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On a problem of Sierpinski
by
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1. Introduction. Let s > 2 be an integer. Denote by s the least integer
so that every integer ¢ > pus is the sum of exactly s integers > 1 which
are pairwise relatively prime. In 1964, Sierpiriski [5] posed the problem of
determining ps. Let p1 = 2, po = 3,... be the sequence of consecutive primes.
In 1965, P. Erd6s [3] proved that there exists an absolute constant C' such
that ps < pa+p3+---+pst1+C. It is easy to see that po+ps+- -+ pst1—2
is not the sum of exactly s integers > 1 which are pairwise relatively prime.
So ps > p2+p3+ -+ psy1 — 2. Let ps = pa +p3 + -+ + pst1 + ¢s. Then
—2 < ¢y < C. It is easy to see that cg = —2.

Let U be the set of integers of the form

pl2f2+pl§3++p’ﬂ1_p2_p3——p11§1100,

where k; (2 < ¢ < 11) are positive integers. All elements of U can be listed
explicitly by using Mathematica (see Appendix). Let V; be the set of integers
of the form

where 2 < j; < --- < ji<s+1<i; <--- <14 It is clear that 0 € U and
0€Vs(l=0).DefineU+V,={u+v|ueUwvecVs}. Then U+ V; is
finite.

In this paper the following results are proved. The main results were
announced at ICM2010.

THEOREM 1.1. Let s > 2 be any given positive integer. Then
cs = max{2n | 2n < min{1100, ps42}, n € Z, 2n ¢ U + Vi}.
REMARK 1.2. As examples, by Theorem [I.1] we have cz00 = 16, cgoo =

14, c1000 = 8, 2000 = 22 (see the last section).
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COROLLARY 1.3. If psya — psy1 > 1100, then

s+1
ps = Y pi + 1100.
i=2
In particular, the set of integers s > 2 for which this equality is satisfied has
asymptotic density 1.

We pose a problem here:
PROBLEM 1.4. Find the least positive integer s with ps = Zfi% p;+1100.

Basing on the proof of Theorem [I.6] in Section [d, we make the following
conjecture.

CONJECTURE 1.5. For s > 3, every integer | > pa + p3 + -+ + ps42 18
the sum of exactly s distinct primes.

This conjecture would follow from the following statement: “Every odd
integer n > ps—1+Ps+Ps+1+Ps+2 can be written as the sum of three primes
@1 < q2 < g3 with g1 > ps—1”. Since ps—1 < n/4, by well-known results on
the odd Goldbach problem with almost equal primes, this statement is true
for all sufficiently large s. Hence, Conjecture 1.5 is true for all sufficiently
large s.

Now we sketch the proof of Theorem For the details, see Section [

(1) We first find a “long” interval [1102, 3858] such that each even number
in this interval can be represented as Z;’iz(p? — p;). For any even number
2m > 3858, there exists a prime p, such that pg —py < 2m — 1102 <
P2 41 — Put1. Then we use the induction hypothesis on 2m — (P2 — pu).
By these arguments we know that every even number n > 1102 can be
represented as Z;’iQ(pfl — pi), where t; are positive integers. One can verify
that 1100 cannot be represented in that form.

(2) Denote by ul the least integer, of the same parity as s, so that
every integer ¢ > . of the same parity as s can be expressed as the sum
of s distinct integers > 1 which are pairwise relatively prime. Let ), =
p2 + -+ pst1 + 74 Then 77 is even.

For 2n > min{1100, psto}, if min{1100,psi2} < 2n < 1100, then s <
182. By calculation we find that Efi% p; + 2n can be expressed as the sum
of s distinct odd primes. Now assume that 2n > 1100. If 2n is “large”,
then we can choose a “large” prime ¢ such that psyo + 2n — g > 7.. By the
induction hypothesis, pa + - - - + psy1 + (Ps+2 + 2n — ¢) can be expressed as
the sum of s distinct integers > 1 which are pairwise relatively prime. Thus
P2 + -+ + Psi1 + Pst2 + 2n can be expressed as the sum of s 4+ 1 distinct
integers > 1 which are pairwise relatively prime. If 2n is “small”, then by (1)



On a problem of Sierpiriski 375

(we take some t; = 1)

s+2
2n = Z(pfl — i)
i=2
Thus
s+2
Pa+- Pspi+ stz +2n =) pp.
i=2

We can easily convert the case ps + - - + psy1 + Ds+2 +2n+ 1 into p; +p2 +
o+ Pst1 + (Ps+2 + 2n — 1) and use the induction hypothesis.

