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I. A short biography (1). Professor Jonas Kubilius, the luminary of
the Lithuanian mathematical school, passed away on October 30, 2011, just
after his ninetieth birthday celebration. He was one of the founders of prob-
abilistic number theory, the author of monographs and influential papers
in number theory, a renowned teacher and organizer of the mathematical
life in Lithuania after the Second World War. His leadership as a rector of
Vilnius University (1958–1991) and his contributions to the activities of the
surviving Lithuanian state can hardly be overestimated.

Kubilius was born on July 27, 1921, in the village of Fermos (district of
Jurbarkas, Lithuania) into a farmer’s family. He was the oldest of the five
sons. After primary school, he attended the pro-gymnasium in the neigh-
boring village of Eržvilkas and gymnasium in the small western Lithuanian
city Raseiniai. The latter, a school of classical type, gave good education
in the humanities, including basic Latin and abilities to speak fluent Ger-
man and French. Describing these years, Kubilius used to mention his at-
tempts to write poetry, to make a radio apparatus, . . . and rediscovering
the Pythagorean triples. The day of his school-graduation, June 16, 1940,
was marked by a Red Army tank standing in the center of the city; the
Molotov–Ribbentrop secret protocols went into action. Nevertheless, in Oc-
tober Kubilius became a freshman at the Mathematics and Natural Sciences
Faculty of Vilnius University (VU).

The situation at the faculty was not easy at all. Nevertheless, the house-
warming spirit was vibrant on the premises of VU, which has a long history
going back to 1579. The Stefan Batory University which had functioned
there between the wars stopped its activities and some faculties from Kau-
nas University were moved. Polish mathematicians, e.g., A. Zygmund, did
not stay at the reorganized institution. The newly formed staff of the fac-
ulty was not active in mathematical research but was doing their best at

(1) A literary biography of J. Kubilius was published by his student V. Stakėnas [39].

DOI: 10.4064/aa157-1-2 [11] c© Instytut Matematyczny PAN, 2013



12 E. Manstavičius

lecturing. Lectures were given by Z. Žemaitis (a graduate of Odessa Uni-
versity), P. Katilius (with a PhD from Heidelberg University in 1928), and
G. Žilinskas (the main results of his doctorate were obtained during 1937–
1939 at Queen Victoria University, Manchester, under the guidance of L. J.
Mordell), to mention but a few. Continuing repressions of the Soviet NKVD
at the university until the Nazi invasion and the threat to be taken to an
Arbeitslager during the second occupation marred the studies. After the
Nazis closed the University in 1943, Kubilius returned to his native village.
He spent a miserable time while crude battles waged nearby. The Lithua-
nian patriots resisted the return of the Soviets and their consolidation of
hold in 1944. Kubilius also became a member of the resistance movement,
hiding his activities under the beloved duties of a teacher of mathematics
at the Eržvilkas school. Finally, the desire to return to serious studies of his
favorite subject overwhelmed him. A year later, he accepted the proposed
laboratory assistant job and returned to the University. In 1946, after suc-
cessfully passing the missed exams and defending a graduation thesis, Mea-
sure of transcendence, Kubilius received the university summa cum laude
diploma.

An assistant professor position at VU would have been very desirable
for a young mathematician; nevertheless, Kubilius was pressed to become
director of Preliminary Courses. The lectures and a great load of admin-
istrative work in the post-war period took all his time; therefore, in 1948,
he seized the opportunity to take up doctoral studies at Leningrad (now,
Sankt-Petersburg) University and to join the research group of the Russian
academician Yu. V. Linnik (1915–1972, see [12]) and his prominent disciples.
The candidate-of-science thesis (2), Investigations in the geometry of prime
numbers, was defended on June 21, 1951, at Leningrad University (opponent
B. A. Venkov).

Kubilius declined the proposal to stay at a research center in Leningrad,
and returned to Lithuania where Stalin’s repressions were continuing. His
brother Juozas had been imprisoned for his help to the resistance. His fa-
ther passed away in winter, and was thereby spared witnessing the destiny
of the other family members. Kubilius’ mother and another brother Antanas
were deported to Siberia, to the Krasnoyarsk Region, in October. Only in
1957 could the family gather together. The university was still kept under
control. Having in mind his “bad” biography, for safety reasons, Kubilius
preferred to accept a research fellow’s position at the Physical and Technical
Institute. Nevertheless, all the time he was giving lectures at VU. In 1956,
the Institute was split into two parts. At the newly organized Institute of

(2) In the Soviet Union, two levels of scientific degrees existed: the candidate’s degree
corresponded to a PhD, while the requirements for the Doctor of Science degree were
much higher.
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Physics and Mathematics, Kubilius became vice-director and head of the
Mathematics Division. He started to implement the idea to concentrate the
mathematical research in Lithuania on probability theory, a branch cover-
ing a wide spectrum of theoretical and practical problems. At the Faculty,
he initiated a seminar which played a decisive role during the next few
decades. Kubilius was always ready to propose problems and to advise any-
body who wished to become a professional mathematician. The most gifted
students were directed to scientific centers of the Soviet Union, the Western
direction remaining closed for a long time. This period featured great per-
sonal accomplishments, namely, at this time, Kubilius elaborated an original
probabilistic approach in number theory and obtained fundamental results
on the value distribution of arithmetical functions. Nevertheless, a group of
number-theorists headed by I. M. Vinogradov did not accept the advance in
the new branch so benevolently. The Doctor of Science thesis titled Investi-
gations in probabilistic number theory had to be formally attributed to prob-
ability theory. It was defended on November 21, 1957, at the V. A. Steklov
Mathematical Institute (Moscow); the opponents Yu. V. Linnik, B. V. Gne-
denko, and Yu. V. Prokhorov evaluated it highly. The scientific recognition
and organizational activities considerably raised Kubilius’ prestige among
the Lithuanian scientists and intellectuals. The ruling authorities had to
listen to his proposals.

