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1. Introduction. We study the arithmetic structure of elliptic curves
over k(t), where k is an algebraically closed field. In [9] Shioda shows how one
may determine the rank of the Néron–Severi group of a Delsarte surface—a
surface that may be defined by four monomial terms. To this end, he de-
scribes an explicit method of computing the Lefschetz number of a Delsarte
surface. He proves the universal bound of 56 on the rank of an elliptic curve
defined by an equation of the form y2 = x3 + atnx + btm over k(t), where
k is an algebraically closed field of characteristic zero. In [10] Shioda shows
that the rank of 68 is obtained for the curve y2 = x3 + t360 + 1 over C(t),
and this is the current rank record for an elliptic curve over C(t). In recent
work, Heijne [5] characterizes all Delsarte elliptic surfaces. He determines 42
models of Delsarte elliptic curves and shows, through explicit computation,
that 68 is the maximal rank over k(t), k algebraically closed of characteristic
zero.

By relating a Delsarte surface to a Fermat surface, Shioda is able to ex-
ploit the relationship between divisor classes on his surface and the Mordell–
Weil group of its generic fiber. He shows in [10] that a Delsarte surface admits
a dominant rational map from a Fermat surface, and a Fermat surface is
dominated by a product of Fermat curves, [11]. In [2] the author uses sim-
ilar ideas to describe a more flexible construction of elliptic surfaces. We
explicitly construct families of surfaces, dominated by products of curves,
with the additional property that they retain this DPC property under base
extension. The Néron–Severi group of a product of curves may be expressed
in terms of divisorial correspondences on the product, and Ulmer [12] uses
this relationship to prove an explicit formula for the ranks of the Jacobians
of the curves constructed in [2]. He produces elliptic curves with rank at
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least 13 over C(t), and Occhipinti [7] produces an elliptic curve over F̄p(t)
whose ranks over the fields F̄p(t1/d) grow at least linearly with d prime to p.

The goal of this note is to show that the large rank examples obtained
via our construction are rare. We determine all elliptic curves arising from
the construction in [2], and we find that, for all but finitely many families,
the Mordell–Weil group of E/k(t1/d) has rank zero, for each d prime to
the characteristic of K = k(t), k an algebraically closed field of arbitrary
characteristic.

To state the main theorems, we first recall the construction and notation
in [2]. Let C and D denote smooth, projective curves over a field k, and let f
and g denote separable rational functions in k(C) and k(D), respectively. We
have a canonically defined rational map: C ×k D 99K P1

k, P 7→ [f(P ) : g(P )],
defined away from the locus of points f = g = 0 and f = g =∞. A blow-up
of this locus resolves the map to a morphism from the often singular surface
in C × D × P1, defined by the vanishing of tf − g, where t = T/S, with T
and S coordinates on P1. Let S denote a smooth, proper minimal model
of this surface over P1, with generic fiber Xf,g, a curve over K = k(t).
By construction, S is DPCT: it is dominated by a product of curves in
towers of non-constant field extensions of the form t 7→ td, d prime to the
characteristic of k. That the surface is DPC is clear; it is birational to C×D.
That this property is retained in towers is detailed in [2]. Let m := deg f
and n := deg g, let mi, m

′
i′ be the orders of the zeroes and poles of f , and

nj , n
′
j′ be the orders of the zeroes and poles of g.

1.1. Theorem ([2], [12]). Assume that

(m1, . . . ,mk,m
′
1, . . . ,m

′
k′ , n1, . . . , nl, n

′
1, . . . , n

′
l′) = 1

and the characteristic of K = k(t) is relatively prime to the orders of zeros
and poles of f and g. Then the generic fiber X of a smooth projective model
S of the surface defined by the vanishing of tf(x) − g(y) is an absolutely
irreducible curve of geometric genus

g = mgD + ngC + (m− 1)(n− 1)−
∑
(i,j)

δ(mi, nj)−
∑
(i′,j′)

δ(m′i′ , n
′
j′),

where gD and gC denote the genera of the curves D and C, respectively, and
δ(a, b) = (a− 1)(b− 1)/2 + ((a, b)− 1)/2, and the sums are taken over all
pairs (i, j), (i′, j′).

Let C = D = P1. Take rational functions f and g with div(f) =∑k
i=1miai−

∑k′

i′=1m
′
i′a
′
i′ and div(g) =

∑l
j=1 njbj−

∑l′

j′=1 n
′
j′b
′
j′ , with all ai,

bj , ai′ , and aj′ denoting k-rational points, and with ai, ai′ all distinct and
bj , b

′
j′ all distinct. Write m =

∑
mi =

∑
m′i′ and n =

∑
nj =

∑
nj′ . Then

the generic fiber, Xf,g, of the surface constructed above is a bidegree (m,n)
curve birational to the curve defined by the equation tf(x)− g(y) = 0. The



Elliptic curves with bounded ranks 303

main work we present in this note is an analysis of those partitions of (m,n),
the multiplicities of the zeros and poles of f and g, for which our construc-
tion yields an absolutely irreducible curve with geometric genus one, and we
obtain the following:

1.2. Theorem.

(1) Let T := {(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 6), (4, 4), (4, 6), (5, 5),
(5, 6), (7, 7)}. Let (m,n) denote an ordered pair of positive integers
not in T , with m ≤ n. Let f and g denote rational functions with
deg f = m and deg g = n. Let Ef,g denote a curve over k(t), con-
structed as above: the generic fiber of a smooth, proper model of the
surface over P1 defined by tf − g = 0 in C × D × P1. Suppose that
Ef,g has genus one. Then f has exactly one zero and one pole.

(2) Let K = k(t), k = k̄, and let Ef,g denote an elliptic curve over K,
with defining equation as in the preceding statement: C = D = P1,
and f has exactly one zero and one pole. Let d range over non-
negative integers, prime to the characteristic of K. Then the rank of
the Mordell–Weil group of E/k(t1/d) is zero.

The proof of part (1) is computational and consists of an analysis of
our genus formula, in the case of genus one. Along the way we give explicit
models for the finitely many families of curves that are not of this form.
Part (2) is a corollary to this classification theorem and to an explicit rank
formula in [12].

2. Genus one partitions

2.1. Take C = D = P1 and construct the curve defined by tf(x) −
g(y) as above. In what follows we write deg f = rm and deg g = rn, with
gcd(deg f, deg g) = r, and m ≤ n. Set

δ0 :=
∑
i,j

δ(mi, nj), δ∞ :=
∑
i′,j′

δ(m′i′ , n
′
j′), and δ := δ0 + δ∞.

Our goal is to impose singularities with multiplicities to ensure that the
smooth model Xf,g has geometric genus one. We first explicitly determine
the maximum obtainable value for δ0 and for δ∞; we denote by δmax this
maximum value, and we show, without loss of generality, that a genus one
curve may only be obtained when δ0 = δmax or when δ0 = δmax − r/2. Fi-
nally, we describe the defining equations of all families of genus one curves
obtained through our construction. Let k and k′ denote the numbers of ze-
ros and poles of f , and let l and l′ the numbers of zeros and poles of g.
(We assume that the reader will be able to distinguish the use of k in this
context from its use to denote the field of definition of C and D throughout
this note.)
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2.2. Lemma. Given positive integers r, m and n, the maximum possible
value for δ0 over all partitions ([{mi}], [{nj}]) of the bidegree (rm, rn) is
δmax := (r2mn− rm− rn+ r)/2.

