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1. Introduction. Let s ≥ 2 be an integer. Denote by µs the least integer
so that every integer ` > µs is the sum of exactly s integers > 1 which
are pairwise relatively prime. In 1964, Sierpiński [5] posed the problem of
determining µs. Let p1 = 2, p2 = 3, . . . be the sequence of consecutive primes.
In 1965, P. Erdős [3] proved that there exists an absolute constant C such
that µs ≤ p2+p3+ · · ·+ps+1+C. It is easy to see that p2+p3+ · · ·+ps+1−2
is not the sum of exactly s integers > 1 which are pairwise relatively prime.
So µs ≥ p2 + p3 + · · · + ps+1 − 2. Let µs = p2 + p3 + · · · + ps+1 + cs. Then
−2 ≤ cs ≤ C. It is easy to see that c2 = −2.

Let U be the set of integers of the form

pk22 + pk33 + · · ·+ pk1111 − p2 − p3 − · · · − p11 ≤ 1100,

where ki (2 ≤ i ≤ 11) are positive integers. All elements of U can be listed
explicitly by using Mathematica (see Appendix). Let Vs be the set of integers
of the form

pi1 + · · ·+ pil − pj1 − · · · − pjl ≤ 1100,

where 2 ≤ j1 < · · · < jl ≤ s + 1 < i1 < · · · < il. It is clear that 0 ∈ U and
0 ∈ Vs (l = 0). Define U + Vs = {u + v | u ∈ U, v ∈ Vs}. Then U + Vs is
finite.

In this paper the following results are proved. The main results were
announced at ICM2010.

Theorem 1.1. Let s ≥ 2 be any given positive integer. Then

cs = max{2n | 2n ≤ min{1100, ps+2}, n ∈ Z, 2n /∈ U + Vs}.

Remark 1.2. As examples, by Theorem 1.1 we have c500 = 16, c900 =
14, c1000 = 8, c2000 = 22 (see the last section).
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Corollary 1.3. If ps+2 − ps+1 > 1100, then

µs =

s+1∑
i=2

pi + 1100.

In particular, the set of integers s ≥ 2 for which this equality is satisfied has
asymptotic density 1.

We pose a problem here:

Problem 1.4. Find the least positive integer s with µs =
∑s+1

i=2 pi+1100.

Basing on the proof of Theorem 1.6 in Section 4, we make the following
conjecture.

Conjecture 1.5. For s ≥ 3, every integer l > p2 + p3 + · · · + ps+2 is
the sum of exactly s distinct primes.

This conjecture would follow from the following statement: “Every odd
integer n ≥ ps−1+ps+ps+1+ps+2 can be written as the sum of three primes
q1 < q2 < q3 with q1 ≥ ps−1”. Since ps−1 < n/4, by well-known results on
the odd Goldbach problem with almost equal primes, this statement is true
for all sufficiently large s. Hence, Conjecture 1.5 is true for all sufficiently
large s.

Now we sketch the proof of Theorem 1.1. For the details, see Section 4.

(1) We first find a “long” interval [1102, 3858] such that each even number
in this interval can be represented as

∑∞
i=2(p

ti
i − pi). For any even number

2m > 3858, there exists a prime pu such that p2u − pu ≤ 2m − 1102 <
p2u+1 − pu+1. Then we use the induction hypothesis on 2m − (p2u − pu).
By these arguments we know that every even number n ≥ 1102 can be
represented as

∑∞
i=2(p

ti
i − pi), where ti are positive integers. One can verify

that 1100 cannot be represented in that form.

(2) Denote by µ′s the least integer, of the same parity as s, so that
every integer ` > µ′s of the same parity as s can be expressed as the sum
of s distinct integers > 1 which are pairwise relatively prime. Let µ′s =
p2 + · · ·+ ps+1 + τ ′s. Then τ ′s is even.

