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1. Introduction. For a prime p, the well-known Wilson congruence
says that (p− 1)! ≡ −1 modulo p. A prime p is called a Wilson prime if the
congruence above holds modulo p2. We now quote from [R96, pp. 346, 350]:
‘It is not known whether there are infinitely many Wilson primes. In this
respect, Vandiver wrote: This question seems to be of such a character that if
I should come to life any time after my death and some mathematician were
to tell me it had been definitely settled, I think I would immediately drop
dead again.’ Ribenboim also mentions that search (by Crandall, Dilcher,
Pomerance [CDP97]) up to 5 · 108 produced the only known Wilson primes,
namely 5, 13, and 563, as discovered by Goldberg in 1953 (one of the first
successful computer searches involving very large numbers). See [R96, Dic19]
for other historical references.

Many strong analogies [Gos96, Ro02, Tha04] between number fields and
function fields over finite fields have been used to benefit the study of both.
These analogies are even stronger in the base case Q,Z↔ F (t), F [t], where
F is a finite field. We study the concept of Wilson prime in this function
field context, and in contrast to the Z case, we exhibit infinitely many of
them, at least for many F . For example, ℘ = t3∗13

n − t13n − 1 are Wilson
primes for F3[t].

We also show strong connections between Wilson’s and Fermat’s quo-
tients, and also between refined Wilson residues and discriminants. More-
over, we introduce analogs of Bell numbers in the F [t] setting.

2. Wilson primes. Let us fix some basic notation. We use the standard
conventions that empty sums are zero and that empty products are one.
Furthermore:
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q a power of a prime p,

A = Fq[t],

Ad = {elements of A of degree d},
[n] = tq

n − t,

Dn =
∏n−1

i=0 (tq
n − tqi) =

∏
[n− i]qi ,

Ln =
∏n

i=1(t
qi − t) =

∏
[i],

Fi the product of all (non-zero) elements of A of degree less than i,

Na = qd for a ∈ Ad, i.e., the norm of a,

℘ a monic irreducible polynomial in A of degree d,

as defined by as(t) = a(ts), for a ∈ A and positive integer s.

If we interpret the factorial of n− 1 as the product of non-zero ‘remain-
ders’ when you divide by n, we get Fi as a naive analog of the factorial of
a ∈ Ai. Note that it just depends on the degree of a. By the usual group the-
ory argument with pairing of elements with their inverses, we get an analog
of Wilson’s theorem that Fd ≡ −1 mod ℘, for ℘ a prime of degree d. Though
not strictly necessary for this paper, we now introduce a more refined notion
of factorial due to Carlitz. For n ∈ Z, n ≥ 0, we define its factorial by

n! :=
∏

Dni
i ∈ A for n =

∑
niq

i, 0 ≤ ni < q.

See [Tha04, 4.5–4.8, 4.12, 4.13] and [Tha12] for its properties, such as prime
factorization, divisibilities, functional equations, interpolations and arith-
metic of special values, congruences, which are analogous to those of the
classical factorial. See also [Bha00], which gives many interesting divisibility
properties in great generality.

Carlitz proved Dn is the product of monics of degree n. This gives the
connection between the two notions above, that for a ∈ Ai, (Na − 1)! =
(−1)iFi. (See [Tha12, Thm. 4.1 and Sec. 6] for more on these analogies and
some refinements of analogs of Wilson’s theorem.) This also implies

(1) Fd = (−1)d
d−1∏
j=1

[d− j]qj−1 = (−1)dDd/Ld.

So let us restate the above well-known analog of Wilson’s theorem.

Theorem 2.1. If ℘ is a prime of A of degree d, then

(−1)d(N℘− 1)! = Fd ≡ −1 mod ℘.

This naturally leads to

Definition 2.2. A prime ℘ ∈ Ad is a Wilson prime if Fd ≡ −1 mod ℘2.
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Remarks 2.3.

• If d = 1, then Fd = −1. So the primes of degree one are Wilson primes.
• If ℘(t) is a Wilson prime, then so are ℘(t + θ) and ℘(µt) for θ ∈ Fq

and µ ∈ F∗q , as follows immediately from the formula for Fd.
• By [Tha12, Thm. 7.1], ℘ = tp − t − a is Wilson prime if q = p > 2

and a ∈ F∗q , with the congruence above holding modulo ℘q−1, but not
modulo ℘q. (The last clause, though not mentioned in the statement
of the theorem referred to, follows immediately from the exactness of
the power mentioned in the proof.)

Next we introduce the Fermat quotient.

Definition 2.4. For ℘ as above, and a ∈ A, let Q℘(a) := (aq
d − a)/℘.