Recall that p, is defined in (2) above, and 77 = pl, — (pa + -+ + ps+1) 18
even. The following theorem is a step in the proof of Theorem [I.1], and not
an independent result.

THEOREM 1.6.
7t = max{2n | 2n < min{1100, ps12}, n € Z, 2n ¢ U + V}.

2. Preliminary lemmas. In this paper, p, q; are always primes. First
we introduce the following lemmas.

LEMMA 2.1 ([2, Lemma 4]). For every x > 24 there exists a prime in
(z,v/3/2a].

LEMMA 2.2. Every even number m > 1102 can be represented as
Z;’iQ(pfl —p;), where t; are positive integers. The integer 1100 cannot be
represented in that form.

Proof. The proof is by induction on even numbers n. For any sets X, Y
of integers, define X +Y ={z+y: 2 € X, y € Y}. Let
Uy=1{0,32-3,3>-3,31-3,3°-3,3°-3,3" -3}
+{0,5% = 5,5° — 5,5 =5} + {0, 7 — 7,7 — 7},
Ui= Ui U (Ui +{p} —pi}),  i=5,6,....
Using Mathematica, we can list the elements of each U; and verify that
[1102,3858] N 2Z C Uiz and 1100 ¢ Ujs.
Thus, if n is even with 1102 < n < 3858, then n can be represented as
Yo (pfz — p;), where t; are positive integers.
Now assume that any even n with 1102 < n < 2m (2m > 3858) can be
represented as such a sum.
Since 2m — 1102 > 3858 — 1102 = 532 — 53, there exists a prime p, > 53
with

(2.1) P2 —pu < 2m — 1102 < p2. | — pyus1.

Then
1102 < 2m — (p2 — py) < 2m.
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By the induction hypothesis, we have

where t; are positive integers. Hence
(2.2) 2m = Z Pr— i) — Pu)-

Now we prove that t,, = 1. Indeed, otherwise t,, > 2 and 2m > 2(p2 —pu).

By (2.1] . we have

2(p2 — pu) — 1102 < 2m — 1102 < p2. | — Put1 < Poiq — Pu-
Thus
2p2 — pu — 1102 < p2 ;.
Since p, > 53, by Lemma we have py11 € (Pu, \/3/72]%] Since

V/3/2pu < \/2p2 — py, — 1102,

we have
Pu1 < 2p, — pu — 1102,
a contradiction.

So t, = 1, and by , 2m can be represented in the desired form,
completing the proof of the first assertion of the lemma.

Suppose now that 1100 can be expressed as Z;’iQ(pfl — pi), where t; are
positive integers. Then pﬁi —p; <1100 for all i. If t; > 2, then p? —p; < 1100.
Thus p; < 37. So i < 12. If t; > 3, then p? — p; < 1100. Thus p; < 7 = py.
As p? — po < 1100 we have to < 6. As p?f’ — p3 < 1100 we have t3 < 4. As
pff —pg < 1100 we have t4 < 3. Hence 1100 € Uj2, a contradiction. =

LEMMA 2.3. If 2n < psio and Es+21 p; + 2n is the sum of exactly s
integers > 1 which are pairwise relatively prime, then Zf+21 pi + 2n can be

expressed as the sum of powers of s distinct odd primes.

Proof. Let
s+1

sz +2n = Zmu

where 1 < mp < --- < mg and (mi,mj) =1forl <i,57<s,i#j By
comparing the parities we know that the s integers m; must all be odd. If
one of them has at least two distinct prime factors, then the sum of these s
integers is at least 3 X 5+ pg+ -+ pst2 = P2+ -+ Psy1 + ps+2 + 7. This
contradicts 2n < psyo. m
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3. Proof of Theorem For s > 2, let

H(s)={pj—pi:2<i<s+1<j <185}
U{pu+Po — Ps — Pst1: s <u <105, u < v < 180}.