Proof. We have

δ0 =
k∑
i=1

l∑
j=1

δ(mi, nj) =
∑
i,j

(mi − 1)(nj − 1) + (mi, nj)− 1

2
,

and

δ0 =
r2mn− lrm− krn+

∑
i,j(mi, nj)

2
,

so, for fixed r, m and n, we find the maximum possible value of

D :=
k∑
i=1

l∑
j=1

(mi, nj)− lrm− krn.

When l = k = 1, we have
∑

i,j(mi, nj) = (rm, rn) = r, and D =
r−rm−rn. We show that no larger value of D may be obtained by increasing
l or k, the numbers of parts of our partitions. In what follows we suppose
an increase in k. The argument is identical if we instead assume an increase
in l.

Re-ordering terms if needed, consider a partition m′k +m′′k = mk of mk.
We show that, for each j, (mk, nj) +nj ≥ (m′k, nj) + (m′′k, nj). First suppose
nj |m′k. If nj also divides m′′k then we have equality. Otherwise, since (m′′k, nj)
divides mk, the inequality follows. If both (m′k, nj) and (m′′k, nj) are smaller
than nj then their sum is bounded by nj , and the strict inequality holds.

From this we obtain
∑l

j=1(mk, nj) ≥
∑l

j=1((m
′
k, nj) + (m′′k, nj)) − rn.

This yields

k∑
i=1

l∑
j=1

(mi, nj) ≥
k−1∑
i=1

l∑
j=1

(mk, nj) +

l∑
j=1

((m′k, nj) + (m′′k, nj))− rn,

and

(2.1)
k∑
i=1

l∑
j=1

(mi, nj)− lrm− krn

≥
k−1∑
i=1

l∑
j=1

(mi, nj) +
l∑

j=1

((m′k, nj) + (m′′k, nj))− lrm− (k + 1)rn.

No larger value for D may be obtained by increasing the number of
elements in the partitions; the maximum value for D is r − rm − rn, and
the maximum value for δ0 and for δ∞ is as claimed.
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2.3. To obtain genus one we must choose partitions of rm and rn so
that δ = 2δmax − r. Indeed, letting ga denote the arithmetic genus, we have
ga− 2δmax + r = (rm− 1)(rn− 1)− (r2mn− rm− rn+ r) + r = 1. Assume
without loss of generality that δ0 ≥ δ∞. In the remainder of this section we
find that a genus one partition is obtained only when δ0 = δ∞ = δmax− r/2
and when δ0 = δmax, δ∞ = δmax− r. We show that, for all but finitely many
bidegrees (rm, rn), it is necessary that k = k′ = 1 to obtain genus one, and
we determine all partitions that yield genus one.

We have

(2.2) δ0 =
r2mn− lrm− krn−

∑
i,j(mi, nj)

2
,

and if we assume δ0 = δmax − r/2 then we obtain the relation

(2.3) (l − 1)rm+ (k − 1)rn =
∑

(mi, nj) ≤ min{lrm, krn}.

We use the upper bound in (2.3) to prove the following:

2.4. Proposition. Suppose δ0 = δ∞ = δmax−r/2. Then (m,n) = (1, n)
and r = 2.

Proof. • We assume first that l, k 6= 1. From the upper bound in 2.3
we obtain (l − 1)rm ≤ rn and (k − 1)rn ≤ rm. Combining these yields
(k − 1)(l − 1)rm ≤ rm, and this implies that l = k = 2. Making this
substitution in (2.3) we have

(2.4) rm+rn = (m1, n1)+(m1, n2)+(m2, n1)+(m2, n2) ≤ min{2rm, 2rn}.
The upper bound in (2.4) now implies m = n and, since (m,n) = 1, our

bidegree is (r, r). The equality in (2.4) becomes 2r = (m1, n1) + (m2, n1) +
(m1, n2) + (m2, n2). Since, for j = 1, 2, we have

∑
i(mi, nj) ≤ r, each sum

is exactly r. Hence, (mi, nj) = mi = nj , and all summands are equal. When
each summand is 1, so that the common divisor is one, we obtain an irre-
ducible (2, 2) curve. Otherwise, for all i and j, we have (mi, nj) = r/2 > 1.
Hence, in order to obtain an irreducible curve we now determine the com-
plementary partitions [{m′i′}], [{n′j′}] of (rm, rn) = (r, r) which yield δ∞ =

δmax − r/2, satisfying (m′1, . . . ,m
′
i′ , n

′
1, . . . , n

′
j′ , r/2) = 1.

From the upper bound in (2.3), assuming an (r, r) curve, we find that the
only possible partitions are of the form l′ = k′ = 2 and l′ = 2, k′ = 1. (Since
m = n = 1, we need not consider the symmetric case l′ = 1, k′ = 2.) In the
first case, as above, r/2 = (m′1,m

′
2, n
′
1, n
′
2, r). Hence, our bidegree is (2, 2). In

the second case we obtain r = (r, n′1) + (r, n′2). It follows, since n′1 + n′2 = r,
that (r, n′j) = n′j for each j. If n′1 = 1 then n′2 = 1, since n′2 | r and r = 1+n′2.
So we have a (2, 2) curve. Otherwise, assume (n′1, n

′
2) = 1 but suppose,

for some positive integers k1 and k2, that r = n′1k1 = n′2k2 = n′1 + n′2. If
r = n′1n

′
2 = n′2+n′2, then r = 4, and 2 = (n′2, n

′
2, r). Otherwise we must have
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r > 4, and we have r > n′1n
′
2, since each n′i divides r, and since (n′1, n

′
2) = 1.

However, for n′1 + n′2 = r, n′i 6= 1, we have n′1n
′
2 > r, a contradiction. So we

obtain only bidegree (2, 2) curves when l, k 6= 1.
• Assuming now that k = 1 for the first partition, again setting δ0 =

δmax − r/2 yields

(l − 1)rm = (rm, n1) + (rm, n2) + · · ·+ (rm, nl) ≤ min{lrm, rn}.
The only possible set of summands is rm+rm+ · · ·+rm+rm/2+rm/2. To
ensure that the common divisor of the summands is one, we assume rm = 2.
Since r is even, it follows that r = 2 and m = 1, and we obtain families of
(2, 2n) curves.

We note that, except for the (2, 2) case described above, we have proved
that, whenever δ0 = δ∞ = δmax − r/2, our genus one (2, 2n) models are
determined by partitions of the form

[{mi}] [{nj}], [{m′i′}] [{n′j′}]
[2][2r1, . . . , 2rl−2, 2rl−1 + 1, 2rl + 1], [2][2r′1, . . . , 2r

′
l′−2, 2r

′
l′−1 + 1, 2r′l′ + 1]

We next show that the only other way to obtain a genus one curve is by
imposing singularities so that, without loss of generality, δ0 = δmax.

2.5. Proposition. Suppose a < r/2 and let δ0 = δmax−a. Then a = 0,
k = 1, and (rm, n1, . . . , nl, r) = r.

Proof. Substituting δ0 = δmax − a into equation (2.2) gives

(2.5) (l − 1)rm+ (k − 1)rn+ r − 2a =
∑

(mi, nj) ≤ min{lrm, krn}.

We first note that either l or k must be equal to one: Since a < r/2, we
have r − 2a > 0. Hence, if both l and k were greater than one, we would
have (l − 1)rm+ (k − 1)rn+ r − 2a exceeding the upper bound in (2.5).