Remarks 2.5. By the Fermat–Lagrange theorem, for a ∈ A, Q℘(a) ∈ A.
We collect some useful facts immediate from the definition:

• If a ≡ a′ mod ℘k, then Q℘(a) ≡ Q℘(a′) mod ℘k−1.

• For a, b ∈ A and c ∈ Fq, modulo ℘ we have

Q℘(a+b℘) ≡ Q℘(a)−b, Q℘(ca) = cQ℘(a), Q℘(ab) ≡ aQ℘(b)+bQ℘(a).

• From the definition of [n] above, the following are also clear:

[m+ n] = [m]q
n

+ [n], [m− n]q
m+n

= [m]q
m − [m]q

n
+ [m]− [n].

We now give a useful equivalent formulation for a Wilson prime.

Theorem 2.6. Assume q > 2 or d > 1. Then a prime ℘ is a Wilson
prime if and only if Q℘(Q℘(t)) ≡ 0 mod ℘.

Proof. Since Q℘(t) = [d]/℘, we have

Q℘(Q℘(t)) = (([d]/℘)q
d−[d]/℘)/℘ ≡ 0 mod ℘ ⇔ ([d]/℘)q

d ≡ [d]/℘ mod ℘2.

The product F2d can be decomposed as the product over multiples of ℘,
which contributes Fd℘

qd−1, times the product over polynomials prime to ℘,
which contributes −1 modulo ℘2, by again pairing off elements in (A/℘2A)∗

with their inverses and working out order two elements in this group and
using that we are not in the case q = 2, d = 1 (see e.g. [Tha04, p. 7]). Thus,

F2d

℘qd−1Fd

≡ −1 mod ℘2.

By manipulations using (1), Remarks 2.5, and the fact from the basic theory
of finite fields that [d] is the product of monic irreducibles in A of degree

dividing d, so that ℘2 divides [d]q
d−j

, we see that modulo ℘2,
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−1 ≡ (−1)2d[d]q
d−1

(−1)d℘qd−1

∏
1≤j<d

([d]q
d−j

+ [d− j])qj−1[d− j]qd+j−1

[d− j]qj−1

≡ (−1)dQ℘(t)q
d−1

∏
1≤j<d

[d− j]qd+j−1

≡ (−1)dQ℘(t)q
d−1

∏
1≤j<d

[d]q
d − [d]q

j
+ [d]− [j]

[d− j]

≡ (−1)dQ℘(t)q
d−1

∏
1≤j<d

[d− j]qj−1 ≡ Q℘(t)q
d−1Fd.

Thus we have

Q℘(t)q
d−1(1 + Fd) ≡ Q℘(t)q

d−1 − 1 mod ℘2.

Hence, ℘ is a Wilson prime, i.e., Fd ≡ −1 mod ℘2 if and only if Q℘(t)q
d−1−1

≡ 0 mod ℘2, proving the theorem, because Q℘(t) is non-zero modulo ℘.

Definition 2.7. If t does not divide a ∈ A, the order of a is defined to
be the order of t modulo a, i.e., the smallest positive integer e such that a
divides te − 1.

We refer to [LN97, Chap. 3] for many results concerning this, but we will
only need the following special case of [LN97, Thm. 3.35].

Theorem 2.8. Let a be a monic prime of A of degree m and order e, and
let s be a positive integer whose prime factors divide e, but not (qm − 1)/e.
Assume also that qm ≡ 1 mod 4 if s ≡ 0 mod 4. Then as is a monic prime
of degree ms and order es.

Next, we show how to construct new Wilson primes from a given one if
certain conditions hold.

Theorem 2.9. Let ℘ be a Wilson prime of degree d > 1. Let e be the
order of ℘. Let s be a positive integer whose prime factors divide e but do
not divide (qd − 1)/e and which satisfies s ≡ 1 mod p. Assume also that
qd ≡ 1 mod 4 if s ≡ 0 mod 4. Then ℘s(t) = ℘(ts) is a Wilson prime.

Proof. Since Q℘(t) ∈ A and t is prime to ℘, for some f, g ∈ A,

(2)
tq

d−1 − 1

℘
≡ f + g℘ mod ℘2,

ts(q
d−1) − 1

℘s
≡ fs + gs℘s mod ℘2

s.

By Theorem 2.6, ℘ is a Wilson prime if and only if modulo ℘ we have

0 ≡ Q℘(tf + tg℘) ≡ Q℘(tf)− tg ≡ tQ℘(f) + fQ℘(t)− tg
≡ tQ℘(f) + tf2 − tg ≡ Q℘(f) + f2 − g.

By Theorem 2.8, ℘s is irreducible with degree ds and order es, so that by
the Fermat–Lagrange theorem es divides qds − 1 = (qd − 1)N , say. Since s
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and (qd− 1)/e are relatively prime, s divides N , so that qds− 1 = sr(qd− 1)
for some r ∈ Z. This implies r ≡ 1 mod p.

