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Introduction. In a long series of papers in Acta Arithmetica, János
Pintz gave remarkable elementary proofs of theorems concerning L(s, χ),
with χ the Kronecker symbol attached to a fundamental discriminant −D.
These include theorems of Hecke, Landau, Siegel, Page, Deuring, and Heil-
bronn [8]–[13]. In [11], for example, he gives his version of the Deuring phe-
nomenon [2]: under the very strong assumption that the class number satis-
fies h(−D) ≤ log3/4D, he obtains a zero free region for ζ(s)L(s, χ). As the
reviewer in Math. Reviews noted, by Siegel’s theorem this can hold for only
finitely many D (with an ineffective constant). Subsequently the Goldfeld–
Gross–Zagier theorem shows this can happen for only finitely many D with
an effective constant (1). This is unfortunate, as the proof Pintz gave actu-
ally depends on the fact that the exponent of the class group C(−D) (v. the
order) is small.

In [12] he gives an elementary version of (the contrapositive of) the Heil-
bronn phenomenon [4]: a zero off the critical line of an L-function L(s, χk)
attached to any primitive real character can be used to give lower bounds
on L(1, χ). The same Math. Reviews reviewer called the proof “ingenious
and quite brief” (2).

Pintz’s idea is very roughly as follows: With λ denoting the Liouville
function, the convolution 1∗λ is the characteristic function of squares. Thus
for ρ a hypothetical zero of L(s, χk) with Re(ρ) > 1/2, one can consider
finite sums of the form ∑

n<X

χk(n)

nρ
1 ∗ λ(n).
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(1) In fact there are 61 such fundamental discriminants, all with −1555 ≤ −D.

(2) See also [6], [7, §4.2] for an elementary proof by Motohashi which is based on the
Selberg sieve.
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Since χk(m
2) = 1 or 0, one can compare this sum to a partial sum of

ζ(2ρ), and obtain a lower bound. Pintz decomposes the sum into two pieces,
carefully chosen so that L(ρ, χk) = 0 shows one piece is not too big, and
therefore the other piece is not too small. But if L(1, χ) were small due to
the existence of a Landau–Siegel zero, χ would be a good approximation
to λ, and (he can show) this second term would necessarily be small.

In this paper we adapt the method of [12] to apply to ζ(s), and thus give
an elementary demonstration of the Deuring phenomenon. Because ζ(s) does
not converge even conditionally in the critical strip, we assume first that D
is even, and consider instead

φ(s) = (21−s − 1)ζ(s) =
∑
n

(−1)n

ns
.

Suppose ρ = β + iγ is a zero of ζ(s) off the critical line. Let δ/2π be the
fractional part of log 2 · γ/2π so that for integer n,

log 2 · γ = 2πn+ δ, −π < δ ≤ π, 2−iγ = exp(−iδ).
Theorem 1. If β > 7/8 and |δ| > π/100, then for any real primitive

character χ modulo D ≡ 0 mod 4, D > 109, we have the lower bound

L(1, χ) >
1

5400 · U12(1−β) log3 U
,

where U = |ρ|D1/4 logD.

The proof actually gives some kind of nontrivial bound as long as β>5/6.
We assume β > 7/8 simply to get a precise constant in the theorem.

In the last section we discuss general D, adapting the proof with Ra-
manujan sums cq(n) for a fixed prime q |D.

Arithmetic function preliminaries. Generalizing Liouville’s λ func-
tion, we begin by defining λodd(n) via

λodd(n) =

{
0 if n is even,

λ(n) if nis odd.
So ∞∑

n=1

λodd(n)

ns
=
ζ(2s)

ζ(s)
(1 + 2−s),

and the convolution 1 ∗ λodd(n) satisfies

1 ∗ λodd(n) =

{
1 if n = m2 or n = 2m2,

0 otherwise.

With τ(n) the divisor function and ν(n) the number of distinct primes
dividing n, we have

1 ∗ λ(n) =
∑
d|n

2ν(d)λ(d)τ(n/d).
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(One needs to verify this only for n = pk as both sides are multiplicative.)
We generalize this by defining τodd(n) to be the number of odd divisors of n,
so that

1 ∗ λodd(n) =
∑
d|n

2ν(d)λodd(d)τodd(n/d).

(For n odd this follows from λodd(d) = λ(d) and τodd(n/d) = τ(n/d), while
for n = 2k both sides are equal to 1.)