For 2n > min{1100, ps+2}, if min{1100, ps+2} < 2n ≤ 1100, then s ≤
182. By calculation we find that

∑s+1
i=2 pi + 2n can be expressed as the sum

of s distinct odd primes. Now assume that 2n > 1100. If 2n is “large”,
then we can choose a “large” prime q such that ps+2 + 2n− q > τ ′s. By the
induction hypothesis, p2 + · · ·+ ps+1 + (ps+2 + 2n− q) can be expressed as
the sum of s distinct integers > 1 which are pairwise relatively prime. Thus
p2 + · · · + ps+1 + ps+2 + 2n can be expressed as the sum of s + 1 distinct
integers > 1 which are pairwise relatively prime. If 2n is “small”, then by (1)
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(we take some ti = 1)

2n =

s+2∑
i=2

(ptii − pi).

Thus

p2 + · · ·+ ps+1 + ps+2 + 2n =
s+2∑
i=2

ptii .

We can easily convert the case p2 + · · ·+ ps+1 + ps+2 + 2n+ 1 into p1 + p2 +
· · ·+ ps+1 + (ps+2 + 2n− 1) and use the induction hypothesis.

Recall that µ′s is defined in (2) above, and τ ′s = µ′s − (p2 + · · ·+ ps+1) is
even. The following theorem is a step in the proof of Theorem 1.1, and not
an independent result.

Theorem 1.6.

τ ′s = max{2n | 2n ≤ min{1100, ps+2}, n ∈ Z, 2n /∈ U + Vs}.

2. Preliminary lemmas. In this paper, p, qi are always primes. First
we introduce the following lemmas.

Lemma 2.1 ([2, Lemma 4]). For every x > 24 there exists a prime in
(x,

√
3/2x].

Lemma 2.2. Every even number n ≥ 1102 can be represented as∑∞
i=2(p

ti
i − pi), where ti are positive integers. The integer 1100 cannot be

represented in that form.

Proof. The proof is by induction on even numbers n. For any sets X,Y
of integers, define X + Y = {x+ y : x ∈ X, y ∈ Y }. Let

U4 = {0, 32 − 3, 33 − 3, 34 − 3, 35 − 3, 36 − 3, 37 − 3}
+ {0, 52 − 5, 53 − 5, 54 − 5}+ {0, 72 − 7, 73 − 7},

Ui = Ui−1 ∪ (Ui−1 + {p2i − pi}), i = 5, 6, . . . .

Using Mathematica, we can list the elements of each Ui and verify that
[1102, 3858] ∩ 2Z ⊆ U12 and 1100 /∈ U12.

Thus, if n is even with 1102 ≤ n ≤ 3858, then n can be represented as∑∞
i=2(p

ti
i − pi), where ti are positive integers.

Now assume that any even n with 1102 ≤ n < 2m (2m > 3858) can be
represented as such a sum.

Since 2m− 1102 > 3858− 1102 = 532− 53, there exists a prime pu ≥ 53
with

(2.1) p2u − pu ≤ 2m− 1102 < p2u+1 − pu+1.

Then
1102 ≤ 2m− (p2u − pu) < 2m.
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By the induction hypothesis, we have

2m− (p2u − pu) =

∞∑
i=2

(ptii − pi),

where ti are positive integers. Hence

(2.2) 2m =
∞∑
i=2

(ptii − pi) + (p2u − pu).

Now we prove that tu = 1. Indeed, otherwise tu ≥ 2 and 2m ≥ 2(p2u−pu).
By (2.1) we have

2(p2u − pu)− 1102 ≤ 2m− 1102 < p2u+1 − pu+1 < p2u+1 − pu.
Thus

2p2u − pu − 1102 < p2u+1.

Since pu ≥ 53, by Lemma 2.1 we have pu+1 ∈ (pu,
√

3/2 pu]. Since√
3/2 pu ≤

√
2p2u − pu − 1102,

we have

p2u+1 ≤ 2p2u − pu − 1102,

a contradiction.

So tu = 1, and by (2.2), 2m can be represented in the desired form,
completing the proof of the first assertion of the lemma.

Suppose now that 1100 can be expressed as
∑∞

i=2(p
ti
i − pi), where ti are

positive integers. Then ptii −pi ≤ 1100 for all i. If ti ≥ 2, then p2i −pi ≤ 1100.
Thus pi < 37. So i < 12. If ti ≥ 3, then p3i − pi ≤ 1100. Thus pi ≤ 7 = p4.
As pt22 − p2 ≤ 1100 we have t2 ≤ 6. As pt33 − p3 ≤ 1100 we have t3 ≤ 4. As
pt44 − p4 ≤ 1100 we have t4 ≤ 3. Hence 1100 ∈ U12, a contradiction.