In 1958, at the age of 37, Kubilius was appointed rector of Vilnius Uni-
versity. One could hardly suppose then that the appointment started the
Kubilius epoch at the university, filled with constant attention to the de-
velopment of modern branches of science and keeping the university among
the main national centers cherishing cultural heritage despite the prevailing
suppression at the time. For almost 33 years at the rector’s position and
later, he continued to do mathematical research. The time of long and an-
noying official meetings, the short stays or visits abroad (Austria, Canada,
France, Finland, Germany, India, Italy, USA), and vacations were filled up
by writing formulae. During his long career, he founded and remained the
recognized leader of a scientific school (the genealogical tree may be found
at http://www.mif.vu.lt/lmm/savadas/savadas.html). He advised 29 PhD
students; many of them became active researchers. He never stopped orga-
nizing mathematical life in Lithuania. First, we have to mention national
mathematical competitions for schoolchildren going on since 1952 (see the
report [49]) because many of its prize winners later became Kubilius’ stu-
dents. In 1961, he founded the Lithuanian Mathematical Journal and stayed
on the editorial board or was Chief Editor for many years. He organized
the Lithuanian Mathematical Society (officially registered in 1962) and all
annual national mathematical conferences held from 1958 up to his death.
He was among the organizers of the regular number-theoretic conferences

http://www.mif.vu.lt/lmm/savadas/savadas.html
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and schools in the former Soviet Union (two of which, in 1966 and 1974,
were held in Lithuania) and Vilnius international conferences on probability
theory and mathematical statistics (since 1973; the 10th was held in 2010).
For two decades, he was also a member of the Editorial Board of Acta Arith-
metica. Kubilius’ great reputation led to many honors. He became a member
of the Lithuanian Academy of Sciences in 1962. He held honorary doctoral
degrees from the Latvian University (Riga), Charles University (Prague),
and from the universities in Greifswald and Salzburg. He received many
medals and awards, including the Lithuanian State Prizes (1958, 1981) for
science achievements.

In the 1990s, Kubilius was among the politically active Lithuanian intel-
lectuals supporting the independence movement. Having a long experience
of work in the former Supreme Soviets of Lithuanian Republic and of the
Union, after elections he took the deputy mandate of the Lithuanian Parlia-
ment (Lietuvos Seimas, 1992–1996). He was always ready to offer his energy
to science, to the university, and to Lithuania. A list of his books, inter-
views, newspaper articles, social polemical publications exceeds one thou-
sand items. Most of them are listed in the bibliographical book [20] and in
the collection of his speeches [22]. His draft of The History of Mathematics
in Lithuania remained unfinished.

II. Some personal memories. As a third year student, I attended
Kubilius’ courses on Function Theory of a Real Variable and Probability
Theory and Mathematical Statistics. The lectures were taught in a dry and
pedantic way. More impressive were the oral exams during which Profes-
sor Kubilius used to smoke heavily, thus giving us a lot of time to discover
the right answer. (Kubilius stopped smoking in his seventies, after having
been diagnosed with serious lung problems.) Since then, I was honored to
become his student. This raised my duties to appear regularly in his house
at the so-called Kubilius Tuesdays where many of his disciples gathered.
The first question I was asked during my first visit was which foreign lan-
guage I was able to speak. My reply about poor English was followed by
the request to study a paper by P. Erdős written in German. After some
time the experiment was repeated with a French article. Later I learned
that such attention to linguistic skills had been inherited from Linnik with
whom, as a non-Russian speaking person up to some time, Kubilius had to
communicate in French or German. I was lucky because Kubilius never used
to ask his teacher’s frequent question: Did you improve the given paper?,
followed by the inevitable It’s sad ! after a negative answer. On the contrary,
Kubilius always encouraged us and gave advice, but refused to become a
coauthor. We constantly borrowed books and reprints from his rich library
which actually was the only one in Lithuania containing so many recent
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Western publications. He always acknowledged the foreign colleagues’ help
and donations.

In the 1970s, Kubilius lectured on Probabilistic Number Theory, including
his own latest results. They were well elaborated despite the unavoidable
technical difficulties. Kubilius’ seminar on Mondays was going on regularly.
Sitting in the front row, he sometimes seemed to be sleeping, but even then
the speaker was kept under control. In addition to mathematical errors,
our atypical expressions in Lithuanian were corrected. Kubilius’ memory
was fascinating. Once celebrating a jubilee of our department and feeling a
restaurant’s warmth, we succeeded in provoking him to recite poetry. A long
performance followed.

In September, 2011, the fifth conference on analytic and probabilistic
methods in number theory dedicated to Kubilius’ 90th jubilee was held in
the Lithuanian sea resort of Palanga. The celebrant seemed a little weak,
but active, and he listened to all the lectures in the morning sessions.

Kubilius’ attention to his family was remarkable. Now, his son Kȩstutis is
a professor of mathematics and his daughter Birutė is a well-known doctor.
Kubilius’ life took a downturn after the death of his beloved wife Valerija
whom he married in 1950. They had been a harmonious couple.

The news of his death came as a shock.

