (ω
(1)
n )N−1

n=0 be a point set in [0, 1)s, and let

ω(2) = (ω
(2)
n )N−1

n=0 be a point set in [0, 1)d. Furthermore, let ω = (ωn)N−1
n=0 be

the (s+d)-dimensional point set defined by ωn = (ω
(1)
n ,ω

(2)
n ), 0 ≤ n ≤ N−1.

Moreover, let p = (p1, . . . , ps) be a vector of not necessarily distinct primes
pi. The hybrid diaphony of the (s+ d)-dimensional sequence ω with respect

to the function system Γ
(s)
p ⊗ T (d) is given by
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FN (ω)

:=


1

σ − 1

∑
k(1)∈Ns0
k(2)∈Zd

(k(1),k(2))6=0

ρ(k(1),k(2))

∣∣∣∣ 1

N

N−1∑
n=0

γp,k(1)(ω(1)
n )ek(2)(ω(2)

n )

∣∣∣∣2


1/2

.

Remark 1.9. A more general version of the hybrid diaphony involving
also Walsh functions can be found in [8]. There it was shown that the hybrid
diaphony is a normalized measure of uniformity of distribution, i.e., it always
takes on values in [0, 1] and takes on low values if and only if a point set is
evenly spread in the unit cube.

Let us, in the next step, introduce a special choice of a finite point set
ω that we are going to be concerned with in this paper. In what follows, let

• ω(1) = (ω
(1)
n )∞n=0 be an s-dimensional Halton sequence to the base

p = (p1, . . . , ps) (from now on we always assume that p1, . . . , ps are s
distinct primes),

• ω(2) = (ω
(2)
n )N−1

n=0 be a d-dimensional lattice point set with N points,
generated by a vector g ∈ Zs, where we assume that N > 2 is a prime
different from p1, . . . , ps, and
• ω = (ωn)N−1

n=0 be the (s+d)-dimensional finite hybrid point set defined

by (ωn)N−1
n=0 = (ω

(1)
n ,ω

(2)
n )N−1

n=0 .

We emphasize that we always assume ω to be of the form above throughout
the rest of the paper.

The logical question when dealing with ω is how evenly it is distributed
in the unit cube, and, as outlined above, one may consider different quality
criteria for this purpose. For instance, the discrepancy of ω was studied in
[18], where it was shown that ω is, for clever choices of the vector g, a low
discrepancy point set. Here we would like to further advance the results of
[18] and study a different way of measuring the quality of distribution of ω.
As ω is a hybrid point set, it is near at hand to consider its hybrid diaphony
with a particular choice of the underlying function systems, as described in
Definition 1.8.

The rest of the paper is structured as follows. In Section 2, we show
that there exist generating vectors g ∈ Zd such that the hybrid point set ω
obtained by mixing the first N points of a Halton sequence in prime bases
with a lattice point set generated by g has low diaphony. In Section 3, we
outline that one can even restrict oneself to very particular choices of g
and still obtain strong diaphony bounds. Finally, we summarize our main
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findings in Section 4 and discuss the relation of our results to other prob-
lems.

2. The diaphony of the mixture of Halton and lattice point
sets. Within this section, let ω, as defined in Section 1.2, be the mixture of
the first N points of an s-dimensional Halton sequence and a d-dimensional
lattice point set.

We are going to show the following theorem.

Theorem 2.1. Let ω(1) = (ω
(1)
n )∞n=0 be an s-dimensional Halton se-

quence to the base p = (p1, . . . , ps), where p1, . . . , ps are s distinct primes.
Let N be a prime different from p1, . . . , ps. Then there exists g ∈ {1, . . . ,
N − 1}d such that the point set ω = (ωn)N−1

n=0 = (ω
(1)
n ,ω

(2)
n )N−1

n=0 , where

ω
(2)
n = {ng/N} for 0 ≤ n ≤ N − 1, satisfies

FN (ω) ≤ c(logN)s+d+1

N
,

where c is a positive constant that is independent of N .

Proof. We introduce some further notation. Choose positive integers
m1, . . . ,ms, where each mi is minimal such that N2 ≤ pmii . We put

∆p,s(N) := {k = (k1, . . . , ks) ∈ Ns0 : ki < pmii , 1 ≤ i ≤ s},

and ∆∗p,s(N) := ∆p,s(N) \ {0}. By ∆pi,1(N) and ∆∗pi,1(N) we mean the
one-dimensional analogues of ∆p,s(N) and ∆∗p,s(N) with respect to the ith
component.

Furthermore, we write

Cd(N
2) := {k ∈ Zd : ‖k‖∞ ≤ N2/2} and C∗d(N2) := Cd(N

2) \ {0}.

We also write

Ξp,s,d(N) := ∆p,s(N)× Cd(N2) and Ξ∗p,s,d(N) := Ξp,s,d(N) \ {0}.

Finally, let

δ := max

{
2

(1 + π2/3)N2/2
, max

1≤i≤s

pi
(pi + 1)pmii

}
.