Assuming k = 1 and l ≥ 1 in (2.5), we have (l − 1)rm + (r − 2a) =
(rm, n1) + · · · + (rm, nl). One possible solution is (rm, ni) = rm for i =
1, . . . , (l − 1), and (rm, nl) = r − 2a. With this solution rm divides ni, for

i = 1, . . . , (l− 1), and since r divides rn =
∑l

i=1 ni, it follows that r divides
nl. Since r also divides rm, r | (rm, nl) = r − 2a. Since r − 2a is positive,
it follows that a = 0, and δ0 = δmax. Hence, r divides each element of
{rm, n1, . . . , nl}

We also observe that there is no other set {(rm, nj)} satisfying (rm, n1)+
· · ·+(rm, nl) = (l−1)rm+r. Indeed, suppose for some j that (rm, nj) < rm.
We then have (rm, nj) ≤ rm/2. Hence, if two or more terms in our sum are
each less than rm, we cannot sum to (l − 1) + r.

Finally, since we assume m ≤ n, the equality in (2.5) is not satisfied for
l = 1, k ≥ 1.
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2.6. We next determine the partitions of (rm, rn) yielding δ∞ = δcmax :=
δmax − r. Further, we are only interested in those partitions that satisfy
(m′1, . . . ,m

′
k′ , n

′
1, . . . , n

′
l′ , r) = 1. Assuming δ∞ = δcmax (now writing mi, nj ,

k and l for m′i′ , n
′
l′ , k

′ and l′), we have

(2.6) (l − 1)rm+ (k − 1)rn− r =
∑

(mi, nj) ≤ min{lrm, krn}.

Except for the case where k = 1, there exist finitely many values of l and k
that satisfy this relation. We will consider each of these cases and determine
all corresponding bidegrees. Toward this end, we have the following:

2.7. Proposition. Suppose δ∞ = δcmax. Then:

(1) k = 1 and l > 1, or
(2) k = 2 and l = 2, 3, or 4, or
(3) k = l = 3, or
(4) l = 1 and k = 2 or 3.

Proof. When l = k = 1 we have δ∞ = δmax, so k = 1 implies l > 1 and
l = 1 implies k > 1. We next show that, for k > 1, l is bounded above by 4.
From the upper bound in (2.6) we obtain the relations (k − 1)n − 1 ≤ m
and (l − 1)m− 1 ≤ n. Combining these we obtain

(l − 1)m− 1 ≤ m+ 1

k − 1
and l ≤ k

m(k − 1)
+

1

k − 1
+ 1.

That l ≤ 4 follows from the second inequality above, and this bound is
obtained only when k = 2 and m = 1.

Beginning again with the bound in (2.6), we have

(2.7) (l − 1)(k − 1)n− (l − 1) ≤ n+ 1.

From this we obtain (lk − l − k)n ≤ l, and we consider three cases.

Case 1. When lk − l − k = 0, we have lk = l + k, so l = k = 2.

Case 2. When lk − l − k < 0 we have l(k − 1) < k. Either k = 1 or
l < k

k−1 < 2, so l = 1.

Case 3. Finally, take lk − l − k > 0. Then, from (2.7), we obtain n ≤
l/(lk − l − k), so we determine those l and k for which l/(lk − l − k) ≥ 1.
Setting l ≥ lk − l − k we obtain k ≤ 2l/(l − 1) = 2 + 2/(l − 1). From this
inequality it follows that l = k = 3 or k ≤ 2.

It remains to show that l = 1 implies k = 2 or k = 3. Substituting l = 1
into (2.6) we have

(2.8) (k − 1)rn− r =
∑

(mi, nj) ≤ min{rm, krn}.

From the upper bound in (2.8) we have (k − 1)rn − r ≤ rm, so n ≤
(m+1)/(k−1). Since we also assume m≤n, we have m≤n≤(m+1)/(k−1).
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From this it follows that k ≤ 3. When k = 3 we find that m = n = 1, so
we obtain bidegree (r, r). This case is identical to the case where l = 3 and
k = 1, so we will not consider this case below.

We next examine each of the cases (1)–(4) in Proposition 2.7, and we
determine all corresponding bidegrees. We show that, except for the cases
where k = 1, there are finitely many bidegrees satisfying δ∞ = δcmax, under
the additional assumption that (mi, . . . ,mk, n1, . . . , nl, r) = 1. We continue
with our assumption that m ≤ n.

2.8. Proposition. Suppose that δ∞ = δcmax, that l = k = 2, and that
(m1,m2, n1, n2, r) = 1. Then the only possible bidegrees are: (2, 4), (2, 3),
(3, 4), (3, 6), (4, 4), (4, 6), (5, 5) and (7, 7).

Proof. When l = k = 2, formula (2.6) becomes

(2.9) rm+ rn− r =
∑
i,j

(mi, nj) ≤ min {2rm, 2rn}.

The upper bound on the sum in (2.9) limits the possible values for m and n.
Indeed, first set rm+rn−r ≤ 2rm. Then rn−r ≤ rm, so n−1 ≤ m. Then,
taking rm + rn − r ≤ 2rn, we have m − 1 ≤ n. Combining these, taking
m ≤ n, we have m = n or m+ 1 = n.

2.8.1. Case 1: n = m + 1. We first assume n = m + 1 in (2.9) and
obtain 2rm =

∑
(mi, nj). To attain this sum we must have, for each j,

(m1, nj) + (m2, nj) = rm, since rm is an upper bound on the sum of these
two terms. Further, since, for each i and j, (mi, nj) is bounded by mi, and
since m1+m2 = rm, we conclude for each i and j that (mi, nj) is exactly mi.
This means that mi |nj for each i and j, so mi divides n1 + n2 = rn for
each i. We show next that each mi divides n.

Since (mi, r) divides mi, (mi, r) |nj for each i and j, so (mi, r) divides
each partition summand. Hence we must take (mi, r) = 1. Combined with
the fact that each mi divides rn, it follows that each mi divides n = m+ 1.
When m1 = m2 we find that this common value divides rm and rn, hence
it divides r. From this we must assume either m1 6= m2, or m1 = m2 = 1.
If m1 = m2 = 1 then rm = 2. When m = 2 and r = 1 we obtain bidegree
(2, 3). If m = 1 and r = 2 we obtain bidegree (2, 4).

We assume now that m1 6= m2, and since m1 and m2 divide n = m+ 1,
we have rm = m1 +m2 < 2m+ 2 ≤ 2m+ 1. From this it follows that m = 1
and r = 3, or r = 2, or r = 1.

• When m = 1 and r = 3 we obtain bidegree (3, 6).

•When r = 2 the bidegree is (2m, 2m+2), and we have m1+m2+2 = 2n.
Since m1 | (m + 1) and m2 | (m + 1), and since we assume m1 6= m2, we
have, without loss of generality, m1 ≤ m + 1 and m2 ≤ (m+ 1)/2. This
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yields m ≤ 3. When m = 3 we obtain bidegree (6, 8), and a partition with
δ∞ = δcmax leaves a common divisor in the summands. When m = 1 we
obtain bidegree (2, 4), and when m = 2 we have bidegree (4, 6).
• Finally, assume r = 1, so we have an (m,m + 1) curve, and formula

(2.9) becomes 2m =
∑

(mi, nj). Since, for each i and j, (mi, nj) = mi, we see
that mi | (n1 +n2). So mi | (m+1), which is equivalent to mi | (m1 +m2 +1).
From this we obtain m1 | (m2 + 1). It follows that either m1 = m2 = 1, or
m1 = 1 and m2 = 2. Since we assume m1 6= m2, we are in the latter case,
and we obtain bidegree (3, 4).

2.8.2. Case 2: m = n = 1. When m = n = 1 we have an (r, r) curve,
and

∑
(mi, nj) = r. When the two partitions of r are identical, so that m1 =

n1 and m2 = n2, we have
∑

(mi, nj) = m1 +m2 + (m1, n2) + (m2, n1) > r,
a contradiction. So we assume distinct partitions {[mi]}, {[nj ]} of r, and we
may also assume without loss of generality that n1 < m1 ≤ m2 < n2. This
gives us the inequalities (m1, n1) ≤ n1, (m2, n1) ≤ n1, (m1, n2) ≤ m1, and
(m2, n2) ≤ m2. We set d := (m2, n2) and consider four cases.