III. Mathematical works. Kubilius published two research mono-
graphs with the same title in Russian [65], [75]. The revised second one
was translated into English in 1964 (reprinted in 1968, 1978 with correc-
tions, 1992, 1997). The total list of his mathematical papers contains more
than 100 items. Lithuanian mathematicians owe him a few university text-
books, investigations into the mathematical thought in the country, several
collections of exercises for schoolchildren competitions, and an indispensable
Lithuanian–English–Russian mathematical dictionary. He edited many pro-
ceedings of mathematical conferences, books and collections of papers on the
history of science. We will not discuss this part of his heritage. A survey of
Kubilius’ work, presented below, shows his contribution to mathematics. It
is influenced by the author’s taste and expertise. Hopefully, the list of math-
ematical papers will fill up the gaps. For instance, we do not dare to discuss
Kubilius’ and his PhD students’ (A. Bikelis, V. N. Lazakovič, R. Merkytė,
A. Mitalauskas, F. Mǐseikis, P. Vaitkus) contributions to probability the-
ory. Nor do we comment on dozens of “formulae of the classical type”, as
Kubilius used to call them, for values of multiple Dirichlet functions, which
have been presented in several talks (see [130]–[132], [134], [135], [141]) and
remain scattered in unpublished manuscripts. On the other hand, we give
some hints on the subsequent development of problems more familiar to
us, though without including the supporting references. We refer the reader
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to the books by G. J. Babu [2], W. Philipp [32], V. G. Sprindžuk [40],
P. D. T. A. Elliott [5]–[8], J.-L. Mauclaire [31], W. Schwarz and J. Spilker
[38], G. Tenenbaum [42], J. Knopfmacher and W.-B. Zhang [21], as well as
to surveys [3], [14], [19], [23], [27]–[29], [36], [37]. Kubilius himself also wrote
a few surveys: [91], [104], [137]–[139].

1. Metric number theory. In the above mentioned diploma paper,
Kubilius discussed Mahler’s classification of real numbers and the following
question. Let d ∈ N, P (x) = adx

d + ad−1x
d−1 + · · · + a0 ∈ Z[x] be a poly-

nomial, and H := max{|ak| : 0 ≤ k ≤ d}. Given positive constants c and κ,
consider the inequality

(1) |P (x)| < cH−κd

for almost all real x in the sense of Lebesgue measure. K. Mahler [26] estab-
lished that the inequality can have only finitely many solutions (a0, . . . , ad) ∈
Zd+1 for almost all x, provided that κ ≥ 4. He further continued: “Vermut-
lich kann diese Schranke bis auf jede Zahl oberhalb Eins herabgedrückt
werden”. In 1939, J. F. Koksma extended the result up to κ ≥ 3. In his first
paper published in 1949, Kubilius proved the hypothesis for the case d = 2.

Theorem 1 ([44]). Let c > 0 and ε > 0 be arbitrary. If d = 2 and κ ≥
1 + ε, then inequality (1) has only finitely many solutions (a0, a1, . . . , ad) ∈
Zd+1 for almost all x.

The proof was based upon an approximation of dependent variables,
namely, the task was to estimate the number of solutions q ∈ N to the
system of inequalities

(2) ‖ωq‖ < ψ(q), ‖ω2q‖ < ψ(q),

where ‖ · ‖ denotes the distance to the nearest integer and ψ(q) is a positive
decreasing function. Actually, it was sufficient to take ψ(q) = q−(1+ε)/2. This
problem goes back to A. Khinchin’s works from the 1920s.

As observed by T. Schneider [35], Kubilius started the proof of Mahler’s
hypothesis. Indeed, a series of improvements obtained by W. J. LeVeque,
F. Kash, and B. Volkmann followed. It was in 1964 that Schneider’s predic-
tion came true, for V. G. Sprindžuk (1936–1987), a Belorussian mathemati-
cian who was Kubilius’ PhD student during 1959–1961, presented a com-
plete proof of Mahler’s hypothesis. Staying in Vilnius, Sprindžuk did a lot
of preparatory work, by refining the required diophantine approximations.
Some years later, the Mahler–Sprindžuk theorem was extended to polynomi-
als of two variables and degree three by Kubilius’ student R. Sliesoraitienė.
For a historical account, we refer to [40] and [125].

After some time Kubilius returned to system (2) and sharpened his ear-
lier result.
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Theorem 2 ([66]). Let ψ(q) be a positive function defined for q ≥ q0
such that ψ(q)

√
q is non-increasing. If the series∑

q≥q0

ψ(q)/
√
q

converges, then the system of inequalities (2) has only a finite number of
solutions q ≥ q0 for almost all ω.

Nowadays, the metric theory of diophantine approximations, one of the
branches of the genealogical tree rooted at Kubilius’ research, is flourish-
ing in Minsk. To list but a few names, we mention that by the end of
the last century the scientific grandson V. Bernik and the grand-grandson
V. Beresnevich successfully extended Khinchin’s results to polynomials of
an arbitrary degree; for further developments, see, e.g., [3].

Kubilius left a trace in the metric theory of continued fractions and other
expansions, improving results by R. Fortet, M. Kac, and I. A. Ibragimov.
Let pn(x)/qn(x) := [a1(x), . . . , an(x)] be the nth convergent of the continued
fraction representation of x ∈ (0, 1]. As proved by Khinchin, qn(x) grows
exponentially for almost all x. Answering P. Erdős’ question, Ibragimov [18]
showed that log qn(x) obeys the Gaussian law. Note that in [13] this result
is wrongly attributed to Philipp [32] who also missed the following result of
Kubilius.

Theorem 3 ([82]). Let µ denote the Lebesgue measure and Φ(x) be
the distribution function of the standard normal law. There exists a positive
constant σ such that

(3) µ
{
x ∈ (0, 1] : log qn(x)− nπ2/(12 log 2) < xσ

√
n
}
− Φ(x)� log2 n√

n
.

Here and afterwards, a� b means a = O(b) as n→∞.

This result and a similar estimate in the Fortet–Kac problem was an-
nounced in [82]. The proofs were not published. The probabilistic technique
for weakly dependent random variables was refined by Kubilius’ student
G. Misevičius who succeeded in removing one logarithm on the right-hand
side in (3). More than a decade later, other methods cultivated by T. Morita
or P. Flajolet and B. Vallée [13] implied the optimal order O(n−1/2).