Lemma 2.3. If 2n < ps+2 and
∑s+1

i=2 pi + 2n is the sum of exactly s

integers > 1 which are pairwise relatively prime, then
∑s+1

i=2 pi + 2n can be
expressed as the sum of powers of s distinct odd primes.

Proof. Let
s+1∑
i=2

pi + 2n =
s∑
i=1

mi,

where 1 < m1 < · · · < ms and (mi,mj) = 1 for 1 ≤ i, j ≤ s, i 6= j. By
comparing the parities we know that the s integers mi must all be odd. If
one of them has at least two distinct prime factors, then the sum of these s
integers is at least 3× 5 + p4 + · · ·+ ps+2 = p2 + · · ·+ ps+1 + ps+2 + 7. This
contradicts 2n ≤ ps+2.
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3. Proof of Theorem 1.6. For s ≥ 2, let

H(s) = {pj − pi : 2 ≤ i ≤ s+ 1 < j ≤ 185}
∪ {pu + pv − ps − ps+1 : s ≤ u ≤ 105, u < v ≤ 180}.

Using Mathematica, we find that [ps+2, 1100] ∩ 2Z ⊆ H(s) for 2 ≤ s ≤ 182.
Thus, for ps+2 < 2n ≤ 1100,

∑s+1
i=2 pi + 2n can be expressed as the sum of s

distinct odd primes.

Let hs be the largest even number 2n ≤ 1100 such that
∑s+1

i=2 pi + 2n
cannot be expressed as the sum of s distinct integers > 1 which are pair-
wise relatively prime. Noting that ps+2 > 1100 for s ≥ 183, by the above
arguments we have hs ≤ min{1100, ps+2} for all s ≥ 2.

We will use induction on s to prove that τ ′s = hs for all s ≥ 2.

For every even ` > 6, we have φ(`) > 2, where φ(`) is Euler’s totient
function. Hence there exists an integer n with 2 ≤ n ≤ `− 2 and (n, `) = 1.
So

` = n+ (`− n), (n, `− n) = 1, n ≥ 2, `− n ≥ 2.

Thus τ ′2 = −2 = h2. Suppose that τ ′s = hs. Now we prove that τ ′s+1 = hs+1.

Let ` be an integer which has the same parity as s + 1. Then we can
write

` =

s+2∑
i=2

pi + 2n.

By the definition of τ ′s+1 and hs+1, it is enough to prove that if 2n > 1100,

then
∑s+2

i=2 pi+ 2n can be expressed as the sum of s+ 1 distinct integers > 1
which are pairwise relatively prime.

Assume that 2n > 1100. Write 2t = 2n− τ ′s. As τ ′s = hs ≤ ps+2 we have
ps+2 + 2t = ps+2 + 2n− τ ′s ≥ 2n > 1100. By Lemma 2.1 there exists an odd
prime q with 2

3(ps+2 + 2t) < q < ps+2 + 2t. Then

`− q > `− ps+2 − 2t =
s+1∑
i=2

pi + τ ′s.

Since

`− q ≡ s (mod 2),

by the induction hypothesis we have

`− q = n1 + · · ·+ ns,

where 1 < n1 < · · · < ns and (ni, nj) = 1 for 1 ≤ i, j ≤ s, i 6= j. Since
`− q ≡ s (mod 2) and (ni, nj) = 1 for 1 ≤ i, j ≤ s, i 6= j, we have 2 - ni for
1 ≤ i ≤ s.
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If q > ns, we are done. Now we assume that q ≤ ns. As ` − q = n1 +
· · ·+ ns, we have

(3.1) ` ≥ 2q + p2 + · · ·+ ps >
4
3ps+2 + 8

3 t+ p2 + · · ·+ ps.

By (3.1), since

` =

s+2∑
i=2

pi + 2t+ τ ′s,

we obtain

(3.2) 1
3ps+2 − ps+1 + 2

3 t < τ ′s.