• Suppose first that d ≥ r/3. Since m1 ≤ m2, we have m2 ≥ r/2. Since
m2 is a multiple of d satisfying m2 ≥ r/2, we take m2 = 2d ≥ 2r/3. Then
n2 ≥ 3r/3 = r, a contradiction, so d < r/3.
• Suppose next that r/4 < d < r/3. Since m2 ≥ r/2 we have d 6= m2,

and we assume m2 = 2d and n2 = 3d. Then m1 = r − 2d and n1 = r − 3d.
We have 3r/4 < 3d, so n1 < r/4. It follows that (n1,m1) < r/4. Then,
either (n1,m2) = (n1,m1) = 1 or (n1,m2) < r/8; this is because (n1,m2)
and (n1,m1) are relatively prime, and because (n1,m2) |n1 < r/4.

Consider first the case where (n1,m2) < r/8. Since 2r/4 < 2d = m2,
we have m1 < r/2. Note also that (m1, n2) 6= m1; otherwise we would have
(m1, n1) dividing (m1,m2). So (m1, n1) would divide m1, n1 and n2, and
hence also m2, since m1 +m2 = n1 + n2 = r. So we would have a common
divisor in the partition. (If the common divisor is one, then r = 2, and
the (2, 2) curves have already been considered.) Since (m1, n2) 6= m1, we
have (m1, n2) ≤ r/4. Then, since (m2, n2) < r/3, we have

∑
(mi, nj) <

r/8 + r/4 + r/4 + r/3 = 23r/24 < r, a contradiction.
Otherwise we have (n1,m2) = (n1,m1) = 1. As above, (m1, n2) < r/2.

From these, we have the restriction r =
∑

(mi, nj) < 1 + 1 + r/2 + r/3, so
r < 12 and (m1,m2) + (m2, n2) = r − 2. Of the (r, r) bidegrees, r < 12, the
only one satisfying these conditions with r/4 < d < r/3 is a (7, 7) bidegree
with partition [1, 6], [3, 4].
• In the case where d = r/4, we obtain δcmax via an l = 2 = k partition

of a (4, 4) curve with the partition [2, 2], [3, 1].
• Finally, take (m2, n2) < r/4, and suppose that (m1, n1) = n1. Then

(m2, n1) divides m1, m2, and n1. Hence, it divides r and also n2, and there is
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a common divisor in the partition. We assume the common divisor is one, so
(m2, n1) = 1. Suppose also that (m1, n2) = m1. Then, as above, (m1, n1) =
n1 is a common divisor, so n1 = 1, and we have r =

∑
(mi, nj) < 2+3r/4, so

r < 8. Of the (r, r) bidegrees, r < 8, the only one satisfying these conditions
with d < r/4 is a (5, 5) bidegree with partition [1, 4], [2, 3].

Otherwise, (m1, n2) < m1 ≤ m1/2 ≤ r/4. Since (m1, n1) = n1 divides
m1 ≤ r/2, it follows that n1 < r/4 or n1 = 1. In each of these cases, we find
that r < 4, a contradiction, since we assume distinct partitions of m and n.

Tracing through this proof of Proposition 2.8, we obtain the following
genus one partitions:

(rm, rn) [{mi}] [{nj}], [{m′i′}] [{n′j′}]
(2, 3) [2][3], [1,1][2,1]

(2, 3) [2][2,1], [1,1][2,1]

(2.4) [2][4], [1,1][2,2]

(2.4) [2][4], [1,1][3,1]

(2.4) [2][2,2], [1,1][2,2]

(2.4) [2][2,2], [1,1][3,1]

(3, 6) [3][6], [2,1][2,4]

(3, 6) [3][3,3], [2,1][2,4]

(4, 6) [4][6], [3,1][3,3]

(4, 6) [4][4,2], [3,1][3,3]

(3, 4) [3][4], [2,1][2,2]

(3, 4) [3][3,1], [2,1][2,2]

(4, 4) [4][4], [3,1][2,2]

(5, 5) [5][5], [2,3][1,4]

(7, 7) [7][7], [3,4][[1,6]

2.9. Proposition. Suppose δ∞ = δcmax, l = k = 3 and

(m1,m2,m3, n1, n2, n3, r) = 1.

Then the bidegree is (3, 3).

Proof. Substituting l = k = 3 into (2.6) we have

(2.10) 2rm+ 2rn− r =
∑
i,j

(mi, nj) ≤ min{3rm, 3rn}.

From the upper bound in (2.10) we obtain the inequalities 2rn − r ≤ rm
and 2rm − r ≤ rn. Combining these we have n = m = 1, so we ob-
tain an (r, r) model and determine that 3r =

∑
(mi, nj). We have, for

each i,
∑

j(mi, nj) ≤ r, and for each j,
∑

i(mi, nj) ≤ r. Hence, since
the total sum of terms is 3r, we have equalities:

∑
j(mi, nj) = r and
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i(mi, nj) = r. For any fixed j, consider the sum

∑
i(mi, nj). Each term

is bounded by mi, and
∑

imi = r =
∑

i(mi, nj). Hence, each term (mi, nj)
is exactly mi. So, for each i, (mi, nj) = mi. Analogously, for fixed i, for
each j, (mi, nj) = nj . From this it follows that (mi, nj) = mi = nj for
all i and j. Since we assume (m1,m2,m3, n1, n2, n3, r) = 1, we obtain
(mi, nj) = mi = nj = 1. The bidegree is (3, 3) and we have the follow-
ing partition:

(rm, rn) [{mi}] [{nj}], [{m′i′}] [{n′j′}]
(3, 3) [3][3], [1,1,1][1,1,1]

2.10. Proposition. Suppose δ∞ = δcmax, l = 3 and k = 2 and

(m1,m2,m3, n1, n2, r) = 1.

Then the bidegrees are: (2, 3), (2, 4), (3, 6), and (4, 4).

Proof. Substituting l = 3 and k = 2 into (2.6) we have

(2.11) 2rm+ rn− r =
∑

(mi, nj) ≤ min{3rm, 2rn}.

From the upper bound in (2.11) we obtain the inequalities rn− r ≤ rm and
2rm−r ≤ rn. Combining these we find that m ≤ 2 and n ≤ 3. In particular,
m = 2 and n = 3, or m = 1 and n = 1, or m = 1 and n = 2. We analyze
each of these cases.

2.10.1. Case 1: m = 2, n = 3. Assuming m = 2 and n = 3 in (2.11)
we obtain the relation 6r =

∑
(mi, nj). Combining this with the fact that,

for each i,
∑

j(mi, nj) ≤ 3r, we have the equality
∑

j(mi, nj) = 3r. Anal-
ogously, we have, for each j,

∑
i(mi, nj) = 2r. It follows that, for each

i and j, (mi, nj) = r. Indeed, suppose without loss of generality that
the term (m1, n1) is less than r. Then (m2, n1) = 2r − (m1, n1) > r.
Since our summands are positive integers, (m2, n1) |m2 implies m2 > r.
Since m1 + m2 = 2r, m1 < r. Then (m1, n2), (m1, n3) < r, contradicting∑

j(m1, nj) = 3r. Hence each summand is exactly r, so the common divisor
of our partition is r. Since we assume (m1,m2,m3, n1, n2, r) = 1, we find
that r = 1 and the bidegree is (2, 3).