2. Multidimensional algebraic number theory. Advised by Linnik,
for the Candidate of Sciences thesis, Kubilius chose the problem of distribu-
tion of prime ideals in algebraic number fields. By the 1950s, the asymptotic
behavior of the number of such ideals with the norm up to x, as x → ∞,
had been intensively studied. The extension of algebraic numbers to ideal
numbers proposed by E. Hecke led to a question about the asymptotic dis-
tribution in specified regions of the appropriate space. The latter could be
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defined via Hecke characters. This became the main objective for the thesis.
In a series of papers, Kubilius elaborated the needed analytic tools, refining
and generalizing results obtained earlier by Hecke and H. Rademacher.

Below we use the terminology of [48]. Let α denote an ideal integer of
an algebraic number field K of degree n ≥ 1 over Q. The Hecke charac-
ters ξ of the first kind form an infinite Abelian group with generators, say,
ξ1, . . . , ξn−1. Hence ξ = ξm1

1 · · · ξ
mn−1

n−1 , where mj ∈ Z, 1 ≤ j ≤ n−1. In turn,
the values ξj(α) = exp{2πiωj(α)} uniquely define the vector of amplitudes
ω̄(α) := (ω1(α), . . . , ωn−1(α)) ∈ [0, 1)n−1. Let N(α) stand for the norm of
the ideal number α and 0 ≤ ω′j ≤ ω′′j < 1, where 1 ≤ j ≤ n − 1. Define the
parallelepiped

B = {(ω1, . . . , ωn−1) : ω′j ≤ ωj ≤ ω′′j , 1 ≤ j ≤ n− 1}
and the set of ideal numbers

K(x,B) := {α : |N(α)| ≤ x, ω̄(α) ∈ B}.
Let P denote the system of non-associated ideal prime numbers of K. The
problem is to investigate the behavior of

π(x;B) := card{p ∈ P : p ∈ K(x,B)}
as x → ∞. Hecke [16] established an asymptotic formula for it; however,
his method based on Weyl’s criteria of uniform distribution did not allow
obtaining a remainder term estimate. On the other hand, Rademacher [33]
succeeded in doing this for a real quadratic field.

Kubilius started with a result for the Gaussian numbers [45] and soon
explored the general case. To illustrate his achievements, we quote just a
partial result from an extensive paper [48].

Theorem 4 ([48]). There exists a positive constant c such that

(4) π(x;B) = A(K)

n−1∏
j=1

(ω′′j − ω′j)
x�

2

du

log u
+O

(
xe−c

√
log x

)
.

Here A(K) is a positive constant depending on the field K.

Actually, Kubilius dealt with the number of non-associated ideal primes
belonging to a class mod m, where m is a non-zero ideal integer. The second
part of that paper was devoted to imaginary quadratic fields Q(

√
d), where

d < 0 is a square-free rational integer. Then the error term estimate in (4)
was sharpened to O(x exp{−c(log x)4/7(log log x)−3/7}). This was achieved
by the use of Vinogradov’s method of trigonometric sums (Chapter II) as
well as estimates of the zero-densities of Hecke Z-functions (Chapter III).
The idea to employ zero-density theorems instead of zero-free zone estimates
or even analogs of the Riemann hypothesis originated in Linnik’s works.
Kubilius fostered it a great deal.
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In the case of the imaginary quadratic field K = Q(
√
d), the group of

Hecke characters of the first kind modm is the infinite cyclic group generated
by ξ(α) = eig argα, where g is the number of units modm in K. If χ is a group
character of the multiplicative group of the reduced residue system modm,
then Ξ := χξm, m ∈ Z, is called a Hecke character of the second kind. The
Hecke Z-functions are defined via the series

Z(s,Ξ) =
∑
α

Ξ(α)N(α)−s, <s := σ > 1,

where the summation runs over a fixed class of ideal integers except zero, and
have analytic continuations into the whole complex plane. Various estimates
of the functions Z(s,Ξ), analogous to those known for the Dirichlet L-
functions, were obtained in [48] and [50]. For instance, it was established
that the zeros of Z(s,Ξ) lie in the half-plane σ ≤ 0 or in the region∣∣∣∣σ − 1

2

∣∣∣∣ ≤ 1

2
− c
(
log(|m|+ 3)(|t|+ 3) log log(|m|+ 3)(|t|+ 3)

)−3/4
,

where c > 0 is a constant. The next result stimulated a couple of refinements
of zero-density estimates for Hecke Z-functions.

Let N(σ, T,Ξ) be the number of zeros ρ = β + iγ of Z(s,Ξ) satisfying
σ ≤ β ≤ 1, 2 < γ ≤ T , and let M > 1.

Theorem 5 ([48]). If σ ≥ 0.8, then∑
Ξ, |m|≤M

N(σ, T,Ξ)�ε (Mλ1(σ)T λ2(σ))3(1−σ)+ε

for every ε > 0. Here

λ1(σ) =
2σ + 1

2σ2 − 3σ + 2
, λ2(σ) =

4σ

3σ2 − 6σ + 7
.

Kubilius always used to stress relations of the results just mentioned to
the Landau hypothesis claiming that there are infinitely many rational prime
numbers of the form p = a2 + 1 with a ∈ Z. Investigations of π(x;B) in the
case of imaginary quadratic fields for “narrowing” sets B as x→∞ imply the
expressions p = a2 + b2, a, b ∈ Z, with a small b for infinitely many rational
primes p. In this regard, the paper [50] written in Lithuanian played an
important role. In writing it in his mother tongue, Kubilius was motivated by
his self-imposed duty to develop the mathematical terminology and to press
local publishers to acquire the needed characters for the printing-machines
of the time. We present one of the results proved in [50].

Let K = Q(
√
d) be an imaginary quadratic field with h classes. As

previously, let ν and m be coprime ideal integers, and ϕ(m) be the Euler
function.