Noting that τ ′s ≤ ps+2, by (3.2) we have

(3.3) 2n = 2t+ τ ′s < 4τ ′s + 3ps+1 − ps+2 < 6ps+2.

Since 2n > 1100, Lemma 2.2 yields

(3.4) 2n =

∞∑
i=2

(ptii − pi), ti ≥ 1, i = 2, 3, . . . .

For i ≥ s+ 3, by (3.3) and (3.4) we have

ptis+3 − ps+3 ≤ ptii − pi ≤ 2n < 6ps+2.

Since ps+3 − 1 ≥ p5 − 1 = 10, it follows that ti = 1 for all i ≥ s+ 3. Hence

` =
s+2∑
i=2

pi + 2n =
s+2∑
i=2

pi +
s+2∑
i=2

(ptii − pi) =
s+2∑
i=2

ptii .

Thus we have proved that if ` =
∑s+2

i=2 pi + 2n cannot be expressed as
the sum of s + 1 distinct integers > 1 which are pairwise relatively prime,
then 2n ≤ 1100. By the definition of hs+1 and τ ′s+1, we have τ ′s+1 = hs+1.
Therefore, τ ′s = hs for all s ≥ 2.

Thus we have proved that τ ′s = hs is the largest even number 2n ≤ 1100
such that

∑s+1
i=2 pi+2n cannot be expressed as the sum of s distinct integers

> 1 which are pairwise relatively prime, and τ ′s = hs ≤ min{1100, ps+2}.
In order to prove Theorem 1.6, it is enough to prove that τ ′s /∈ U+Vs and

if 2n is an even number with τ ′s < 2n ≤ min{1100, ps+2}, then 2n ∈ U + Vs.

Assume τ ′s < 2n ≤ min{1100, ps+2}. Now we prove that 2n ∈ U +Vs. By
Lemma 2.3 and the definition of τ ′s, we have

p2 + · · ·+ ps+1 + 2n = pα1
l1

+ · · ·+ pαs
ls
,

where 2 ≤ l1 < · · · < ls and αi ≥ 1 (1 ≤ i ≤ s). If l1 ≥ s + 2, then
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li ≥ s+ 1 + i (1 ≤ i ≤ s). Thus ls ≥ 2s+ 1 ≥ 5 and pls ≥ p5 = 11. Hence

2n = pα1
l1

+ · · ·+ pαs
ls
− (p2 + · · ·+ ps+1)

≥ ps+2 + · · ·+ p2s+1 − (p2 + · · ·+ ps+1)

≥ ps+2 + · · ·+ p2s + 11− (p2 + · · ·+ ps+1)

> ps+2,

in contradiction with 2n ≤ min{1100, ps+2}. So l1 ≤ s + 1. Let r be the
largest index with lr ≤ s+ 1. If r = s, then li = i+ 1 (1 ≤ i ≤ s). Thus

(3.5) 2n = (pα1
2 − p2) + · · ·+ (pαs

s+1 − ps+1).

If r < s, let

{2, 3, . . . , s+ 1} = {l1, . . . , lr} ∪ {j1, . . . , js−r}
with j1 < · · · < js−r. Hence

(3.6) 2n = (pα1
l1
−pl1)+ · · ·+(pαr

lr
−plr)+p

αr+1

lr+1
+ · · ·+pαs

ls
−pj1−· · ·−pjs−r .

For 1 ≤ i ≤ r, if αi ≥ 2, then by (3.5) and (3.6) we have

pli(pli − 1) ≤ 2n ≤ 1100.

Thus pli ≤ 31 and li ≤ 11. Hence

(3.7) (pα1
l1
− pl1) + · · ·+ (pαr

lr
− plr) ∈ U.

For r < i ≤ s, if αi ≥ 2, then

p
αr+1

lr+1
+ · · ·+ pαs

ls
− pj1 − · · · − pjs−r

≥ p2s+2 + (s− r − 1)ps+3 − (s− r)ps+1 > ps+2 ≥ 2n,

a contradiction. So αi = 1 for all r < i ≤ s. By (3.6) we have

p
αr+1

lr+1
+ · · ·+ pαs

ls
− pj1 − · · · − pjs−r ≤ 2n ≤ 1100.