Using this notation, we invoke Corollary 5 of [8] to obtain

F 2
N (ω) ≤ σ(s+ d)δ

σ − 1

+
1

σ − 1

∑
(k(1),k(2))∈Ξ∗p,s,d(N)

ρp(k(1))r2(k(2))
∣∣∣∑(k(1),k(2))

∣∣∣2,
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where σ is defined as in (1), and

(2)
∣∣∣∑(k(1),k(2))

∣∣∣ :=

∣∣∣∣ 1

N

N−1∑
n=0

γp,k(1)(ω(1)
n )ek(2)(ω(2)

n )

∣∣∣∣.
The above bound on F 2

N (ω) can be written in the form

(3) F 2
N (ω) ≤ c1

N2
+ c2

∑
(k(1),k(2))∈Ξ∗p,s,d(N)

ρp(k(1))r2(k(2))
∣∣∣∑(k(1),k(2))

∣∣∣2,
where c1, c2 > 0 are constants that might depend on the pi and s, but
not on N . We shall frequently use constants cl in our estimates, always
tacitly assuming that the cl are positive and independent of N . The indices
l = 1, 2, . . . are used to indicate that the constants may be different from
each other.

We now study the term∑
(k(1),k(2))∈Ξ∗p,s,d(N)

ρp(k(1))r2(k(2))
∣∣∣∑(k(1),k(2))

∣∣∣2
=

∑
k(1)∈∆∗p,s(N)

ρp(k(1))
∣∣∣∑(k(1),0)

∣∣∣2 +
∑

k(2)∈C∗d (N2)

r2(k(2))
∣∣∣∑(0,k(2))

∣∣∣2
+

∑
k(1)∈∆∗p,s(N)

k(2)∈C∗d (N2)

ρp(k(1))r2(k(2))
∣∣∣∑(k(1),k(2))

∣∣∣2 =:
∑

1
+
∑

2
+
∑

3
.

For
∑

1, we can write∑
1

=
∑

k(1)∈∆∗p,s(N)

ρp(k(1))

∣∣∣∣ 1

N

N−1∑
n=0

γp,k(1)(ω(1)
n )

∣∣∣∣2.
This expression was studied in [31], where it was shown that∑

1
≤ π2

3

1

N2

(
− 1 +

s∏
j=1

(
1 + (1 + 2 logbj N)b2j

))
≤ c3

(logN)s

N2
.

We therefore obtain

(4) F 2
N (ω) ≤ c1

N2
+ c2c3

(logN)s

N2
+ c2

∑
2

+c2

∑
3
.

Let 〈·, ·〉 denote the usual inner or dot product. For
∑

2 we have∑
2

=
∑

k(2)∈C∗d (N2)

r2(k(2))

∣∣∣∣ 1

N

N−1∑
n=0

e(〈k(2),ω(2)
n 〉)

∣∣∣∣2

=
∑

k(2)∈C∗d (N2)

r2(k(2))

∣∣∣∣ 1

N

N−1∑
n=0

e

(
1

N
〈k(2), g〉n

)∣∣∣∣2 =
∑

k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2)).
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Finally, we deal with
∑

3. For every k(1) = (k
(1)
1 , . . . , k

(1)
s ) ∈ ∆∗p,s(N),

there is a unique subset u 6= ∅ of [s] := {1, . . . , s} such that k
(1)
i ∈ ∆∗pi,1(N)

if i ∈ u and k
(1)
i = 0 otherwise. Let pu denote the projection of p onto the

components which are contained in u. Furthermore, define

∆+
pu,|u|

(N) :=
∏
i∈u

∆∗pi,1(N),

and write
∑

u(k
(1),k(2)) for the obvious adaption of

∑
(k(1),k(2)) with re-

spect to u.
Using this notation, we have∑

3
=

∑
k(1)∈∆∗p,s(N)

k(2)∈C∗d (N2)

ρp(k(1))r2(k(2))
∣∣∣∑(k(1),k(2))

∣∣∣2

=
∑

k(2)∈C∗d (N2)

r2(k(2))
∑
∅6=u⊆[s]

∑
k(1)∈∆+

pu,|u|
(N)

ρpu
(k(1))

∣∣∣∑
u

(k(1),k(2))
∣∣∣2,

which yields

(5)∑
3

=
∑
∅6=u⊆[s]

∑
k(2)∈C∗d (N2)

r2(k(2))
∑

k(1)∈∆+
pu,|u|

(N)

ρpu
(k(1))

∣∣∣∑
u

(k(1),k(2))
∣∣∣2.

For u ⊆ [s], u 6= ∅, let us write

(6)
∑∗

u
:=

∑
k(2)∈C∗d (N2)

r2(k(2))
∑

k(1)∈∆+
pu,|u|

(N)

ρpu
(k(1))

∣∣∣∑
u

(k(1),k(2))
∣∣∣2.