20 E. Manstavičius

Theorem 6 ([50]). Let 0 ≤ ω1 < ω2 ≤ 2π. There exists a positive
constant c1 < 53/58 such that

card{p ∈ P : N(p) ≤ x, p ≡ ν (mod m), ω1 < arg p ≤ ω2}

=
g(ω2 − ω1)x

2πϕ(m) log x
(1 + o(1)) +O(xc1+ε)

for arbitrarily small ε > 0.

The result is nontrivial for the angles ω2−ω1 > xc1−1+ε. In the decompo-
sitions p = a2+b2 for infinitely many rational primes, this allows one to reach
the level |b| ≤ pθ+ε for some θ ≤ 0.3904. These primes could be found even
in an arithmetical progression. The extended Riemann hypothesis for the
Hecke zeta-functions would give the bound b = O(log2/3 p). After the works
of Kubilius’ students K. Bulota (1929–1990) and M. Maknys (1944–1992),
we have θ ≤ 0.19. For a few decades, Kubilius kept abreast of the subject
and used to propose themes to his doctoral students. His ideas were also
implemented by J. Vaitkevičius, J. Urbelis, A. Matuliauskas, E. Gaigalas,
and R.-D. Cibulskytė (1939-2009). A notable advance was made by Maknys
who applied modern methods based on zero-density theorems (similar to
those developed by E. Bombieri, A. I. Vinogradov, and H. Montgomery for
Dirichlet L-functions) and Linnik’s large sieve. The investigations carried out
by Kubilius’ group were followed by N. Kalniņš, A. Danilov, A. F. Lavrik,
T. Mitsui, R. Schultz-Arenstorff, W. Duke, and many others.

Working with Linnik, Kubilius obtained [47] first results on expressions
of products of rational primes p1p2 and p1p2p3 via sums of two squares.
For instance, one of his results asserts that there are infinitely many dif-
ferent primes p1 and p1 such that p1p2 = a2 + b2, where a, b ∈ Z and
|b| = O(log p1p2). Nowadays, using other methods, one can prove the same
claim with b = 1, nevertheless, the above approach leads to presentations of
prime numbers belonging to an arithmetic progression via quadratic norm
forms. Kubilius’ results in this field remain a historical milestone.

3. Probabilistic Number Theory (PNT). In the middle 1950s, Ku-
bilius turned to additive arithmetical functions and in a short period of
time proposed a novel method based upon probability theory. Some ideas
had already emerged in the investigations carried out by A. Wintner, Erdős,
Kac, and others. However, it was Kubilius who became the “matchmaker” of
the two disciplines and whose results led to their bonding. Linnik once com-
mented: Jonas Kubilius’ research is a great contribution to science where two
domains of mathematics—probability theory and number theory—intersect.
Only some considerations and isolated facts had existed in this field before.
Now he has shaped a comprehensive and far-reaching theory. The essen-
tial parallelism of number theory and probability theory has been established.
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This can be considered as having even a philosophical significance (see [4,
p. 240]).

By definition, a mapping h : N → R is called an additive function if
h(lm) = h(l)+h(m) for every pair of coprime natural numbers l and m. Such
functions are determined by the values h(pk), where p is a prime number
and k ≥ 1, i.e., h(1) = 0 and

h(m) =
∑
p

h(pαp(m)), m > 1,

where αp(m) is the multiplicity of a prime factor p in the canonical repre-
sentation of m. The total number Ω(m) of prime factors and the number
ω(m) of distinct prime factors of m are classical instances. Let νn be the
probability measure on subsets of N such that νn({m}) = 1/n if m ≤ n.
Here and afterwards, n ∈ N, and n→∞ in all asymptotical relations.

Five papers by Kubilius [51]–[55] on the value distribution of additive
functions appeared in 1955. One might guess that they had been stimulated
by the Erdős–Wintner theorem [10] giving necessary and sufficient condi-
tions under which νn(h(m) < x) converges to a limit distribution function
at the continuity points of the latter (weakly converges) or by the Erdős–Kac
theorem [11] claiming that

Fn(x) := νn
(
ω(m)− log log n < x(log log n)−1/2

)
= Φ(x) + o(1)

uniformly in x ∈ R. No doubt, the theorems formulated in [9] by Erdős
had also called Kubilius’ attention to the subject. Anyhow, in most of the
following research, he aimed at finding necessary and sufficient conditions
under which there exist normalizing sequences α(n) and β(n) > 0 such that
νn(h(m)− α(n) < xβ(n)) weakly converges to a limit law. This problem is
nowadays called the Main Problem of PNT. Having created a very fruitful
approach, Kubilius covered a great portion of it. The method opened up
new horizons for other applications.

The first obstacle in the subject is the fact that there are subsets A ⊂ N
which do not possess an asymptotic density, i.e., lim νn(A) does not exist.
Secondly, all subsets possessing this density do not form an algebra of events
and the asymptotic density is not countably additive. Finally, αp(m), p ≤ n,
are dependent as random variables (r.vs) with respect to νn. The latter is
seen from

∑
p≤n αp(m) log p ≤ log n if m ≤ n. The probability theory of the

1950s (or even nowadays) contributed very little to overcoming these difficul-
ties. To illustrate Kubilius’ method, we confine ourselves to the technically
simpler case of strongly additive functions, i.e., we assume that h(pk) = h(p)
for every p and k ≥ 1. Then

h(m) := h(n)(m) :=
∑
p≤n

h(p)δp(m),
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where m ≤ n and δp(m) := 1{m ≡ 0 mod p}, is a sum of dependent
r.vs. Here and afterwards 1{. . . } denotes the indicator function. If r with
2 ≤ r := r(n) ≤ n is sufficiently small compared with n, then δp(m),
p ≤ r, are weakly dependent in some sense. Kubilius was the first to find a
quantitative approximation of them by independent r.vs. In the following,
{ξp : p is a prime} is a family of independent Bernoulli r.vs defined on some
probability space {Ω,F , P} so that P (ξp = 1) = 1 − P (ξp = 0) = 1/p.
As usual, denote by π(r) the number of primes up to r. The following re-
sult, though formulated in a slightly different form, is called the Kubilius
Fundamental Lemma.