Hence

(3.8) p
αr+1

lr+1
+ · · ·+ pαs

ls
− pj1 − · · · − pjs−r

= plr+1 + · · ·+ pls − pj1 − · · · − pjs−r ∈ Vs.
By (3.5)–(3.8) we have 2n ∈ U + Vs.

It remains to prove that τ ′s /∈ U + Vs. Suppose that τ ′s ∈ U + Vs. Then

τ ′s =
11∑
i=2

(pβii − pi) + pi1 + · · ·+ pil − pw1 − · · · − pwl
,

where βi (2 ≤ i ≤ 11) are positive integers and w1 < · · · < wl ≤ s + 1 <
i1 < · · · < il. Let

11∑
i=2

(pβii − pi) =

m∑
i=1

(pdiei − pei),
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where 2 ≤ e1 < · · · < em ≤ 11 and di ≥ 2 (1 ≤ i ≤ m). Since

pem(pem − 1) ≤ pdmem − pem ≤ τ
′
s ≤ ps+2,

we have em ≤ s+ 1. If w1 ≤ em, then

τ ′s =
m∑
i=1

(pdiei − pei) + pi1 + · · ·+ pil − pw1 − · · · − pwl

≥ pdmem − pem − pw1 + ps+2 ≥ pem(pem − 2) + ps+2 > ps+2,

a contradiction as τ ′s ≤ min{1100, ps+2}. Hence em < w1. Thus

2 ≤ e1 < · · · < em < w1 < · · · < wl ≤ s+ 1 < i1 < · · · < il.

Let
{f1, . . . , fs−m−l} = {2, . . . , s+ 1} \ {e1, . . . , em, w1, . . . , wl}.

Then

p2 + · · ·+ ps+1 + τ ′s =
m∑
i=1

pdiei + pf1 + · · ·+ pfs−m−l
+ pi1 + · · ·+ pil .

Since e1, . . . , em, f1, . . . , fs−m−l, i1, . . . , il are pairwise distinct, this contra-
dicts the definition of τ ′s and completes the proof of Theorem 1.6.

4. Proofs of Theorem 1.1 and Corollary 1.3. It is easy to see that
c2 = −2 and {0, 2, 4, 6} ∈ V2. Thus, as 0 ∈ U , all even numbers 2n with
−2 < 2n ≤ min{1100, p2+2} are in U + V2. So the conclusion of Theorem
1.1 is true for s = 2.

Now we assume that s > 2.
In order to prove Theorem 1.1, by Theorem 1.6 it is enough to prove that

for any odd number 2k+ 1 > τ ′s, p2 + · · ·+ps+1 + 2k+ 1 can be expressed as
the sum of s distinct integers > 1 which are pairwise relatively prime. Since
τ ′s ≥ −2, we have k ≥ −1. If k = −1, then

p2 + · · ·+ ps+1 + 2k + 1 = p1 + p3 + p4 + · · ·+ ps+1.

If k = 0, then

p2 + · · ·+ ps+1 + 2k + 1 = p21 + p3 + p4 + · · ·+ ps+1.

Now we assume that k ≥ 1. By Theorem 1.6 we have ps+1 + 2k − 1 > τ ′s−1.
Hence

p2 + · · ·+ ps + (ps+1 + 2k − 1) = n1 + · · ·+ ns−1,

where 1 < n1 < · · · < ns−1 and (ni, nj) = 1 for 1 ≤ i, j ≤ s − 1, i 6= j.
Since p2 + · · · + ps + (ps+1 + 2k − 1) ≡ s − 1 (mod 2) and (ni, nj) = 1 for
1 ≤ i, j ≤ s− 1, i 6= j, we have 2 - ni for 1 ≤ i ≤ s− 1. Thus

p2 + · · ·+ ps + (ps+1 + 2k + 1) = 2 + n1 + · · ·+ ns−1

is the required form.
This completes the proof of Theorem 1.1.
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Proof of Corollary 1.3. Suppose that ps+2−ps+1 > 1100. Then Vs = {0}.
Since 1100 /∈ U , we have 1100 /∈ U +Vs. By Theorem 1.1 we have cs = 1100.
This proves the first part of Corollary 1.3. The second part follows from the
fact that the number of primes p ≤ x such that p + k is prime, is bounded
above by cx/log2 x, where c depends only on k (Brun [1], Sándor, Mitrinović
and Crstici [4, p. 238], Wang [6]).