Using Mathematica, we find that [psy2,1100] N2Z C H(s) for 2 < s < 182.
Thus, for psy2 < 2n < 1100, Zfi; i + 2n can be expressed as the sum of s
distinct odd primes.

Let hs be the largest even number 2n < 1100 such that Zfigl pi +2n
cannot be expressed as the sum of s distinct integers > 1 which are pair-
wise relatively prime. Noting that psyo > 1100 for s > 183, by the above
arguments we have hy < min{1100, ps12} for all s > 2.

We will use induction on s to prove that 7 = h, for all s > 2.

For every even ¢ > 6, we have ¢(¢) > 2, where ¢(¢) is Euler’s totient
function. Hence there exists an integer n with 2 <n < /¢—2 and (n,¢) = 1.

So
l=n+{-n), ml—-n)=1, n>2,{—n>2.

Thus 75 = —2 = ho. Suppose that 7/ = h,. Now we prove that 7/, ; = hgi1.
Let ¢ be an integer which has the same parity as s + 1. Then we can

write
s+2

= Zpi + 2n.
=2

By the definition of 7/ ; and hs1, it is enough to prove that if 2n > 1100,
then Efi; pi + 2n can be expressed as the sum of s+ 1 distinct integers > 1
which are pairwise relatively prime.

Assume that 2n > 1100. Write 2¢t = 2n — 71. As 7} = hy < ps2 we have
Pst+2 + 2t = psyo +2n — 72 > 2n > 1100. By Lemmathere exists an odd

prime ¢ with %(p5+2 +2t) < ¢ < ps42 + 2t. Then

s+1
(—q>L—pea—2t=> pi+7
i=2

Since
{—q=s(mod 2),

by the induction hypothesis we have
giq:n1+"'+n87

where 1 < ny < -+ < ng and (n;,n;) =1 for 1 < 4,5 < s, i # j. Since
¢ —q=s (mod 2) and (n;,n;) =1for 1 <i,j <s,i# j, we have 2{n; for
1< <s.
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If ¢ > ng, we are done. Now we assume that ¢ < ng. As { —q¢ =ny +
.-+ + ng, we have

(3.1) (>2q+pa+-+ps> 3pssa+ St+pa+-- +ps.
By (3.1)), since
s+2
0= pit+2+1,
=2
we obtain
(3.2) %ps+2 — Ps+1 + %t < Té'

Noting that 7/ < psta, by (3.2) we have
(3.3) 2n = 2t + 70 < AT. + 3psi1 — Psio < 6psio.
Since 2n > 1100, Lemma [2.2] yields

o0

(3.4) =) (pf—pi), t>1,i=273,...
=2

For i > s+ 3, by (3.3) and (3.4) we have
Py — Psr3 S P — pi < 2n < 6pgia.
Since ps13 — 1 > ps — 1 = 10, it follows that ¢; = 1 for all 4 > s+ 3. Hence

s+2 s+2 s+2 s+2

0= "pitom=> pi+ > 0 —p) =D Pl
=2 =2 =2 =2

Thus we have proved that if ¢/ = Zfig p; + 2n cannot be expressed as
the sum of s + 1 distinct integers > 1 which are pairwise relatively prime,
then 2n < 1100. By the definition of hsi1 and 7/, we have 7/ | = hgy1.
Therefore, 7) = h, for all s > 2.

Thus we have proved that 7, = hy is the largest even number 2n < 1100
such that Efizl p; +2n cannot be expressed as the sum of s distinct integers
> 1 which are pairwise relatively prime, and 7. = hy < min{1100, ps;2}.

In order to prove Theorem it is enough to prove that 7/ ¢ U+ V; and
if 2n is an even number with 77 < 2n < min{1100, ps4+2}, then 2n € U + V5.