Theorem 7 ([75]). Let 2 ≤ r ≤ n be arbitrary. One can define a proba-
bility space {Ω,F , P} carrying the Bernoulli r.vs ξp, p ≤ r, so that the total
variation distance

R :=
1

2

∑
s2,...,sπ(r)∈Z+

∣∣νn(δp(m) = sp, p ≤ r)− P (ξp = sp, p ≤ r)
∣∣

satisfies

(5) R� exp

{
−c log n

log r

}
.

The constant c > 0 and that in � are absolute.

What does the triple {Ω,F , P} look like? Kubilius proposed three con-
structions, called nowadays Kubilius models. In one of them, he starts with
E(p) := {m ∈ N : m ≡ 0 mod p}, p ≤ r, and defines the finite algebra F
generated by the events

Ek :=
⋂
p|k

E(p) ∩
⋂
p|Π
k

E(p),

where k |Π :=
∏
p≤r p and E(p) := {m ∈ N : m 6≡ 0 mod p}. In other

words, F comprises all events A :=
⋃
k Ek, where k runs through some set

of divisors of Π. It remains to ascribe the probabilities

P (Ek) =
∏
p|k

1

p

∏
p|Π
k

(
1− 1

p

)
to each k |Π and to extend them additively to all of A.

There is one curious detail concerning his models starting with the finite
sets {m ≤ n : m ≡ 0 mod p} instead of E(p). In this case, it may happen
that P (Ek) > 0 for Ek empty. In his monographs, Kubilius left this to the
reader, despite the criticism of his more pedantic students. Using the axioms
of probability theory, one could easily fill up the hole of the space with the
very notations Ek of these empty sets. The total probability of all such
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events is of the order O(log−1 n) only, so there has not been any harm in
applying the models.

The first estimate of R was based upon Brun’s sieve (see [57] and [65]).
The use of the Selberg sieve led to the sharper result presented as (5) above.
The paper [108] contains the following refinement:

R� ρ−cρ, ρ :=
log n

log max{r, log n}
with absolute constants. In the late 1970s, Kubilius wrote two chapters for
the planned third Russian edition of his monograph. They were based upon
the Fundamental Lemma with the just mentioned error. A somewhat better
estimate of R was given in Elliott’s exhaustive books [5] which systematized
all the achievements before 1980. Their appearance stopped Kubilius’ work
on a new edition. It is worth mentioning here that Tenenbaum’s result [41]
gives the most exact estimate of R obtained so far.

Theorem 6 reduced the problems of the stochastic behavior of the trun-
cated additive function h(r)(m), where log r = o(log n), to appropriate sums
of independent r.vs. To estimate the influence of the remainder h(m) −
h(r)(m), Kubilius proposed using variance estimates. Let

Dn := Dn(h) :=
1

n

∑
m≤n

(h(m)−An)2,

An := An(h) :=
∑
p≤n

h(p)

p
, B2

n := B2
n(h) :=

∑
p≤n

h2(p)

p
.

Theorem 8 (Turán–Kubilius inequality, [57]). There exists an absolute
constant C > 0 such that Dn ≤ CB2

n for n ≥ 1.

The first estimate of Dn, but in terms of An, for nonnegative strongly
additive functions such that the values h(p) are bounded was obtained by
P. Turán [43]. The following story lying behind the numerical estimates of
the constant C shows Kubilius’ persistence.

Set

λn := sup
h6≡0

Dn(h)/B2
n(h).

In [106], Kubilius proved that 1.47 < λn < 2.08 if n ≥ n0 and n0 is a
sufficiently large absolute constant. Two years later, the upper bound be-
came 1.764. My seminar notes from November 23, 1980, contain Kubilius’
proof that λn ≥ 3/2 + o(1). The next year, the upper bound for λn of the
same quality was obtained. Elliott, having also contributed to the prob-
lem, observes on page 423 of [6] that Kubilius’ result was presented at the
Budapest meeting in 1981. Kubilius published a sharper result in 1983 (see
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[119], [120]). Going along this path, he elaborated an elegant approach based
on the spectral analysis of integral operators. In his next paper [123], it was
proved that λn = 3/2 +O(log−1 n). A. Hildebrand [17] obtained the asymp-
totic value of λn by a somewhat different approach. A recent deep study
of the Turán–Kubilius inequality on friable (smooth) numbers [30] perfectly
showed the richness of the subject. There is also another point. The in-
vestigations of the variance Dn led to estimates of all power moments of
additive functions (I. Z. Ruzsa, Elliott, I. Kátai, K.-H. Indlekofer, and many
others).

For a fairly large class of strongly additive functions h, one has Dn(h) ∼
B2
n(h) (a simple characterization of this remains an open problem so far).

The latter quantity is used in the following widely accepted definition of the
so-called Kubilius H class.

Definition 1. A strongly additive function h belongs to class H if
Bn(h)→∞ and Br(h) ∼ Bn(h) for some sequence r = r(n)→∞ such that
log r = o(log n).

In the framework of the H class, Kubilius demonstrated the power of his
probabilistic method.

Theorem 9 ([55]). Let h ∈ H. The distributions Vn(x) := νn
(
h(m) −

An < xBn
)

weakly converge to a limit law with variance 1 if and only if
there exists a distribution function K(u) such that

(6)
1

B2
n

∑
p≤n

h2(p)

p
1{h(p) < uBn} → K(u)

weakly. The logarithm of the characteristic function of the limit law equals

logϕ(t) =

∞�

−∞
(eitu − 1− itu)

1

u2
dK(u), t ∈ R.