We first deal with the special case u = [s] in (6), which simplifies no-
tational issues. The other cases will be dealt with later. For this particular
instance, the term under consideration simplifies to

(7)
∑∗

[s]
=

∑
k(2)∈C∗d (N2)

r2(k(2))
∑

k(1)∈∆+
p,s(N)

ρp(k(1))
∣∣∣∑(k(1),k(2))

∣∣∣2

=
∑

k(2)∈C∗d (N2)

r2(k(2))

m1∑
j1=1

· · ·
ms∑
js=1

( s∏
i=1

p
−2(ji−1)
i

) p1−1∑
r1=1

· · ·
ps−1∑
rs=1

∑
A
,

where k(1) = (k
(1)
1 , . . . , k

(1)
s ) and where∑

A
:=

(r1+1)p
j1−1
1 −1∑

k
(1)
1 =r1p

j1−1
1

· · ·
(rs+1)pjs−1

s −1∑
k
(1)
s =rsp

js−1
s

∣∣∣∑(k(1),k(2))
∣∣∣2

=

(r1+1)p
j1−1
1 −1∑

k
(1)
1 =r1p

j1−1
1

· · ·
(rs+1)pjs−1

s −1∑
k
(1)
s =rsp

js−1
s

∣∣∣∣ 1

N

N−1∑
n=0

e

(
1

N
〈k(2), g〉n

)
e(〈ϕp(k(1)),1〉n)

∣∣∣∣2.
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Note that

e(〈ϕp(k(1)),1〉n) =
s∏
i=1

e(ϕpi(k
(1)
i )n).

For ri ∈ {1, . . . , pi−1} and k
(1)
i ∈ {rip

ji−1
i , . . . , (ri+1)pji−1

i −1}, the base pi

expansion of k
(1)
i has the form

k
(1)
i = k

(1)
i,0 + k

(1)
i,1 pi + · · ·+ k

(1)
i,ji−2p

ji−2
i + rip

ji−1
i .

We then obtain

ϕpi(k
(1)
i ) =

1

pjii
(ri + k

(1)
i,ji−2pi + · · ·+ k

(1)
i,0 p

ji−1
i )

=
1

pjii
(ri + pi(k

(1)
i,ji−2 + · · ·+ k

(1)
i,0 p

ji−2
i )) =

1

pjii
(ri + piai,ji),

where we write

ai,ji := k
(1)
i,ji−2 + · · ·+ k

(1)
i,0 p

ji−2
i

for short. Note that the integer ai,ji runs through {0, 1, . . . , pji−1
i − 1} if k

(1)
i

runs through the set {ripji−1
i , . . . , (ri + 1)pji−1

i − 1}. Hence we obtain

∑
A

=

p
j1−1
1 −1∑
a1,j1=0

· · ·
pjs−1
s −1∑
as,js=0

∣∣∣∣ 1

N

N−1∑
n=0

e

(
1

N
〈k(2), g〉n

) s∏
i=1

e

(
n(ri + piai,ji)

pjii

)∣∣∣∣2.
Also note that, for any i ∈ {1, . . . , s} and any ji ∈ {1, . . . ,mi}, the term

ri + piai,ji is coprime to pjii . Plugging it into (7), we can therefore write

(8)
∑∗

[s]
=

∑
k(2)∈C∗d (N2)

r2(k(2))

m1∑
j1=1

· · ·
ms∑
js=1

( s∏
i=1

p
−2(ji−1)
i

) p1−1∑
r1=1

· · ·
ps−1∑
rs=1

×
p
j1−1
1 −1∑
a1,j1=0

· · ·
pjs−1
s −1∑
as,js=0

∣∣∣∣ 1

N

N−1∑
n=0

e

(
1

N
〈k(2), g〉n

) s∏
i=1

e

(
n(ri + piai,ji)

pjii

)∣∣∣∣2

=
∑

k(2)∈C∗d (N2)

r2(k(2))

m1∑
j1=1

· · ·
ms∑
js=1

( s∏
i=1

p
−2(ji−1)
i

)∑
B
,

where

∑
B

:=

p
j1
1 −1∑
x1=0

(x1,p
j1
1 )=1

· · ·
pjss −1∑
xs=0

(xs,p
js
s )=1

∣∣∣∣ 1

N

N−1∑
n=0

e

(
1

N
〈k(2), g〉n

) s∏
i=1

e

(
nxi

pjii

)∣∣∣∣2.
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Let us now study

∑
B

=
1

N2

p
j1
1 −1∑
x1=0

(x1,p
j1
1 )=1

· · ·
pjss −1∑
xs=0

(xs,p
js
s )=1

(N−1∑
n=0

e

(
1

N
〈k(2), g〉n

) s∏
i=1

e

(
nxi

pjii

))
(9)

×
(N−1∑
m=0

e

(
−1

N
〈k(2), g〉m

) s∏
i=1

e

(
−mxi
pjii

))

=
1

N2

N−1∑
n=0

e

(
1

N
〈k(2), g〉n

)N−1∑
m=0

e

(
−1

N
〈k(2), g〉m

)

×
p
j1
1 −1∑
x1=0

(x1,p
j1
1 )=1

· · ·
pjss −1∑
xs=0

(xs,p
js
s )=1

s∏
i=1

e

(
(n−m)xi

pjii

)

=
1

N2

N−1∑
n=0

e

(
1

N
〈k(2), g〉n

)N−1∑
m=0

e

(
−1

N
〈k(2), g〉m

)

×
s∏
i=1

p
ji
i −1∑
xi=0

(xi,p
ji
i )=1

e

(
(n−m)xi

pjii

)
.