5. Final remarks. Let A = ([2, 1100] ∩ 2N) \ U and for t < s, let

Vs(t) = {ps+2+i − ps+1−j | 0 ≤ i, j ≤ t}
∪ {ps+2+i + ps+2+j − ps+1−u − ps+1−v | 0≤ i < j ≤ t, 0≤ u< v≤ t}.

Let a(s, t) = max(A \ (U + Vs(t))). If

a(s, t) < min{ps+2+t − ps+1, ps+2 − ps+1−t, ps+3 + ps+2 − ps+1 − ps},
then

a(s, t) = max(A \ (U + Vs)).

Noting that A = ([2, 1100]∩2N)\U , by Theorem 1.1 we have cs = a(s, t).
Taking t = 5, using Mathematica we find that c500 = 16, c900 = 14, c1000 = 8,
c2000 = 22, etc.

Appendix

U = {0, 6, 20, 24, 26, 42, 44, 48, 62, 66, 68, 78, 86, 98, 110, 116, 120, 126, 130, 134, 136,
140, 144, 152, 154, 156, 158, 162, 168, 172, 176, 178, 180, 182, 186, 188, 196, 198, 200, 204,
208, 218, 222, 224, 230, 234, 236, 240, 242, 250, 254, 260, 266, 272, 276, 278, 282, 286, 290,
292, 296, 298, 300, 302, 308, 310, 314, 316, 318, 320, 324, 328, 332, 334, 336, 338, 340,
342, 344, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 380, 382, 384, 386,
388, 390, 392, 396, 398, 402, 404, 406, 408, 410, 412, 414, 416, 420, 424, 426, 428, 430,
434, 438, 440, 444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 466, 468, 470, 472,
476, 478, 480, 482, 486, 490, 492, 494, 496, 498, 500, 502, 504, 506, 508, 510, 512, 514,
516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 544, 546, 548, 550,
554, 558, 560, 562, 564, 566, 568, 570, 572, 574, 576, 578, 580, 582, 584, 586, 590, 592,
596, 600, 602, 604, 606, 608, 612, 614, 616, 618, 620, 622, 624, 626, 628, 632, 634, 636,
638, 640, 642, 644, 646, 650, 652, 656, 658, 660, 662, 664, 666, 668, 670, 674, 676, 678,
680, 682, 684, 686, 688, 690, 692, 694, 696, 698, 700, 702, 704, 706, 710, 712, 714, 718,
722, 724, 726, 728, 730, 732, 734, 736, 738, 740, 742, 744, 746, 748, 750, 752, 754, 756,
758, 760, 762, 764, 766, 768, 770, 772, 776, 778, 780, 782, 784, 786, 788, 790, 792, 794,
796, 798, 800, 802, 804, 806, 808, 810, 812, 814, 816, 818, 820, 822, 824, 826, 830, 832,
834, 836, 838, 840, 842, 844, 846, 848, 850, 852, 854, 856, 858, 860, 862, 864, 866, 868,
870, 872, 874, 876, 878, 880, 882, 884, 886, 888, 890, 892, 894, 896, 898, 900, 902, 904,
906, 908, 910, 912, 914, 916, 918, 920, 922, 924, 926, 928, 930, 932, 934, 936, 938, 940,
942, 944, 946, 948, 950, 952, 954, 956, 958, 960, 962, 964, 966, 968, 970, 972, 974, 976,
978, 980, 982, 984, 986, 988, 990, 992, 994, 996, 998, 1000, 1002, 1004, 1006, 1008, 1010,
1012, 1014, 1016, 1018, 1020, 1022, 1024, 1026, 1028, 1030, 1032, 1034, 1036, 1038, 1040,
1042, 1044, 1046, 1048, 1050, 1052, 1054, 1056, 1058, 1060, 1062, 1064, 1066, 1068, 1070,
1072, 1074, 1076, 1078, 1080, 1082, 1084, 1086, 1088, 1090, 1092, 1094, 1096, 1098}.
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