Assume 7/ < 2n < min{1100, ps+2}. Now we prove that 2n € U + V;. By
Lemma [2.3| and the definition of 7., we have

P2t Pt 2n=ppt 4 PP,

where 2 < [} < -+ <lgand a; > 1 (1 < i < ). Ifl4 > s+ 2, then
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li>s+1+i(1<i<s). Thusls >2s+1>5 and p;, > ps = 11. Hence
2n=p)' -+ — (P2t A+ Psia)
> Pst2 ot P2st1 — (P2t + Psy1)
> pst2+ o+ p2s+ 11— (p2+ -+ psy1)
> Ds42,
in contradiction with 2n < min{1100, ps12}. So {1 < s+ 1. Let r be the
largest index with [, <s+ 1. If r = s, then [; =i+ 1 (1 <i < s). Thus
(3.5) 2n = (p3' —p2) + -+ (Poi1 — Ps+1)-
If r <s, let
{2,3,...,s+ 1} ={l,.. ., L} U{j1,- -, Js—r}
with j; < -+ < js—. Hence
(3:6) 2n = (' —pi,)+- -+ =)o D =y~ D),
For 1 <i <r, if a; > 2, then by and we have
i, (py, — 1) < 2n < 1100.
Thus p;; <31 and [; < 11. Hence
(3.7) (o = o)+ -+ () —m,) €U
For r < i <s, if a; > 2, then

Q41

plr+1 + +plC:S _p]1 - _pjsfr
> pligt (s =1 — 1)psrs — (s — 1)Pss1 > Psra > 21,
a contradiction. So o;; = 1 for all r < i < s. By (3.6 we have
pott e = pjy = =y, < 20 < 1100,
Hence
o s
(38) plr+ﬁ1+."+pi —Pj — T Pjs—r
=Pl TP, =P = P, € Vs,
By (3.5)—(3.8) we have 2n € U + V5.
It remains to prove that 7/ ¢ U + V. Suppose that 7. € U 4+ V. Then
11
=Y (P =)+ P P~ Puy — — Pups
i=2
where ; (2 < i < 11) are positive integers and w; < -+ < w; < s+ 1 <

i1 < --- <7 Let
11 m

S —pi) =D (0 —pe,),

i=2 =1
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where 2 <e; <---<ep <1land d; >2 (1 <i<m). Since

Pe, (pem - 1) < Pe” — Pem < Té < Ps+2,
we have e,,, < s+ 1. If w; < e,,, then

m

=1

> pim — Pey — Puy + Pst2 = Pen (Pew — 2) + Pt > Dat2,
a contradiction as 7, < min{1100, ps42}. Hence e, < wj. Thus

2<eg < <ep < <<y <st+l<y<--- <.

Let
{fl,...,fsfm,l} = {2,...,S+1}\{61,...,€m,w1,...,wl}.
Then
m
! dl'
Pat P+ 7= P pp A D TP+ P
i=1
Since e1,...,em, f1,---y fs—m—1,11,.-.,% are pairwise distinct, this contra-

dicts the definition of 7/ and completes the proof of Theorem

4. Proofs of Theorem and Corollary It is easy to see that
co = —2 and {0,2,4,6} € V. Thus, as 0 € U, all even numbers 2n with
—2 < 2n < min{1100, pa42} are in U + V4. So the conclusion of Theorem
[L1lis true for s = 2.

Now we assume that s > 2.

In order to prove Theorem [I.1] by Theorem [I.6]it is enough to prove that
for any odd number 2k+1 > 7., po+ -+ ps+1+2k+ 1 can be expressed as
the sum of s distinct integers > 1 which are pairwise relatively prime. Since
7! > =2, we have k > —1. If k = —1, then

Pt AP+ 2k+1=pr+p3+pat -+ st
If £ =0, then
pot A pert + 2k 1=pl Pyt Pyt A+ Psta

Now we assume that £ > 1. By Theoremmwe have psy1 +2k—1>7)_;.
Hence

p2+"'+ps+(ps+1+2k_1):n1+"'+ns—17
where 1 < ny < -+ < ng_q and (n;,n;) = 1for 1 <i,j <s—1,1# j.
Since pa + -+ -+ ps + (ps+1 + 2k — 1) = s — 1 (mod 2) and (n;,n;) = 1 for
1<i4,j<s—1,i# 7, we have 2tn; for 1 <i < s—1. Thus