2.10.2. Case 2: m = n = 1. Substituting m = n = 1 into (2.11) we
obtain bidegree (r, r), and

∑
(mi, nj) = 2r. It follows, for each i and j, that

(mi, nj) = nj . Since nj divides m1 and m2, nj divides m1 +m2 = r. Hence,
for each j, nj is an integer of the form r/a, and we determine those a, b,
c ∈ Z+ satisfying r/a + r/b + r/c = r. The only solutions are (a, b, c) =
(2, 3, 6), (3, 3, 3) and (2, 4, 4). Each of the first two triples corresponds to
bidegree (6, 6). From the first we cannot find a corresponding partition of r =
m1 +m2. From the second, the common divisor of the partition summands
is 2. From the last triple we obtain bidegree (4, 4).
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2.10.3. Case 3: m = 1, n = 2. Assuming m = 1 and n = 2 in (2.11)
we obtain 3r =

∑
(mi, nj). Hence, for each j,

∑
i(mi, nj) = r. It follows

that each (mi, nj) = mi. This is because m1 + m2 = rm = r and because
no divisor can exceed mi. Hence, for each i and j, mi |nj , and it follows
that each mi divides

∑
nj = 2r. So, we have divisor sums of the form

2r/a+2r/b = r, where a and b are non-negative integers. The only solutions
are a = 3, b = 6 and a = b = 4. The former corresponds to bidegree (3, 6)
and the latter to bidegree (2, 4).

The bidegrees and partitions are summarized in the table:

(rm, rn) [{mi}] [{nj}], [{m′i′}] [{n′j′}]
(2, 3) [2][3], [1,1][1,1,1]

(2, 3) [2][2,1], [1,1][1,1,1]

(4, 4) [4][4], [2,2][2,1,1]

(2, 4) [2][4], [1,1][2,1,1]

(2, 4) [2][2,2], [1,1][2,1,1]

(3, 6) [3][6], [2,1][2,2,2]

(3, 6) [3][3,3], [2,1][2,2,2]

2.11. Proposition. Suppose δ = δcmax, l = 4 and k = 2, and

(m1,m2, n1, n2, n3, n4, r) = 1.

Then the bidegree is (2, 4).

Proof. Substituting k = 2 and l = 4 into (2.6) we have

(2.12) 3rm+ rn− r =
∑

(mi, nj) ≤ min{4rm, 2rn}.

From the upper bound in (2.12) we obtain rn− r ≤ rm and 3rm− r ≤ rn.
Combining these inequalities we find that n = 2 or n = 1. When n = 1
we have m < 2/3, so there is no corresponding bidegree. Setting n = 2 in
(2.12) we obtain m = 1, and the only possible bidegree has the form (r, 2r).
Making this substitution in (2.12) yields 4r =

∑
(minj). Hence, for each j,

(m1, nj) + (m2, nj) = r. From this it follows that (mi, nj) = mi for any i
and j. So, since mi |nj , it follows that mi |

∑
nj , so mi | 2r. We determine

positive integers a and b with 2r/a+ 2r/b = r. The only solutions (a, b), up
to reordering, are (3, 6) and (4, 4). Reasoning as in the preceding section,
one obtains the bidegrees (2, 4) and (3, 6). Only (2, 4) yields genus one. The
partitions are:

(rm, rn) [{mi}] [{nj}], [{m′i′}] [{n′j′}]
(2, 4) [2][4], [1,1][1,1,1,1]

(2, 4) [2][2,2], [1,1][1,1,1,1]
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We next determine those bidegrees corresponding to δ∞ = δcmax when
l = 1 and k = 2. Still assuming m ≤ n, we prove:

2.12. Proposition. Suppose δ∞=δcmax, l=1, k=2 and

(m1,m2, rn, r) = 1.

Then, the bidegrees are: (2, 3), (2, 4), (3, 4), (3, 6), (4, 6), and (5, 6).

Proof. When k = 2 the relation 2.8 is

(2.13) rn− r = (m1, rn) + (m2, rn) ≤ min{rm, 2rn},
so n ≤ m+ 1. Since the case m = n has already been considered above, and
since we assumem ≤ n, we take n = m+1. Making this substitution in (2.13)
yields rm = (m1, rn) + (m2, rn), so m1 and m2 each divide rn = r(m+ 1).
As in the proofs of the preceding two propositions, we determine positive
integer solutions to (m+ 1)/a + (m+ 1)/b = m, and we obtain the triples
(m, a, b): (1, 3, 6), (1, 4, 4), (2, 2, 6), (2, 3, 3), (3, 2, 4) and (5, 2, 3).

The first solution yields bidegree (2, 4) and the second yields bidegree
(3, 6). The third integer triple corresponds to bidegree (2, 3), and the fourth
to bidegree (4, 6). The fifth triple yields bidegree (3, 4), and the last triple
yields bidegree (5, 6). We have the following partitions:

(rm, rn) [{mi}] [{nj}], [{m′i′}] [{n′j′}]
(2, 3) [2][3], [1,1][3]

(2, 3) [2][2,1], [1,1][3]

(2, 4) [2][4], [1,1][4]

(2, 4) [2][2,2], [1,1][4]

(3, 4) [3][4], [1,2][4]

(3, 4) [3][3,1], [1,2][4]

(3, 6) [3][6], [1,2][6]

(3, 6) [3][3,3], [1,2][6]

(4, 6) [4][6], [1,3][6]

(4, 6) [4][4,2], [1,3][6]

(5, 6) [5][6], [2,3][6]

(5, 6) [5][5,1], [2,3][6]

2.13. In the discussion above we determined all possible genus one bide-
grees and partitions for which k = 1, k′ > 1. We next determine all those
obtained by setting k = k′ = 1. Still writing l and k in place of l′ and k′,
substituting k = 1 into (2.6), we have

(2.14) (l − 1)rm− r = (rm, n1) + · · ·+ (rm, nl).

For simplicity, we first consider the case where r = 1, and prove the
following:
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2.14. Proposition. Suppose δ∞ = δcmax, k = 1 and r = 1. Then the
bidegrees are (2, n), (3, n), (4, n) and (6, n), where n may be any integer
satisfying n ≥ m and (m,n) = 1.

Proof. Assuming r = 1 in (2.14) we obtain (l − 1)m − 1 = (m,n1) +
· · ·+ (m,nl), and we first note that all but three of the terms (m,nj) must
be equal to m. Indeed, supposing there are four terms less than m, we have
(l − 4)m + 4m/2 ≥ (l − 1)m − 1, so m ≤ 1, and our curve Xf,g would not
have genus one. Hence, the partition is of the form

(l − 1)m− 1 = m+ · · ·+m+ (m,nl−2) + (m,nl−1) + (m,nl),

so we determine restrictions on the last three terms, and we need

(2.15) 2m− 1 = (m,nl−2) + (m,nl−1) + (m,nl).

We first assume that each term on the right hand side in (2.15) is less
than m. From this we obtain 3m/2 ≥ 2m − 1, which implies that m ≤ 2.
When m = 2 we obtain (2, n) curves, 2 - n. Since we assume r = 1, we
cannot have m = 1, since in this case Xf,g would be a rational curve.