Following Pintz we define, relative to the quadratic character χ mod-
ulo D, sets

Aj = {u : p |u⇒ χ(p) = j} for j = −1, 0, 1,

C = {c = ab : a ∈ A1, b ∈ A0}.
We are assuming that 2 ∈ A0, so integers in A−1 and A1 are odd. We factor
an arbitrary n as

n = abm = cm, where a ∈ A1, b ∈ A0, m ∈ A−1, c ∈ C.
We then see that

• for a ∈ A1, 1 ∗ χ(a) = τ(a) = τodd(a),
• for b ∈ A0, 1 ∗ χ(b) = 1,
• for m ∈ A−1, 1 ∗ χ(m) = 1 ∗ λ(m) = 1 ∗ λodd(m).

Using this and multiplicativity, for n = abm = cm as above we see that

(1) 1 ∗ λodd(n) = 1 ∗ λodd(a) · 1 ∗ λodd(b) · 1 ∗ λodd(m)

=
(∑
a′|a

2ν(a
′)λodd(a′) · 1 ∗ χ(a/a′)

)(∑
b′|b

λodd(b′) · 1 ∗ χ(b/b′)
)
· 1 ∗ χ(m)

=
∑
c′|c

c′=a′b′

2ν(a
′)λodd(c′) · 1 ∗ χ(n/c′).

Lower bounds

Lemma 2.

1

25
· ζ(4β)

ζ(2β)
− U6−12β ≤

∣∣∣∣ ∑
n≤U12

(−1)n · 1 ∗ λodd(n)

nρ

∣∣∣∣.
Proof. We have∣∣∣∣ ∑
n≤U12

(−1)n · 1 ∗ λodd(n)

nρ

∣∣∣∣
≥
∣∣∣∣ ∞∑
n=1

(−1)n · 1 ∗ λodd(n)

nρ

∣∣∣∣− ∣∣∣∣ ∑
U12<n

(−1)n · 1 ∗ λodd(n)

nρ

∣∣∣∣.
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Now
∞∑
n=1

(−1)n · 1 ∗ λodd(n)

nρ
=

∞∑
m=1

(−1)m
2

m2ρ
+

∞∑
m=1

(−1)2m
2

2ρm2ρ
.

Observe that (−1)m
2

= (−1)m, and of course (−1)2m
2

= 1. This gives

(21−2ρ − 1)ζ(2ρ) + 2−ρζ(2ρ) = (1 + 2−ρ)(21−ρ − 1)ζ(2ρ).

We compare Euler products to see

1

|ζ(2ρ)|
<
ζ(2β)

ζ(4β)
, or |ζ(2ρ)| > ζ(4β)

ζ(2β)
.

Finally a calculation in Mathematica shows that

|(1 + 2−ρ)(21−ρ − 1)| > 1

25

as long as |δ| > π/100. This gives the main term of the lemma.

Meanwhile∣∣∣∣ ∑
U12<n

(−1)n · 1 ∗ λodd(n)

nρ

∣∣∣∣ ≤ ∣∣∣∣ ∑
U6<m

(−1)m

m2ρ

∣∣∣∣+

∣∣∣∣ 1

2ρ

∑
U6/
√
2<m

1

m2ρ

∣∣∣∣.
The first sum on the right is bounded by U−12β, by Abel’s inequality.
And the second sum, via Euler summation formula [1, Theorem 3.2(c)],
is O(U6−12β). In fact, the proof given there shows the implied constant can
be taken as 1/(

√
2 (2β − 1)) < 1 for β > 7/8.

Upper bounds. We now follow Pintz in writing∣∣∣∣ ∑
n≤U12

(−1)n

nρ
· 1 ∗ λodd(n)

∣∣∣∣ =

∣∣∣∣ ∑
n≤U12

(−1)n

nρ

∑
c∈C, c|n

2ν(a)λodd(c) · 1 ∗ χ(n/c)

∣∣∣∣
=: S,

via (1). We change variables n = rc, and use the fact that for odd c we have

(−1)rc = (−1)r, and λodd(c) = 0 unless c is odd.

(The fact that (−1)n is not a multiplicative function is the reason we have
introduced λodd(n).) Now

S =

∣∣∣∣ ∑
c≤U12,c∈C

2ν(a)λodd(c)

cρ

∑
r≤U12/c

(−1)r

rρ
· 1 ∗ χ(r)

∣∣∣∣ ≤ Σ′1 +Σ′2,
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where

Σ′1 =
∑
c≤U6

c∈C

2ν(a)

cβ

∣∣∣∣ ∑
r≤U12/c

(−1)r

rρ
· 1 ∗ χ(r)

∣∣∣∣,
Σ′2 =

∑
U6<c≤U12

c∈C

2ν(a)

cβ

∑
r≤U12/c

1 ∗ χ(r)

rβ
.