For 1 ≤ i ≤ s, we can write, using the fact that pi is a prime,

∑
B,i

:=

p
ji
i −1∑
xi=0

(xi,p
ji
i )=1

e

(
(n−m)xi

pjii

)

=

p
ji
i −1∑
xi=0

e

(
(n−m)xi

pjii

)
−

p
ji
i −1∑
xi=0

(xi,p
ji
i )>1

e

(
(n−m)xi

pjii

)

=

p
ji
i −1∑
xi=0

e

(
(n−m)xi

pjii

)
−
p
ji−1
i −1∑
xi=0

e

(
(n−m)xipi

pjii

)

=

p
ji
i −1∑
xi=0

e

(
(n−m)xi

pjii

)
−
p
ji−1
i −1∑
xi=0

e

(
(n−m)xi

pji−1
i

)
.

A short consideration shows that
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∑
B,i

=


pjii − p

ji−1
i if n−m ≡ 0 (pjii ) (Case 1),

−pji−1
i if n−m 6≡ 0 (pjii ) and n−m ≡ 0 (pji−1

i ) (Case 2),

0 if n−m 6≡ 0 (pjii ) and n−m 6≡ 0 (pji−1
i ) (Case 3).

Note that we need not deal with the situation where n and m are such
that Case 3 holds for some i, since then

∑
B is zero. Hence, we only need

to deal with n and m such that either Case 1 or Case 2 holds for all i in
{1, . . . , s}. Also note that we always have∣∣∣∑

B,i

∣∣∣ ≤ pj1i − pji−1
i .

In order to shorten notation we write, for given n ∈ {0, . . . , N−1} and given
i ∈ {1, . . . , s},

m ∈

{
Θ1(n, i) if n−m ≡ 0 (pjii ) (Case 1),

Θ2(n, i) if n−m 6≡ 0 (pjii ) and n−m ≡ 0 (pji−1
i ) (Case 2).

Since
∑

B is a nonnegative real, we have
∑

B = |
∑

B |. Hence, inserting this
back into (9), we obtain∑

B
≤ 1

N2

( s∏
i=1

(pjii − p
ji−1
i )

)
×
∑
v⊆[s]

∣∣∣∣N−1∑
n=0

e

(
1

N
〈k(2), g〉n

) N−1∑
m=0

m∈Θ1(n,i), i∈v
m∈Θ2(n,i), i 6∈v

e

(
−1

N
〈k(2), g〉m

)∣∣∣∣

≤ 1

N2

s∏
i=1

(pjii − p
ji−1
i )

∑
v⊆[s]

∣∣∣∣ p
j1
1 −1∑
R1=0

· · ·
pjss −1∑
Rs=0

N−1∑
n=0

∀i:n≡Ri (p
ji
i )

e

(
1

N
〈k(2), g〉n

)

×
N−1∑
m=0

m∈Θ1(n,i), i∈v
m∈Θ2(n,i), i/∈v

e

(
−1

N
〈k(2), g〉m

)∣∣∣∣.
Consider now a fixed v ⊆ [s]. Note that, for given n, given R1, . . . , Rs, and
for i /∈ v, the condition m ∈ Θ2(n, i) is equivalent to

(10) m 6≡ Ri (pjii ) ∧m ≡ Ri (pji−1
i ).

Also note that for any i ∈ [s] \ v there exists a set {λi,1, . . . , λi,pi−1} of
cardinality pi − 1 such that (10) holds if and only if

m ≡ λi,ti (pjii )

for some ti ∈ {1, . . . , pi − 1}. Hence we obtain



Diaphony of some finite hybrid point sets 269

∑
B
≤ 1

N2

s∏
i=1

(pjii − p
ji−1
i )

∑
v⊆[s]

p
j1
1 −1∑
R1=0

· · ·
pjss −1∑
Rs=0

∣∣∣∣ N−1∑
n=0

∀i:n≡Ri (p
ji
i )

e

(
1

N
〈k(2), g〉n

)∣∣∣∣
×
p1−1∑
t1=1

· · ·
ps−1∑
ts=1

∣∣∣∣ N−1∑
m=0

m≡Ri (p
ji
i ), i∈v

m≡λi,ti (p
ji
i ), i/∈v

e

(
−1

N
〈k(2), g〉m

)∣∣∣∣.

Let us now consider the term

(11)

∣∣∣∣ N−1∑
n=0

∀i:n≡Ri(p
ji
i )

e

(
1

N
〈k(2), g〉n

)∣∣∣∣
for some fixed R1, . . . , Rs. Since p1, . . . , ps are coprime, there is exactly one
residue ρ1 modulo Q = pj11 · · · p

js
s with the property that the index n satisfies

the required congruences in (11). Consequently, the system of congruences

n ≡ Ri (pjii ), 1 ≤ i ≤ s, holds if and only if

n ∈ {νQ+ ρ1, 0 ≤ ν ≤ bN/Qc − 1 + θ1},
where θ1 ∈ {0, 1}. Therefore,∣∣∣∣ N−1∑

n=0
n≡Ri (p

ji
i )

e

(
1

N
〈k(2), g〉n

)∣∣∣∣ =

∣∣∣∣ bN/Qc−1+θ1∑
ν=0

e

(
1

N
〈k(2), g〉(νQ+ ρ1)

)∣∣∣∣
=

∣∣∣∣ bN/Qc−1+θ1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣ ≤ ∣∣∣∣ bN/Qc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣+ 1.

In exactly the same fashion, we obtain∣∣∣∣ N−1∑
m=0

m≡Ri (p
ji
i ), i∈v

m≡λi,ti (p
ji
i ), i/∈v

e

(
−1

N
〈k(2), g〉m

)∣∣∣∣ ≤ ∣∣∣∣ bN/Qc−1∑
ν=0

e

(
−1

N
〈k(2), g〉νQ

)∣∣∣∣+ 1.

Since Q is independent of v, the Ri, and the ti, we get∑
B
≤ 1

N2

( s∏
i=1

pjii

)
2s
( s∏
i=1

pjii

)( s∏
i=1

pi

)(∣∣∣∣ bN/Qc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣+1

)2

= c4
Q2

N2

(∣∣∣∣ bN/Qc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣+ 1

)2

.

Now we insert this back into (8), which yields
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(12)
∑∗

[s]
≤ c4

∑
k(2)∈C∗d (N2)

r2(k(2))

m1∑
j1=1

· · ·
ms∑
js=1

( s∏
i=1

p
−2(ji−1)
i

)

× Q2

N2

(∣∣∣∣ bN/Qc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣+ 1

)2

=
c5

N2

∑
k(2)∈C∗d (N2)

r2(k(2))

m1∑
j1=1

· · ·
ms∑
js=1

(∣∣∣∣ bN/Qc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣+ 1

)2

=
c5

N2

∑
k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))

m1∑
j1=1

· · ·
ms∑
js=1

(⌊
N

Q

⌋
+ 1

)2

+
c5

N2

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

r2(k(2))

m1∑
j1=1

· · ·
ms∑
js=1

(∣∣∣∣ bN/Qc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣+ 1

)2

≤ c6(logN)s
∑

k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))

+
c5

N2

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

m1∑
j1=1

· · ·
ms∑
js=1

r2(k(2))

(∣∣∣∣ bN/Qc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQ

)∣∣∣∣+1

)2

.

Let us now return to the sums
∑∗

u defined in (6). Let ∅ 6= u ⊆ [s] be
arbitrarily chosen, and write

u = {υ1, . . . , υ|u|}.

In analogy to the derivation of (12), we get∑∗

u
≤ c7(logN)|u|

∑
k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))

+
c7

N2

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2
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≤ c7(logN)s
∑

k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))

+
c7

N2

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2

,

where Qu :=
∏|u|
i=1 b

jυi
i .

Putting all these estimates together and plugging them into (5), we ob-
tain ∑

3
≤

∑
∅6=u⊆[s]

c7(logN)s
∑

k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))

+
∑
∅6=u⊆[s]

c7

N2

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2

= c8(logN)s
∑

k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))

+
∑
∅6=u⊆[s]

c7

N2

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2

.

Plugging our results for
∑

2 and
∑

3 into (4), and simplifying the constants,
we obtain the bound

F 2
N (ω) ≤ c9

(logN)s

N2
+ c10(logN)s

∑
k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))(13)
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+
c11

N2

∑
∅6=u⊆[s]

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2

.

Let us now study ∑
k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2))

in greater detail. Let us define

E∗d(N2) := {(k(2)
1 , . . . , k

(2)
d ) ∈ C∗d(N2) : k

(2)
j ≡ 0 (N) for all j, 1 ≤ j ≤ d},

and G∗d(N
2) := C∗d(N2) \ E∗d(N2). Note that for k(2) ∈ E∗d(N2) the condi-

tion 〈k(2), g〉 ≡ 0 (N) is trivially fulfilled. Furthermore, the components of
k(2) ∈ E∗d(N2) must all be multiples of N . We then obviously have∑

k(2)∈C∗d (N2)

〈k(2),g〉≡0 (N)

r2(k(2)) =
∑

k(2)∈E∗d(N2)

r2(k(2)) +
∑

k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

r2(k(2))

≤
(

1 + 2

∞∑
z=1

1

z2N2

)d
− 1 +

∑
k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

r2(k(2))

≤ c12

N2
+

∑
k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

r2(k(2)).

On the other hand, for k(2) ∈ E∗d(N2), the condition 〈k(2), g〉 6≡ 0 (N)
can never be fulfilled, so

∑
∅6=u⊆[s]

∑
k(2)∈C∗d (N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

(∣∣∣∣ bN/Quc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2
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=
∑
∅6=u⊆[s]

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

(∣∣∣∣ bN/Quc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2

,

and we arrive at

(14) F 2
N (ω) ≤ c13

(logN)s

N2
+ c10(logN)s

∑
k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

r2(k(2))

+
c11

N2

∑
∅6=u⊆[s]

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r2(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)2

=

(
c14

(logN)s/2

N

)2

+
∑

k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

(c15(logN)s/2r1(k(2)))2

+
∑
∅6=u⊆[s]

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

×
mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

(
c16r1(k(2))

N

(∣∣∣∣ bN/Quc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

))2

.