We next assume the first term is m, leaving m− 1 = (m,nl−1) + (m,nl).
One possible sum is m/2 + (m/2− 1), so we determine conditions for which
(m/2−1) |m. We have implicitly assumed m is even, and the only solutions
to the divisibility condition are m = 4 and m = 6. When m = 4 we obtain
(4, n) curves, n odd. When m = 6 we obtain (6, n) curves, n ≡ 1 or 5
(mod 6). Another possible sum is m/3 + (2m/3 − 1). In this case we have
m ≡ 0 (mod 3) and (2m/3 − 1) |m. These conditions imply that m = 3 or
that m = 6. The case m = 6 is identical to (with partition symmetric to)
the m = 6 case above. When m = 3 we obtain (3, n) curves, n ≥ 2. Setting
the sum as m/4 + (3m/4− 1) we obtain m = 4, and this case has also been
completed. There are no other partitions m/t+ ((t− 1)m/t− 1) of m− 1.

2.15. In the table below we summarize the genus one partitions for
(rm, rn) curves, under the assumption that r = 1 and k = k′ = 1:

[{mi}] [{nj}], [{m′i′}] [{n′j′}]
[2][2r1, . . . , 2rl−1, 2rl + 1], [2][2r′1, . . . , 2r

′
l′−3, 2r

′
l′−2 + 1, 2r′l′−1 + 1, 2r′l′ + 1]

[3][3r1, 3r2, . . . , 3rl−1, 3rl + 1], [3][3r′1, 3r
′
2, . . . , 3r

′
l′−2, 3r

′
l′−1 + 2, 3r′l′ + 2][2pt]

[3][3r1, 3r2, . . . , 3rl−1, 3rl + 2], [3][3r′1, 3r
′
2, . . . , 3r

′
l′−2, 3r

′
l′−1 + 1, 3r′l′ + 1]

[4][4r1, 4r2, . . . , 4rl−1, 4rl + 1], [4][4r′1, 4r
′
2, . . . , 4r

′
l′−1 + 2, 4r′l′ + 3]

[4][4r1, 4r2, . . . , 4rl−1, 4rl + 3], [4][4r′1, 4r
′
2, . . . , 4r

′
l′−1 + 2, 4r′l′ + 1]

[6][6r1, 6r2, . . . , 6rl−1, 6rl + 1], [6][6r′1, 6r
′
2, . . . , 6r

′
l′−2, 6r

′
l′−1 + 3, 6r′l′ + 4]

[6][6r1, 6r2, . . . , 6rl−1, 6rl + 5], [6][6r′1, 6r
′
2, . . . , 6r

′
l′−2, 6r

′
l′−1 + 3, 6r′l′ + 2]

We next assume r > 1, and we have:
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2.16. Proposition. Suppose δ∞ = δcmax, k = 1, r > 1 and

(rm, n1, . . . , nl, r) = 1.

Then the bidegree is of the form: (2, 2n), (3, 3n), (4, 4n), (4, 4s+ 2), (6, 6n),
(6, 6s+ 2), (6, 6s+ 4) or (6, 6s+ 3), where s is a positive integer.

Proof. Substituting k = 1 into (2.6) gives (l−1)rm−r =
∑l

j=1(rm, nj),
and we first note that we may not have more than four terms in the sum
less than rm. This would give (l − 5)rm + 5rm/2 ≥ (l − 1)rm− r, and we
would have m ≤ 2/3.

• In the case where we have exactly four terms less than rm, we see
that 3rm− r ≤ 2rm, which implies m ≤ 1. Setting m = 1 in (2.6) we have
2r =

∑4
j=1(r, nj). Since we assume (rm, n1, . . . , nl, r) = 1, it follows that

r = 2. We obtain a family of (2, 2n) models, n odd, with the partitions

[2][2r1, . . . , 2rl], [2][2r′1, . . . , 2r
′
l′−4, 2r

′
l′−3 + 1, 2r′l′−2 + 1, 2r′l′−1 + 1, 2r′l′ + 1].

•When exactly three terms are not equal to rm it is sufficient to consider
partitions that satisfy

2rm− r = (rm, n1) + (rm, n2) + (rm, n3).

Since each term is less than rm we have 3rm/2 ≥ 2rm − r. Then 3m ≥
4m− 2, so m ≤ 2.

Setting m = 2 we have

3r = (2r, n1) + (2r, n2) + (2r, n3),

and the only solution comes from a (2, n) curve, r=1, since (rm, n1, . . . , nl, r)
= r. This case has been completed above. Setting m = 1 we consider parti-
tions that satisfy

r = (r, n1) + (r, n2) + (r, n3).

The only possible partitions are (r/3 + r/3 + r/3), (r/2 + r/4 + r/4) and
(r/2+r/3+r/6); the only possible bidegrees are (3, 3n), (4, 4n) and (6, 6n),
with the partitions:

(3, 3n) [3][3r1, . . . , 3rl], [3][3r′1, . . . , 3r
′
l−3, 3r

′
l−2 + 1, 3r′l−1 + 1, 3r′l + 1]

(4, 4n) [4][4r1, . . . , 4rl], [4][4r′1, . . . , 4r
′
l−3, 4r

′
l−2 + 2, 2r′l−1 + 1, 2r′l + 1]

(6, 6n) [6][6r1, . . . , 6rl], [6][6r′1, . . . , 6r
′
l−3, 6r

′
l−2 + 3, 6r′l−1 + 2, 6r′l + 1]

• Finally, take the case where exactly two terms are less than rm, so we
consider partitions that satisfy

rm− r = (rm, nl−1) + (rm, nl).

Reasoning as in the proof of the preceding proposition, we obtain, for the
partition rm/2 + (rm/2− r), the restriction that m = 3, m = 4, or m = 6.
The first possibility, m = 3, can only occur in the case where r is even. In
fact, we obtain new partitions only for m = 3; when m = 4 and m = 6, we
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have r = 1, which has been considered above. Further, when m = 3 we have
the restriction r = 2, and we have bidegrees (6, 6s+ 2) and (6, 6s+ 4).

For the partition rm/3 + (2rm/3− r), we obtain the restriction m = 2,
m = 3, or m = 6, and we may have m = 2 only if r ≡ 0 (mod 3). We obtain
new partitions only when m = 2 and r = 3, so we have bidegrees (6, 6s+ 3).

For the partition rm/4 + (3rm/4 − r) we have m = 2 or m = 4, and
m = 2 is possible only if r is even. Further, we obtain new partitions only
when m = 2 and r = 2, and we have bidegrees (4, 4s+2). The partitions are:

(6, 6s + 2) [6][6r1, . . . , 6rl−1, 6rl + 2], [6][6r′1, . . . , 6r
′
l′−2, 6r

′
l−1 + 3, 6r′l + 5]

(6, 6s + 4) [6][6r1, . . . , 6rl−1, 6rl + 4], [6][6r′1, . . . , 6r
′
l′−2, 6r

′
l−1 + 3, 6r′l + 1]

(6, 6s + 3) [6][6r1, . . . , 6rl−1, 6rl + 3], [6][6r′1, . . . , 6r
′
l′−2, 6r

′
l−1 + 2, 6r′l + 1]

(4, 4n + 2) [4][4r1, . . . , 4rl−1, 4rl + 2], [4][4r′1, . . . , 4r
′
l′−2, 2r

′
l−1 + 1, 2r′l + 1]

2.17. Summarizing the main results above, we note that genus one par-
titions are obtained only from bidegrees (2, N), (3, N), (4, N), (5, 5), (5, 6),
(6, N) and (7, 7). Further, all but finitely many families come from those
partitions that satisfy k = k′ = 1. The table below describes these excep-
tional families, those for which the defining function f(x) does not have a
unique zero and a unique pole.