Hence it follows that the Lindeberg condition, i.e., (6) with K(u) = 0
if u < 0 and K(u) = 1 if u ≥ 0, implies the convergence Vn(x) → Φ(x).
This generalizes the above mentioned Erdős–Kac theorem. Conversely, if
h ∈ H, the convergence to the normal law implies the Lindeberg condition.
In the 1970s, instances of additive functions obeying the Gaussian limit law
and not satisfying the Lindeberg condition were constructed. They showed
that the necessity part in the limit theorems was much more involved. On
the other hand, when proving sufficiency, the probabilistic method worked
even beyond the Kubilius H class. It was applied to sequences of functions
(not necessarily hn = h/Bn) which were isolated by the following definition
proposed by Ruzsa [34].
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Definition 2. A sequence of strongly additive functions hn is of Ku-
bilius type if ∑

nε<p≤n

1

p
1{|hn(p)| ≥ δ} = o(1)

for every 0 < ε < 1 and every δ > 0.

In full generality, the one-dimensional limit problem for additive func-
tions has remained open so far. The books by Elliott [5] give a panoramic
picture of its development.

Kubilius’ fondness of probability theory reveals itself in his application
of Brownian motion to arithmetical models. Set for brevity tnq = Bq/Bn,
where q is a prime number. In 1955, Kubilius [54] examined the asymptotic
behavior of the frequencies

νn(ψ1, ψ2) := νn
(
ψ1(tnq) < B−1n (h(q)(m)−Aq) ≤ ψ2(tnq)

)
,

where ψ1, ψ2 are sufficiently smooth functions, with ψ1(t) < 0 < ψ2(t) for
0 ≤ t ≤ 1. Assuming the condition maxp≤n |h(p)|/Bn =: ρn = o(1), he
showed that the limit of νn(ψ1, ψ2) equals the probability that the trajecto-
ries of a standard Brownian motion on [0, 1] remain within certain bounds.
Later, in [108], the convergence rate was obtained in terms of ρn. In the
contemporary terminology, we could reformulate the Kubilius result as one
dealing with the distribution of a functional defined on arithmetic partial
sum processes. The Donsker–Prokhorov–Skorokhod theory of weak conver-
gence of processes in function spaces was established mainly in 1956. Kubil-
ius’ followers (Babu, Philipp, P. Billingsley, B. V. Levin, N. M. Timofeev,
Kh. Kh. Usmanov, Manstavičius) had the latter at their disposal; there-
fore, they succeeded in arriving at necessary and sufficient conditions un-
der which the processes defined via normalized truncated additive functions
weakly converge to limiting processes with independent increments. It is
worth stressing here that such asymptotic behavior occurs only for Kubilius
type sequences. Beyond this class, one can model only processes with depen-
dent increments. This supports once more the importance of the definitions
presented above.

Linnik and Kubilius gained great recognition for their paper [64], where
the arithmetically defined processes

1√
v

∑
k≤vt

(
m+ k

Q

)
were examined. Here

(
a
b

)
denotes the Jacobi symbol, Q = Q(n) runs through

some square-free sequence of odd natural numbers and v = v(Q) → ∞
sufficiently slowly. It was proved that the finite-dimensional distributions
of this process with respect to the probability νn converge to those of the
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standard Brownian motion. Later N. N. Liashenko extended the claim up to
the weak convergence of processes. The paper [64] comprises Chapter X of
the book [12], where the following Kubilius–Linnik problem is stated: Does
there exist a sequence v = v(n)→∞ such that

1√
v

∑
k≤vt

µ(m+ k),

where µ(m) is the Möbius function, converges to the Brownian motion?

A rather complete list of references concerning arithmetic models of ran-
dom processes is given in the survey [29].

Kubilius used to demonstrate the power of his method dealing with ad-
ditive functions with shifted arguments (see [75]). Then analytic approaches
were inapplicable because of the spoiled additivity. Kubilius’ first PhD stu-
dent R. Uždavinys and later Z. Kryžius extended the method to superpo-
sitions of additive functions and integer-valued polynomials. Stakėnas and
J. Šiaulys made a notable advance for functions defined on rational num-
bers, and Z. Juškys applied it to functions defined on abstract arithmetical
semigroups. A similar technique was elaborated on the so-called additive
arithmetical semigroups (W.-B. Zhang).

4. Analytic methods in PNT. Kubilius’ method does not take into
account the contribution to the asymptotic distribution of the truncated
part h(m)− h(r)(m) which can be eliminated by some assumptions. This is
a disadvantage in convergence rate estimates. For instance, in 1956, Kubilius
showed [58] that the error in the Erdős–Kac theorem obeys

∆n(x) := Fn(x)− Φ(x)� 1√
log log n

(e−x
2/2(log log log n)2 + 1).

Later M. B. Barban and Uždavinys removed the exponent 2 from the three-
fold logarithm (see [75]). However, the estimate for small x is worse than
∆n(x) � (log log n)−1/2, as expected by LeVeque in 1949 and proved by
A. Rényi and P. Turán in 1958. For this reason, in the early 1960s, to
analyze the mean-value of complex multiplicative functions, Kubilius began
using analytic methods elaborated mainly by A. Selberg and H. Delange.
The paper [74] starts a systematic study of ∆n(x), which was included in
the second edition of his monograph as Chapter IX. Firstly, Kubilius gave
an asymptotic expansion of arbitrary length and, secondly, proposed a way
to deal with so-called large deviations. By that time, probability theory due
to the efforts of A. C. Berry, C.-G. Esseen, H. Cramér, and V. V. Petrov
already had a suitable technique for independent r.vs. Kubilius “caught the
train” and adopted the technique in number theory. We include here his
result concerning large deviations.
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Theorem 10 ([73]). Let ε > 0 be sufficiently small, |x| ≤ ε
√

log logn,
and ξ := x/

√
log logn. Then

(7)
Fn(x)

Φ(x)
= exp

{
(ξ − (1 + ξ) log(1 + ξ)) log log n+

1

x2

}
×
(

1 +O

(
|x|+ 1√
log log n

))
if x < 0. The same holds for the ratio (1− Fn(x))/(1− Φ(x)) if x > 0.