Since all summands in (14) are nonnegative, we can apply an inequality
which is sometimes (incorrectly) referred to as Jensen’s inequality ([5]) to
obtain

F 2
N (ω) ≤

[
c14

(logN)s/2

N
+

∑
k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

c15(logN)s/2r1(k(2))

+
∑
∅6=u⊆[s]

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

c16r1(k(2))

N

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)]2

.
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Writing r(·) instead of r1(·), we obtain

FN (ω) ≤ c14
(logN)s/2

N
+ c15(logN)s/2

∑
k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

r(k(2))(15)

+ c16
1

N

∑
∅6=u⊆[s]

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)
.

We would now like to show the existence of a generating vector g such
that the above bound on FN (ω) is small. To this end, we average over all
g = (g1, . . . , gd) ∈ {1, . . . , N − 1}d. We then first study

M1 :=
1

(N − 1)d

N−1∑
g1=1

· · ·
N−1∑
gd=1

∑
k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

r(k(2))

=
1

(N − 1)d

∑
k(2)∈G∗d(N2)

r(k(2))
N−1∑
g1=1

· · ·
N−1∑
gd=1

〈k(2),g〉≡0 (N)

1.

Let now k(2) ∈ G∗d(N
2) be fixed. Due to the definition of G∗d(N

2), there

must be at least one component of k(2) which is not congruent 0 modulo N .

Let d0 ∈ {1, . . . , d} be the maximal index such that this is the case for k
(2)
d0

.
We then have

N−1∑
g1=1

· · ·
N−1∑
gd=1

〈k(2),g〉≡0 (N)

1 = (N − 1)d−d0
N−1∑
g1=1

· · ·
N−1∑
gd0=1

k
(2)
1 g1+···+k(2)d0 gd0≡0 (N)

1.

Given k(2) and g1, . . . , gd0−1, there exists at most one solution gd0 ∈
{1, . . . , N − 1} to the congruence

k
(2)
1 g1 + · · ·+ k

(2)
d0
gd0 ≡ 0 (N),

so we obtain
N−1∑
g1=1

· · ·
N−1∑
gd=1

〈k(2),g〉≡0 (N)

1 ≤ (N − 1)d−1,

and thus



Diaphony of some finite hybrid point sets 275

M1 ≤ c17
1

N

∑
k(2)∈G∗d(N2)

r(k(2)) ≤ c18
(logN)d

N
,

where we used a well-known estimate for sums of the form
∑K

k=1 |k|−1, which
can be found, e.g., in [24].

In the next step, let us, for fixed u ⊆ [s], u 6= ∅, study the expression

M2,u :=
1

(N − 1)d

N−1∑
g1=1

· · ·
N−1∑
gd=1

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)

≤
∑

k(2)∈G∗d(N2)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r(k(2))

+
1

(N − 1)d

N−1∑
g1=1

· · ·
N−1∑
gd=1

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r(k(2))

×
∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣
≤ c19(logN)s+d +

1

(N − 1)d

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

∑
k(2)∈G∗d(N2)

r(k(2))

×
N−1∑
g1=1

· · ·
N−1∑
gd=1

〈k(2),g〉6≡0 (N)

∣∣∣∣ bN/Quc−1∑
ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣.
Note that, in the last line, Qu is coprime to N and 〈k(2), g〉 6≡ 0 (N). Conse-
quently, the remainder of Qu〈k(2), g〉, which will be denoted by f(Qu,k

(2), g)
in the following, is also incongruent 0 modulo N . Using a well-known result
that is outlined, e.g., in [32, p. 334], we get∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣ =

∣∣∣∣ bN/Quc−1∑
ν=0

e

(
〈k(2), g〉Qu

N
ν

)∣∣∣∣
≤ N

min{f(Qu,k
(2), g), N − f(Qu,k

(2), g)}
.
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Let now k(2) ∈ G∗d(N2) be fixed. Again, due to the definition of G∗d(N
2),

there must be a maximal index d0 such that k
(2)
d0
6≡ 0 (N). Hence we can

write
N−1∑
g1=1

· · ·
N−1∑
gd=1

〈k(2),g〉6≡0 (N)

N

min{f(Qu,k
(2), g), N − f(Qu,k

(2), g)}

= (N − 1)d−d0
N−1∑
g1=1

· · ·

· · ·
N−1∑
gd0=1

k
(2)
1 g1+···+k(2)d0 gd0 6≡0 (N)

N

min{f(Qu,k
(2), g), N − f(Qu,k

(2), g)}
.

As in the analysis of M1, since k
(2)
d0
6≡ 0 (N), for given g1, . . . , gd0−1 there

is exactly one integer a ∈ {0, . . . , N − 1} such that

k
(2)
1 g1 + · · ·+ k

(2)
d0−1gd0−1 + k

(2)
d0
a ≡ 0 (N).

Hence,

k
(2)
1 g1 + · · ·+ k

(2)
d0
gd0 6≡ 0 (N)

whenever gd0 ∈ {0, 1 . . . , N − 1} \ {a}. Accordingly,

(N−1)d−d0
N−1∑
g1=1

· · ·
N−1∑
gd0=1

k
(2)
1 g1+···+k(2)d0 gd0 6≡0 (N)

N

min{f(Qu,k
(2), g), N−f(Qu,k

(2), g)}

≤ (N − 1)d−d0
N−1∑
g1=1

· · ·
N−1∑

gd0−1=1

N−1∑
gd0=0
gd0 6=a

N

min{f(Qu,k
(2), g), N − f(Qu,k

(2), g)}
.