Using the inequalities

2ν(a) ≤ 1 ∗ χ(c) ≤ τodd(c) ≤ τ(c), 1 ∗ χ(r) ≤ τ(r),

and dropping the condition c ∈ C in the outer sums, we see that

Σ′1 ≤ Σ1 =
∑
n≤U6

τ(n)

nβ

∣∣∣∣ ∑
r≤U12/n

(−1)r

rρ
· 1 ∗ χ(r)

∣∣∣∣,
Σ′2 ≤ Σ2 =

∑
U6<n≤U12

1 ∗ χ(n)

nβ

∑
r≤U12/n

τ(r)

rβ
.

Remark. The main idea of the proof is to use the fact that ζ(ρ) = 0 to
show that Σ1 cannot be too big. This then implies that Σ2 cannot be too
small, from which we can bound L(1, χ) from below.

Lemma 3. We estimate the inner sum in Σ1 as∣∣∣∣∑
r≤y

(−1)r

rρ

∑
d|r

χ(d)

∣∣∣∣ < 2

3
· y1/2−β|ρ|D1/4 logD log(y/

√
D).

Proof. We write (−1)r = (−1)ld. Since we are assuming D is even,
χ(d) = 0 unless d is odd and so (−1)ld = (−1)l. This gives∣∣∣∣∑
r≤y

(−1)r

rρ

∑
d|r

χ(d)

∣∣∣∣ =

∣∣∣∣∑
d≤y

χ(d)

dρ

∑
l≤y/d

(−1)l

lρ

∣∣∣∣
≤
∣∣∣∣∑
d≤z

χ(d)

dρ

∑
l≤y/d

(−1)l

lρ

∣∣∣∣+

∣∣∣∣ ∑
l≤y/z

(−1)l

lρ

∑
z<d≤y/l

χ(d)

dρ

∣∣∣∣.
The parameter z will be chosen later to make these two terms approximately
the same size. Summation by parts [1, Theorem 4.2] gives

φ(s) =

y/d∑
l=1

(−1)l

ls
− S(y/d)

(y/d)s
+ s

∞�

y/d

S(x)− S(y/d)

xs+1
dx,

where S(x) =
∑

n≤x(−1)n is −1 or 0. Set s = ρ and use φ(ρ) = 0; we bound
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the integral getting∣∣∣∣s ∞�
y/d

S(x)− S(y/d)

xs+1
dx

∣∣∣∣ ≤ |ρ|
β(y/d)β

,

∣∣∣∣S(y/d)

(y/d)s

∣∣∣∣ ≤ 1

(y/d)β
.

So we claim ∣∣∣∣ y/d∑
l=1

(−1)l

lρ

∣∣∣∣ ≤ |ρ|
β(y/d)β

,

since 1 < 1/β and [3] shows that 1012 < |ρ|.
Thus we can estimate the first term in the previous sum:∣∣∣∣∑

d≤z

χ(d)

dρ

∑
l≤y/d

(−1)l

lρ

∣∣∣∣ ≤∑
d≤z

1

dβ
· |ρ|
β(y/d)β

=
z|ρ|
yββ

.

Another summation by parts gives∑
z<d≤y/l

χ(d)

ds
=
SD(y/l)

(y/l)s
− SD(z)

zs
+ s

y/l�

z

SD(x)− SD(
√
y)

xs+1
dx,

where SD(x) =
∑

n≤x χ(n). By the Pólya–Vinogradov inequality [1, Theo-

rem 8.21], |SD(x)| <
√
D logD. Neglecting the boundary terms as before,

we bound the integral as∣∣∣∣ ∑
z<d≤y/l

χ(d)

dρ

∣∣∣∣ ≤ |ρ|
√
D logD

βzβ
,

and so bound the second sum above as∣∣∣∣ ∑
l≤y/z

(−1)l

lρ

∑
z<d≤y/l

χ(d)

dρ

∣∣∣∣ ≤ ∑
l≤y/z

|ρ|
√
D logD

βlβzβ
=
|ρ|
√
D logD

β

∑
l≤y/z

1

lβzβ
.

Now∑
l≤y/z

1

lβzβ
=
y1−β

z

∑
l≤y/z

1

lβ(y/z)1−β
<
y1−β

z

∑
l≤y/z

1

lβ · l1−β
∼ y1−β log(y/z)

z
,

where the inequality follows since l < y/z. This gives, for the second sum,
the bound

|ρ|
√
D logD

β
· y

1−β log(y/z)

z
.