(2, 2)

tx(x− 1)(y + 1)(y − b) = (x + 1)(x− a)y(y − 1) a, b 6= 0, 1

(2, 4) a, b, c 6= 0,

tx2(y − 1)(y − a)(y − b)(y − c) = y2(y − d)2(x− 1)(x + 1) d 6= 1, a, b, c

(2, 3) a, b 6= 0

tx2(y − 1)(y − a)(y − b) = y2(y − d)(x− 1)(x + 1) d 6= a, b, 1

(3, 3) a 6= 0, 1, −1,

tx3(y − 1)(y + 1)(y − a) = y3(x− 1)(x + 1)(x− b) b 6= 0, 1, −1

(3, 4) a 6= 0, b

tx3(y − 1)2(y − a)2 = y3(y − b)(x− 1)(x + 1)2 b 6= 1

(3, 6) a, b 6= 0,

t(y − a)2(y − b)2(y − 1)2x3 = y3(y − d)3(x− 1)2(x + 1) d 6= a, b, 1

(4, 4)

t(y − 1)2(y + 1)(y − a)x4 = y4(x− 1)2(x + 1)2 a 6= −1, 0

(4, 6) a 6= 0, b

tx4(y − 1)3(y − a)3 = y4(y − b)2(x− 1)3(x + 1) b 6= 1

(5, 6)

tx5(y − 1)6 = (x− 1)3(x + 1)2y5(y − a) a 6= 1

(5, 5)

tx5(y − 1)(y + 1)4 = y5(x− 1)3(x + 1)2

(7, 7)

tx7(y − 1)(y + 1)6 = y7(x− 1)3(x + 1)4
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Note that, for each bidegree, a displayed family may admit degeneration
and hence correspond to more than one of the partitions we determined in
this section.

2.18. Other products C×D. Above we restrict to the case considered
in [2], setting C = D = P1. Here we show that there are no other curves C,D
for which our construction yields a genus one curve at the base of the tower.
When C and D are elliptic curves, the genus is

g = rm+ rn+ (rm− 1)(rn− 1)−
∑
i,j

δ(mi, nj)−
∑
i′,j′

δ(m′i, n
′
j).

Setting g = 1, simplifying, we obtain

(l + l′)rm+ (k + k′)rn =
∑
i,j

(mi, nj) +
∑
i′,j′

(m′i, n
′
j),

where l, l′, k and k′ are defined as above. We have already noted that∑
(mi, nj) +

∑
(m′i, n

′
j) ≤ min{krn, lrm}+ min{k′rn, l′rm}. It follows that

we cannot obtain a genus one model via our construction in this case, and
an analogous argument shows that we cannot consider curves C, D of higher
genus. The only other case where a genus one curve could be obtained at
the base of our construction would be for C = P1 and D = E, an elliptic
curve. In that case we obtain the restriction

(2.16) (l + l′)rm+ (k + k′ − 2)rn =
∑
i,j

(mi, nj) +
∑
i′,j′

(m′i, n
′
j).

From the upper bounds on each of the sums on the right hand side of
equation (2.16) one shows that k = k′ = 1, and we have

(2.17) lrm = (rm, ni) + · · ·+ (rm, nl), l′rm = (rm, n′i′) + · · ·+ (rm, n′l′).

Each summand is rm, and this is possible only when rm = 1; otherwise we
would contradict our assumption that (rm, n1, . . . , nl, n

′
1, . . . , n

′
l′) = 1. But

when rm = 1, we have a rational curve. We have proved, and now restate,
Theorem 1.2(1):

2.19. Theorem. Let T := {(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 6), (4, 4),
(4, 6), (5, 5), (5, 6), (7, 7)}. Let (m,n) denote an ordered pair of positive in-
tegers not in T , with m ≤ n. Let f and g denote rational functions with
deg f = m and deg g = n. Let Ef,g denote a curve over k(t), constructed
as above: the generic fiber of a smooth, proper model of the surface over P1

defined by tf − g = 0 in C ×D×P1. Suppose that Ef,g has genus one. Then
f has exactly one zero and one pole.
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3. Bounded ranks

3.1. We have shown that, for all but finitely many bidegrees, to obtain
genus one curves via our construction we require f(x) defined with exactly
one zero and one pole. Assume as stated in the introduction that k is an
algebraically closed field. In this section we study our (rm, rn) genus one
curves over the fields K = k(t). The main theorem is: except for the excep-
tional families in the table above, all of our elliptic curves E/k(t1/d) have
Mordell–Weil groups with rank zero, for all d prime to the characteristic
of K.

3.2. For a global field K, by the Mordell–Weil theorem, the group E(K)
is a finitely generated abelian group. One may also consider curves over
the fields k(t) where k is an arbitrary field, and the group of k(t) points of
the Jacobian variety JK := J(Xf,g) need not be finitely generated. Let A
denote an abelian variety over the field K. One defines the K/k-trace of A
to be an abelian variety B/k with a K-homomorphism τ : B ⊗k K → A,
satisfying the following universal property: If C/k is another abelian variety
with homomorphism ψ : Ck ⊗k K → A, then we have a homomorphism
τ ′ : C ⊗k K → B ⊗k K, and the following commutative diagram:

Ck ⊗k K

τ ′

��

ψ

$$J
JJ

JJ
JJ

JJ

Bk ⊗k K τ
// AK

That is, B is the largest abelian variety, defined over k, with B×kK mapping
to A as above. In this work we are interested in the case where AK is the
Jacobian variety JK , as above, and the existence of the K/k-trace is proved
in [3]. We define the Mordell–Weil group MW(JK) := J(K)/τ(B(k)), and
by the Lang–Néron theorem [6], this quotient is a finitely generated abelian
group. See [4] for a complete discussion of the K/k trace of an abelian variety
over K and the Lang–Néron theorem.

3.3. In a recent preprint [12], Ulmer determines an explicit formula for
the ranks of the Mordell–Weil groups, as defined above, of the Jacobians of
our curves over k(t). Let Sd denote the base change t 7→ td of the surface
S described in the introduction. Ulmer shows in [12] that the surface Sd is
a birational model of the quotient (Cd × Dd)/µd, where the curves Cd,Dd
are smooth, projective models of wd = f(x) and vd = g(y), and where
µd acts via: (x,w) 7→ (x, ζdw), (y, v) 7→ (y, ζdv). He considers a birational
model Xd of Sd, and a smooth, proper morphism πd : Xd → P1, which
factors through (Cd × Dd)/µd. Key to the rank formula is our construction
of an elliptic surface as a birational model of a product variety, so that the
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Néron–Severi group of the surface may be expressed in terms of divisorial
correspondences on C × D. The rank formula follows from this, combined
with the Shioda–Tate formula and a thorough analysis of the geometry in
our construction. In this section we use Ulmer’s rank formula to bound the
ranks of the elliptic curves described in the preceding section. Combining
this with the classification theorem, we find that the large rank examples
in [2], [7] and [12] are rare: there are only finitely many bidegrees (rm, rn)
for which our construction yields elliptic curves with non-zero rank over the
fields k(t(1/d)) when k is algebraically closed.

3.4. We briefly discuss Ulmer’s rank formula and refer the reader to [12]
for further details. Let fd,v denote the number of irreducible components
in the fiber of πd : Xd → P1, over the closed point v. Define c1(d) :=∑

v 6=0,∞(fd,v − 1). When k is algebraically closed, this becomes

c1(d) = d
∑
v 6=0,∞

(f1,v − 1).

Let Pi, P
′
i′ denote the zeros and poles of f , let Qj , Q

′
j′ be the zeros and

poles of g, and let td,i,j and t′d,i′,j′ denote the numbers of closed points of

the surface (Cd×Dd)/µd over the points (Pi, Qj) and (P ′i , Q
′
j), respectively.