However, if gd0 runs through all of {0, . . . , N − 1} \ {a}, the dot product

k
(2)
1 g1 + · · ·+k

(2)
d0
gd0 runs, modulo N , through all of {1, . . . , N−1}. Further-

more, as Qu is coprime to N , the values of f(Qu,k
(2), g) also run through

the whole set {1, . . . , N − 1}. Hence,

(N − 1)d−d0
N−1∑
g1=1

· · ·
N−1∑

gd0−1=1

N−1∑
gd0=0
gd0 6=a

N

min{f(Qu,k
(2), g), N − f(Qu,k

(2), g)}

≤ Nd−d0
N−1∑
g1=1

· · ·
N−1∑

gd0−1=1

N−1∑
z=1

N

min{z,N − z}
≤ c20N

d logN,
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where we used another well-known estimate that can be found in [32]. We
obtain

M2,u ≤ c19(logN)s+d + c20 logN

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

∑
k(2)∈G∗d(N2)

r(k(2))

≤ c21(logN)s+d+1.

Finally, combining our estimates for M1 and M2,u shows the existence of
a generating vector g such that the point set ω satisfies

FN (ω) ≤ c(logN)s+d+1

N
,

with a positive constant c not depending on N , as claimed.

By Theorem 2.1 we have shown the existence of lattice point sets having,
when combined with the first N points of Halton sequences, low diaphony
and hence good uniform distribution properties. With Theorem 2.1, the
search for a corresponding “good” generating vector is possible, but the
search space is of cardinality (N − 1)d. In the next section, we show how to
reduce the search space.

3. Korobov-type generating vectors. A cardinality (N−1)d of can-
didate vectors for g renders a practical search infeasible for high values of
N and/or d. However, we can improve on this result by considering a very
special choice of generating vectors only. These vectors g are of the form
g = (g, g2, . . . , gd) for some g ∈ {1, . . . , N − 1}, and are usually referred
to as Korobov-type generating vectors (cf. [17]). Frequently, one deals with
Korobov-type generating vectors of the form g = (1, g, g2, . . . , gd−1), but it
is for technical reasons more useful to consider the slightly modified form
g = (g, g2, . . . , gd). In the next theorem, we are going to show the existence
of Korobov-type generating vectors g such that for the mixture of a lat-
tice point set generated by g with a Halton sequence, we still obtain low
diaphony.

Theorem 3.1. Let ω(1) = (ω
(1)
n )∞n=0 be an s-dimensional Halton se-

quence to the base p = (p1, . . . , ps), where p1, . . . , ps are s distinct primes.
Let N be a prime different from p1, . . . , ps. Then there exists a vector g =
(g, g2, . . . , gd) with g ∈ {1, . . . , N−1} such that the point set ω = (ωn)N−1

n=0 =

(ω
(1)
n ,ω

(2)
n )N−1

n=0 , where ω
(2)
n = {ng/N} for 0 ≤ n ≤ N − 1, satisfies

FN (ω) ≤ c(logN)s+d+1

N
,

where c is a constant that is independent of N .
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Proof. The proof of the theorem is in many ways similar to that of
Theorem 2.1. Thus, we only point out those passages different from the
proof in Section 2. In the same way as above, we arrive at an inequality
which is the same as (15), where we had

FN (ω) ≤ c14
(logN)s/2

N
+ c15(logN)s/2

∑
k(2)∈G∗d(N2)

〈k(2),g〉≡0 (N)

r(k(2))

+ c16
1

N

∑
∅6=u⊆[s]

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)
.

We average over the possible generating vectors g = ρ(g) := (g, g2, . . . , gd)
for g ∈ {1, . . . , N − 1}. To this end, let us first consider the quantity

M1,K :=
1

(N − 1)

∑
k(2)∈G∗d(N2)

r(k(2))

N−1∑
g=1

g=ρ(g)

〈k(2),g〉≡0 (N)

1.

For a given k(2) = (k
(2)
1 , . . . , k

(2)
d ) ∈ G∗d(N), there exists a maximal d0 such

that k
(2)
d0
6≡ 0 (N), and so the congruence

gk
(2)
1 + g2k

(2)
2 + · · ·+ gdk

(2)
d ≡ 0 (N)

has at most d0 ≤ d solutions. Therefore,

M1,K ≤ c22
(logN)d

N − 1
,

where c22 > 0 is another constant independent of N .

In the next step, let us, for fixed u ⊆ [s], u 6= ∅, study the expression

M2,u,K :=
1

N − 1

N−1∑
g=1

g=ρ(g)

∑
k(2)∈G∗d(N2)

〈k(2),g〉6≡0 (N)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

r(k(2))

×
(∣∣∣∣ bN/Quc−1∑

ν=0

e

(
1

N
〈k(2), g〉νQu

)∣∣∣∣+ 1

)
.
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In exactly the same way as in the proof of Theorem 2.1, we see that

M2,u,K ≤ c23(logN)s+d +
1

(N − 1)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

∑
k(2)∈G∗d(N2)

r(k(2))

×
N−1∑
g=1

g=ρ(g)

〈k(2),g〉6≡0 (N)

N

min{f(Qu,k
(2), g), N − f(Qu,k

(2), g)}

= c23(logN)s+d +
1

(N − 1)

mυ1∑
jυ1=1

· · ·
mυ|u|∑
jυ|u|=1

∑
k(2)∈G∗d(N2)

r(k(2))

×
N−1∑
a=1

N−1∑
g=1

g=ρ(g)

〈k(2),g〉≡a (N)

N

min{f(Qu,k
(2), g), N − f(Qu,k

(2), g)}
.