Comparing the two estimates, we see they are approximately the same
size when

z

yβ
=

√
Dy1−β

z
, or z = D1/4y1/2.
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Combining the two sum estimates, and with

1

β
<

6

5
and 1 <

log(y/
√
D) logD

18
,

we have

y1/2−β|ρ|D1/4

β
+
y1/2−β|ρ| log(y/

√
D)D1/4 logD

2β

<
6

5

(
1

18
+

1

2

)
y1/2−β log(y/

√
D)|ρ|D1/4 logD

=
2

3
y1/2−β log(y/

√
D)|ρ|D1/4 logD.

Lower bounds again. Applying Lemma 3 with y = U12/n, so U6 <
y < U12, we get

Σ1 < 8U6−12β logU |ρ|D1/4 logD
∑
n≤U6

τ(n)√
n

= 8U7−12β logU
∑
n≤U6

τ(n)√
n
.

With an estimate by the standard ‘method of the hyperbola’ (e.g. [5, (2.9),
p. 37]), we get ∑

n≤X

τ(n)√
n

= X1/2(2 logX + 4C − 4) +O(1).

Thus

Σ1 < 96U10−12β log2 U,

and so, for β > 5/6, Σ1 is small. In fact, from

1

25
· ζ(4β)

ζ(2β)
− U6−12β ≤ Σ1 +Σ2,

Mathematica tells us 1/50 < Σ2 when β > 7/8 and U > 1016. (We are
assuming D > 109, and Gourdon [3] has verified the Riemann Hypothesis
for the first 1013 zeros. Therefore our hypothetical ρ satisfies |ρ| > 2.4 ·1012,
so necessarily U = |ρ|D1/4 logD > 1016.)

We now convert the lower bound for Σ2 to a lower bound for L(1, χ).
Recall that

Σ2 =
∑

U6<n≤U12

1 ∗ χ(n)

nβ

∑
r≤U12/n

τ(r)

rβ
.

Writing r−β = r1−β/r and using r1−β < U12(1−β)nβ−1 we see that

1

50
< Σ2 < U12(1−β)

∑
U6<n≤U12

1 ∗ χ(n)

n

∑
r≤U12/n

τ(r)

r
.
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The ‘method of the hyperbola’ argument shows in [5, Ex. 11.2.1 (g)] (3) that∑
U6≤n≤U12

1 ∗ χ(n)

n
= log(U6)L(1, χ) +O(D1/4U−3 logD log(U6))

= log(U6)L(1, χ) +O(U−2 log(U6))

= log(U6)(L(1, χ) +O(U−2)).

Meanwhile one more application of this same tool (along with Euler sum-
mation) gives ∑

r<X

τ(r)

r
=

1

2
log2X + 2C logX +O(1).

So ∑
r≤U12/n

τ(r)

r
∼ 1

2
log2(U12/n) <

1

2
log2(U6),

as U6 < n. Finally

1

50
< Σ2 < U12(1−β) log(U6)(L(1, χ) +O(U−2)) · 1

2
log2(U6)

= 108U12(1−β) log3 U (L(1, χ) +O(U−2)).

The implied constant is no worse than 6, and

U−2 =
1

|ρ|2
√
D log2D

<
1√
D
,

so the theorem follows.

The general case. We fix a prime q |D and consider

∞∑
n=1

cq(n)

ns
= (q1−s − 1)ζ(s),

where cq(n) is the Ramanujan sum

cq(n) =

q−1∑
k=1

exp(2πikn/q) =

{−1 if (n, q) = 1,

q − 1 if q |n.

(Observe that c2(n) = (−1)n.) Since |
∑

n<x cq(n)| < q, the Dirichlet series
converges conditionally for Re(s) > 0. The Ramanujan sums are not multi-
plicative in n, but we have cq(dm) = cq(m) if (d, q) = 1. Instead of λodd we
define a function λq(n) = 0 if q |n. The proof goes through as before. We

(3) The implied constant in that exercise, combining six big Oh terms with implied
constant equal to 1, can be taken to be 6.
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find that in Lemma 2 we have
∞∑
n=1

cq(n) · 1 ∗ λq(n)

nρ
= (1 + q−ρ)(1− q1−ρ)ζ(2ρ),

so the trivial zeros along Re(s) = 1 when γ = 2πn/log q still cause a problem.
In fact, the constant 1/25 in Lemma 2 which works for q = 2 is a decreasing
function of q in the general case.
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