Let f ′d,0 and f ′d,∞ denote the number of irreducible components in the fibers

of (Cd ×Dd)/µd 99K P1 lying over 0 and ∞, respectively.
Define

c2(d) :=
∑
i,j

td,i,j +
∑
i,j

t′d,i′,j′ − f ′d,0 − f ′d,∞ + 2.

Note also that, in our construction, the covers Cd and Dd are often re-
ducible. In the case where the base curves C and D are both rational, we
let ed,f and ed,g denote the number of irreducible components of Cd and
Dd, respectively. We write C′d and D′d for the smooth, proper models of

wd/ed,f = (f(x))1/ed,f and vd/ed,g = (g(y))1/ed,g , respectively. When we take
for our constant field an algebraic closure of k, we have td,i,j = gcd(mi, nj , d)
and t′d,i′,j′ = gcd(m′i, n

′
j , d). Our formula becomes

c2(d) :=
∑
i,j

gcd(mi, nj , d) +
∑
i,j

gcd(m′i′ , n
′
j′ , d)−

∑
i

(mi, ed,g)

−
∑
j

(nj , ed,f )−
∑
i′

(m′i′ , ed,g)−
∑
j′

(n′j′ , ed,g) + 2.

The constant c2(d) varies with d; it is clearly periodic, hence bounded. We
have the following:

3.5. Theorem ([12]). Let C and D denote smooth projective curves over
an algebraically closed field k, and let f ∈ k(C) and g ∈ k(D) be separable
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rational functions. Let Xf,g denote a smooth model of the curve tf − g,
constructed as above. Write JCd and JDd

for the Jacobians of the curves Cd
and Dd, and write J = Jac(Xf,g) and Jd = J/k(t1/d). With notation as

above, the rank over k(t1/d) of the Mordell–Weil group of the Jacobian of
Xf,g is

RankMW (Jd) = Rank Homk-av(JC′d , JD
′
d
)
µd/(ed,f ·ed,g) − c1(d) + c2(d),

where Homk-av(JC′d , JD
′
d
)
µd/(ed,f ·ed,g) denotes those homomorphisms commut-

ing with the action of the group µd/(ed,f ·ed,g).

In the remainder of this section we show that, for “most” elliptic curves
arising in our construction, the Rank Homab-v(JC , JD)µd and c1(d) terms in
Ulmer’s formula are both zero, and that the ranks are bounded in towers
of function field extensions. To complete the proof of Theorem 1.2 we first
focus on the rank of Homk-av(JC′d , JD

′
d
)
µd/(ed,f ·ed,g) , writing µ′d for µd/(ed,f ·ed,g)

3.6. Lemma. With notation as in the statement of the theorem, let
Xf,g denote the curve over k(t), constructed as above: the generic fiber of a
smooth, proper model of the surface tf−g ∈ C×D×P1, and assume also that
f has exactly one zero and one pole. Then Rank Homab-v(JC′d , JD

′
d
)µ
′
d = 0,

and the invariant c1(d) equals 0 for all d.

Proof. In this case the curve C ′d is a smooth, projective model of wd/ed,f

= xrm/ed,f , a rational curve. The Jacobian JC′d is trivial and

Rank Homab-v(JC′d , JD
′
d
)µ
′
d = 0;

and there is no contribution from this term to the rank of Ef,g(k(t1/d)).

To prove the second part of the lemma, we suppose first that d = 1. Since
Rank Homab-v(JC , JD)µd = 0. The rank formula reduces to RankXf,g(K) =
−c1(1) + c2(1). But c2(1) = (l− 1)(k − 1) + (l′ − 1)(k′ − 1), and we assume
k = k′ = 1, so c2(1) = 0. Since RankXf,g(K) ≥ 0, we have c1(1) = 0, and
since c1(d) is linear in d, the lemma follows.

Hence, the Mordell–Weil rank of the Jacobian of our curve, in the case
where f has exactly one zero and one pole, is determined by the function
c2(d). To bound this rank over the fields Kd := k(t1/d), completing the proof
of Theorem 1.2(2), we prove the following:

3.7. Lemma. Let Ef,g denote the elliptic curve over k(t), constructed
as above: the generic fiber of a smooth, proper model of the surface tf − g ∈
C × D × P1, C = D = P1, where f has exactly one zero and one pole. Then
the invariant c2(d) equals 0 for all d.

Proof. Recall that we consider the curves over k(t1/d), k = k̄. In this
case, the invariant c2(d) is
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c2(d) =
∑
i,j

(mi, nj , d) +
∑
i′,j′

(mi′ , nj′ , d)

−
(∑

j

(d, nj , rm) + (d, n1, . . . , nj , n
′
1, . . . , n

′
j′ , rm)

)
−
(∑

j′

(d, n′j′ , rm) + (d, n′1, . . . , n
′
j′ , n1, . . . , nj , rm)

)
+ 2,

and this simplifies to

c2(d) =
∑
i,j

(mi, nj , d) +
∑
i′,j′

(mi′ , nj′ , d)−
∑
j

(d, nj , rm)−
∑
j′

(d, n′j′ , rm).

But∑
i,j

(mi, nj , d) =
∑
j

(rm, nj , d), and
∑
i′,j′

(m′i′ , n
′
j′ , d) =

∑
j′

(rm, n′j′ , d),

so c2(d) = 0.

This proves Theorem 1.2(2), which we restate here:

3.8. Theorem. Let K = k(t), k an algebraically closed field, and let
Ef,g denote an elliptic curve over K, the generic fiber of the surface tf − g
in C × D × P1, and assume that f has exactly one zero and one pole. Let
d range over non-negative integers, prime to the characteristic of K. Then
the rank of the Mordell–Weil group of E/k(t1/d) is zero.

4. Remarks

4.1. We show that, for all but finitely many bidegrees, all elliptic curves
arising via our construction have rank zero in the towers E(k(t1/d)). It is
clear that the combinatorial argument could be extended to classify our
Jacobians of higher dimension.

4.2. Several families of curves from the table of exceptional families in
2.17 have been studied. In [2] the author constructs a parameterized family
of elliptic curves, defined by a (2, 2) model, which obtain arbitrarily large
rank over the fields Fq(t1/d), as d = qn+1 grows arbitrarily large. Occhipinti
shows that the ranks grow arbitrarily large over F̄q(t1/d) for all d prime to q,
in [7] using Theorem 3.5, and in [8] via an explicit computation of the
L-function. Ulmer studies another (2, 2) curve in [12], and shows that the
Mordell–Weil group of E(k̄(t1/d)) has rank zero for all d, when k is a field of
characteristic zero. He shows that the rank of E(Fp(t1/d)) grows arbitrarily
large and constructs explicit, independent points. He also considers a one-
parameter (3, 3) family over C(t), and finds curves of rank at least 13.
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4.3. In [1], Avanzi and Zannier give a complete classification of genus
one curves defined by equations of the form f(x) = g(y), f(x), g(x) ∈
K[x], where K is a field of characteristic zero, under the assumption that
gcd(deg f, deg g) = 1. In our classification of genus one curves we repeat
some of the results of Avanzi–Zannier, but for our construction we are able
to say more. First, we consider rational functions f(x) and g(x). Second,
we have a stronger irreducibility result for our curves, allowing us to re-
move the assumption that deg f and deg g are relatively prime. Related
work of Benjamin Weiss on the classification of separated variable poly-
nomials, over an algebraically closed field of characteristic zero, appears
in [13].
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seign. Math. (2) 52 (2006), 37–108.

[5] B. Heijne, The maximal rank of elliptic Delsarte surfaces, Math. Comp. 81 (2012),
1111–1130.
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[11] T. Shioda and T. Katsura, On Fermat varieties, Tôhoku Math. J. 31 (1979), 97–115.
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