Similar to what we outlined for M1,K , the congruence

gk
(2)
1 + g2k

(2)
2 + · · ·+ gdk

(2)
d ≡ a (N),

which is equivalent to

(16) − a+ gk
(2)
1 + g2k

(2)
2 + · · ·+ gdk

(2)
d ≡ 0 (N),

has at most d0 ≤ d solutions g. Therefore, using the same methods as in the
proof of Theorem 2.1, we obtain

M2,u,K = c24((logN)s+d+1).

The rest of the proof follows exactly the lines of that of Theorem 2.1.

Remark 3.2. We remark that bounding M2,u,K in the proof of Theorem
3.1 would not work if we considered generating vectors g=(1, g, g2, . . . , gd−1)
instead of those considered here, since in this case (16) might have N − 1

solutions g if k
(2)
1 = a and k

(2)
2 = · · · = k

(2)
d = 0.

4. Remarks and conclusion. In this paper, we have considered hybrid
point sets ω, which are built from Halton sequences and lattice point sets.
Under some fairly general assumptions on the bases of the Halton sequence
and on the cardinality of the lattice point set, we have shown that there
always exist generating vectors g of a d-dimensional lattice point set, such
that, if we combine the lattice point set with the first N points of an s-
dimensional Halton sequence, we obtain a diaphony of order

O
(

(logN)s+d+1

N

)
,
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where the implied constant is independent of N . For non-hybrid point
sets, such as s-dimensional (pure) Halton sequences or (t, s)-sequences, it is
known that one can achieve a diaphony of order N−1(logN)s/2 (cf. [19] and
[31]). Therefore, we see that the hybrid sequences considered here can have
a diaphony which is close to that of non-hybrid quasi-Monte Carlo point
sets, up to logN -terms. On the other hand, it seems that there is no easy
way to obtain a diaphony of order, say, N−1(logN)(s+d)/2, as our additional
logN -terms were caused by having to apply “Jensen’s inequality” before
averaging over g (see the step after (14)).

Furthermore, similarly to what is stated in the conclusion of [18], it
would be beneficial to not only have existence results for good generating
vectors or existence results for good Korobov-type generating vectors, but
also construction algorithms, e.g., component-wise constructions, for such
generating vectors. This problem will be pursued in future research work.

Finally, we would like to point out that our Theorems 2.1 and 3.1 imply
the existence of vectors g such that if we mix the lattice point set generated
by g with a Halton sequence, we obtain low diaphony. Note, however, that∑

2 in the proof of our results is essentially the usual diaphony of a pure
lattice point set. Therefore, we can conclude that any vector g that guar-
antees low diaphony of our hybrid point sets, automatically guarantees low
diaphony of the pure lattice point sets contained in the hybrid point sets.

Acknowledgements. P. Kritzer would like to thank P. Hellekalek for
his hospitality during his visits to the Department of Mathematics at the
University of Salzburg, and he would also like to thank F. Pillichshammer
for discussions and comments.

Research of P. Hellekalek was supported by the University of Salzburg,
projects P1884/5-2009 and P1884/4-2010.

P. Kritzer gratefully acknowledges the support of the Austrian Science
Fund (Project P23389-N18).

References

[1] J. Dick and F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory
and Quasi-Monte Carlo Integration, Cambridge Univ. Press, Cambridge, 2010.

[2] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture
Notes in Math. 1651, Springer, Berlin, 1997.

[3] V. S. Grozdanov and S. S. Stoilova, On the theory of b-adic diaphony, C. R. Acad.
Bulgare Sci. 54 (2001), no. 3, 31–34.

[4] J. H. Halton, On the efficiency of certain quasi-random sequences of points in eval-
uating multi-dimensional integrals, Numer. Math. 2 (1960), 84–90.

[5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press,
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Gleichverteilungsmethoden, Österreich Akad. Wiss. Math.-Natur. Kl. Sitzungsber.
II 185 (1976), 121–132.

Peter Hellekalek
Fachbereich Mathematik
Universität Salzburg
Hellbrunnerstr. 34
5020 Salzburg, Austria
E-mail: peter.hellekalek@sbg.ac.at

Peter Kritzer
Institut für Finanzmathematik

Universität Linz
Altenbergerstr. 69
4040 Linz, Austria

E-mail: peter.kritzer@jku.at

Received on 22.12.2011
and in revised form on 11.6.2012 (6916)


	Introduction
	Basic definitions and the bold0mu mumu bbbbbb-adic function system
	The problem dealt with in this paper

	The diaphony of the mixture of Halton and lattice point sets
	Korobov-type generating vectors
	Remarks and conclusion