2t A pst(Psyr+2k+1) =240+ +nsg

is the required form.
This completes the proof of Theorem
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Proof of C'orollary. Suppose that psyo—ps+1 > 1100. Then Vs = {0}.
Since 1100 ¢ U, we have 1100 ¢ U + V5. By Theorem [L.1] we have c; = 1100.
This proves the first part of Corollary The second part follows from the
fact that the number of primes p < x such that p + k is prime, is bounded
above by cz/log? z, where ¢ depends only on k (Brun [I], Sandor, Mitrinovi¢
and Crstici [4, p. 238], Wang [0]). =

5. Final remarks. Let A = ([2,1100] N 2N)\ U and for ¢t < s, let

Vi(t) = {pstoti — Ppsy1-5 | 0 <4, <t}
U {ps+2+i + Ps42+j — Ps+1—u — Ps+1—v ‘ 0<i<j<t0<u<v< t}-
Let a(s,t) = max(A\ (U + Vs(¢))). If

a(s,t) < min{psio4t — Pst1,Ps+2 — Pst1—ts PDs+3 + Ps42 — Ds+1 — Ps
then
a(s,t) = max(A\ (U + Vs)).

Noting that A = ([2,1100]N2N)\U, by Theorem|[L.1|we have c; = a(s, t).
Taking t = 5, using Mathematica we find that c599 = 16, cggo = 14, c1000 = 8,
C2000 — 22, etc.

Appendix

U = {0, 6, 20, 24, 26, 42, 44, 48, 62, 66, 68, 78, 86, 98, 110, 116, 120, 126, 130, 134, 136,
140, 144, 152, 154, 156, 158, 162, 168, 172, 176, 178, 180, 182, 186, 188, 196, 198, 200, 204,
208, 218, 222, 224, 230, 234, 236, 240, 242, 250, 254, 260, 266, 272, 276, 278, 282, 286, 290
292, 296, 298, 300, 302, 308, 310, 314, 316, 318, 320, 324, 328, 332, 334, 336, 338, 340
342, 344, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 380, 382, 384, 386
388, 390, 392, 396, 398, 402, 404, 406, 408, 410, 412, 414, 416, 420, 424, 426, 428, 430
434, 438, 440, 444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 466, 468, 470, 472
476, 478, 480, 482, 486, 490, 492, 494, 496, 498, 500, 502, 504, 506, 508, 510, 512, 514
516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 544, 546, 548, 550
554, 558, 560, 562, 564, 566, 568, 570, 572, 574, 576, 578, 580, 582, 584, 586, 590, 592
596, 600, 602, 604, 606, 608, 612, 614, 616, 618, 620, 622, 624, 626, 628, 632, 634, 636
638, 640, 642, 644, 646, 650, 652, 656, 658, 660, 662, 664, 666, 668, 670, 674, 676, 678
680, 682, 684, 686, 688, 690, 692, 694, 696, 698, 700, 702, 704, 706, 710, 712, 714, 718
722, 724, 726, 728, 730, 732, 734, 736, 738, 740, 742, 744, 746, 748, 750, 752, 754, 756,
758, 760, 762, 764, 766, 768, 770, 772, 776, T78, T80, 782, 784, 786, 788, 790, 792, 794,
796, 798, 800, 802, 804, 806, 808, 810, 812, 814, 816, 818, 820, 822, 824, 826, 830, 832,
834, 836, 838, 840, 842, 844, 846, 848, 850, 852, 854, 856, 858, 860, 862, 864, 866, 868
870, 872, 874, 876, 878, 830, 882, 884, 886, 888, 890, 892, 894, 896, 898, 900, 902, 904
906, 908, 910, 912, 914, 916, 918, 920, 922, 924, 926, 928, 930, 932, 934, 936, 938, 940
942, 944, 946, 948, 950, 952, 954, 956, 958, 960, 962, 964, 966, 968, 970, 972, 974, 976
978, 980, 982, 984, 986, 988, 990, 992, 994, 996, 998, 1000, 1002, 1004, 1006, 1008, 1010
1012, 1014, 1016, 1018, 1020, 1022, 1024, 1026, 1028, 1030, 1032, 1034, 1036, 1038, 1040
1042, 1044, 1046, 1048, 1050, 1052, 1054, 1056, 1058, 1060, 1062, 1064, 1066, 1068, 1070
1072, 1074, 1076, 1078, 1080, 1082, 1084, 1086, 1088, 1090, 1092, 1094, 1096, 1098}.
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