With the next result, Kubilius was already “ahead of the train”. Namely,
he succeeded in constructing the asymptotic expansions of the error in (7),
overcoming all inherent difficulties. The Lithuanian probabilists V. Statu-
levičius and L. Saulis benefited from being the first to learn about this
advance. It helped them to elaborate analogous expansions for independent
r.vs. The expansions of the error in (7), presented in the Russian monograph,
were not included into its English translation [75]. The latter became more
transparent.

A decade later, Kubilius extended (see [92], [96], [98]) his results on
∆n(x) to a class of additive functions h such that the values h(p) are close to
1 for an overwhelming set of prime numbers. In particular, for integer-valued
functions h, the condition had the form

(8)
∑
h(p)6=1

log p

p
<∞.

G. Halász’ paper [15] become a new turning point in analytic methods
of number theory. Kubilius elaborated it in full detail during his lectures
in the 1968/69 academic year. Proposing problems in PNT for dissertation
works to Manstavičius, Kryžius, A. Mačiulis, and G. Bareikis, he used to
recommend this pioneering paper. Kubilius himself was thinking about an
analog of the Berry–Esseen estimate well known in probability theory. Is it
possible to estimate the error Vn(x)−Φ(x) via the sum of Lyapunov’s ratio

Ln :=
1

B3
n

∑
p≤n

|h(p)|3

p
,

where Vn(x) has been defined in Theorem 9? Kubilius confirmed this in
[115] under an extra condition. A complete solution was later obtained by

Mačiulis who proved that the exact order of the error is O(L
2/3
n ), in contrast

to the case of independent r.vs (see the comments [139]).
The local limit theorems proved by Kubilius, i.e., the assertions about

the behavior of νn(h(m) = k) for integer-valued additive functions h, de-
serve a special interest. This concerns even the simple observation [94] that
the limits lim νn(h(m) = k), k ∈ Z, exist and define a discrete distribution
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on Z if and only if the series
∑

h(p)6=0 p
−1 converges. Its importance becomes

clear in the abstract setting of group-valued functions, which was later an-
alyzed by Ruzsa. Assuming (8) and other unavoidable conditions, Kubilius
presented an exhaustive study [87] of local asymptotic laws. It included
approximations of νn(h(m) = k) by Poisson probabilities with increasing
parameter, asymptotic expansions and, of course, large deviations, gener-
alizing the classical works by E. Landau and L. G. Sathe on the function
ω(m). In the last case, the large deviation formulas he obtained are nontriv-
ial in the region |k − log logn| ≤ c1

√
log log n, where c1 > 0 is a sufficiently

small constant. Kubilius’ student R. Skrabutėnas made a lot of attempts to
generalize condition (8) by exploiting the ideas of Delange. More recently,
G. Stepanauskas advanced the problem by using Halász’ methods. Con-
temporary investigations of the local laws carried out by M. Balazard, D.
Hensley, C. Pomerance, Hildebrand, Tenenbaum, and others provide deep
information if k lies even beyond the above mentioned region.

During his long research activity, Kubilius constantly followed the ad-
vances in probability theory. In the review of Kubilius’ monograph, LeVeque
called it a “sure grasp of the two fields”. Kubilius was among the first who
understood the importance for number theory of the Mellin transforms pro-
posed by V. M. Zolotarev and encouraged his student A. Laurinčikas to
introduce more general transforms. They perfectly substituted the charac-
teristic functions in problems of multiplication of r.vs. Given a real-valued
multiplicative function g(m), one could seek some normalizing sequences
α(n) ∈ R and β(n) > 0 such that the distribution function

Gn(x) := νn(e−α(n)|g(m)|1/β(n) sgn g(m) < x)

weakly converges to a limit one, say G(x), including also Gn(±0)→ G(±0).
Correcting some errors in Zolotarev’s original papers, Kubilius’ student
A. Bakštys studied this problem. Kubilius jointly with Juškys [93] proposed a
version of the Esseen inequality in terms of the newly introduced transforms
and obtained a convergence rate, and later jointly with Laurinčikas [97] ex-
amined large deviations. J. Galambos, Levin, Timofeev, S. T. Tulyaganov,
and others went further along this path. Bareikis and Manstavičius suc-
ceeded in defining models of random processes using truncated multiplica-
tive functions. So far, some of these results do not have analogs for products
of independent r.vs.

Kubilius’ influence on mathematical science is not limited to his personal
results, though they have been pioneering in number theory. He actually en-
couraged applying more probability theory. For Dirichlet series, this has
been implemented by his students E. Stankus and Laurinčikas (see [24]),
and other mathematicians. The theories of value distribution of mappings
defined on semigroups (see [21]) or on decomposable structures (see [1]) were
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other instances. I have been fortunate enough to be a witness to the whole
progress.
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fessors Gutti Jogesh Babu, Bruce Berndt, and Wolfgang Schwarz for their
benevolent suggestions which have helped to improve the exposition of the
paper.
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[11] P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number-
theoretic functions, Amer. J. Math. 62 (1940), 738–742.

[12] D. K. Fadeyev, S. M. Lozinsky and A. V. Malyshev, Yuri V. Linnik (1915–1972).
A biographical note, Acta Arith. 27 (1975), 1–2.

[13] P. Flajolet and B. Vallée, Continued fraction algorithms, functional operators, and
structure constants, Theoret. Comput. Sci. 194 (1998), 1–34.

[14] J. Galambos, Distribution of arithmetical functions. A survey, Ann. Inst. H. Poin-
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