Now, by the binomial theorem, modulo ℘2
s we have

Q℘s(t) = t

(
(((ts)q

d−1 − 1) + 1)r − 1

℘s

)
≡ t
(
r((ts)q

d−1 − 1)

℘s

)
≡ t(fs+gs℘s),

since in characteristic p, r = 1, the second term in the binomial expansion
is zero as ‘r choose 2’ is zero, and the higher terms are zero modulo ℘2

s.
This implies, using (2) and Remarks 2.5, that modulo ℘s we have

Q℘s(Q℘s(t)) ≡ Q℘s(tfs + tgs℘s) ≡ Q℘s(tfs)− tgs
≡ tQ℘s(fs)− tgs + fsQ℘s(t) ≡ −tf2s + fsQ℘s(t)

≡ fs(−tfs +Q℘s(t)) ≡ 0.

Therefore, ℘s is a Wilson prime as claimed.

Note that if we can choose s > 1 in this theorem, we get a new Wilson
prime. We now show that we can often successively do that to get infinitely
many Wilson primes.

It has been conjectured/speculated that when q = p is a prime, the order
of the prime tp − t − 1 of A is w := wp := (pp − 1)/(p − 1). (Note that the
order divides w, because it is the order in Fpp of the root x which is of
norm 1, i.e., killed by the wth power.) This has been verified [MNW10] only
for small primes, e.g., p < 127. For several references and heuristic reasons,
see [MNW10, LD62]. The question has interesting connections [LN97, Thm.
3.84] with existence of primitive polynomials of Artin–Schreier type, and
with period modulo p (this connection is through a recursion mod p due
to Touchard, see [LD62, (1.7)]) of the sequence of the Bell numbers which
show up in many combinatorial questions. The reader can check small cases
easily, e.g., for p = 3 or 5 the order is w = 13 or 781 respectively.

Theorem 2.10. Let q = p be an odd prime such that the prime ℘ :=
tp − t − 1 of A has order w := (pp − 1)/(p − 1) (e.g., p is any odd prime
< 127). Then Pn(t) := ℘wn = tpw

n − twn − 1 are Wilson primes of A, for
any non-negative integer n.

Proof. Consider the induction hypothesis that Pn is a Wilson prime of
degree pwn and order wn+1. For n = 0, the result follows from Remarks 2.3
and the hypothesis. We will use induction and Theorem 2.9, with s = w.
Note w ≡ 1 mod p. Also, w ≡ 0 mod 4 if pp ≡ 1 mod 4. Now w = 1 + p +
p2 + · · ·+ pp−1 ≡ 1 + · · ·+ 1 = p ≡ 1 mod p− 1 implying that the greatest
common divisor of w and p − 1 is one. Thus s = w satisfies the hypothesis
and the case n = 1 follows. More generally, we claim that s = w satisfies
the hypothesis of Theorem 2.9 to deduce the result for n replaced by n+ 1
by Theorems 2.8, 2.9.
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We have already noted that w ≡ 1 mod p. Now, ppw
n ≡ 1 mod 4 if

w ≡ 0 mod 4. It is thus sufficient to prove that the greatest common divisor
of w and (ppw

n − 1)/wn+1 is one. This follows from the claim that ppw
n

=
1 + rwn+1 +mnw

n+2 for some r relatively prime to w and some integer mn.

The claim is shown by induction on n as follows. For n = 0, we have
checked this above. Write the right side as 1+y, say, so that wn+1 divides y.

By the binomial theorem, ppw
n+1

= (1+y)w = 1+yw+y2w(w−1)/2 + terms
divisible by y3. Since w is prime to p− 1, it is odd and thus modulo wn+3,
the left side is 1 + yw ≡ 1 + rwn+2, proving the claim and the Theorem.

Remarks 2.11.

• In view of the fact that only three Wilson primes are known in the
Z case, it may be worth pointing out that, at least in the sequences
we construct, the size of the nth Wilson prime grows roughly as a
double exponential in n, with the base growing with p (and the size
grows faster than a double exponential in p). In the Z case, the simple
heuristic that a random number divisible by p is divisible by p2 with
probability 1/p, also gives about log log(x) primes up to x. For more
discussion and consequences for the search in the Z case, see [CDP97].
• It is quite possible that there are infinitely many Wilson primes for

each A, even constructible in a similar way, without needing any con-
jectures, by appropriate choices of s dividing w and starting with ap-
propriate Wilson primes for A. We have not investigated this.

3. Complements. Probably, the first connection noticed between the
Fermat quotients and Wilson’s congruence is Lerch’s 1905 famous congru-
ence formula

∑
(ap−1 − 1)/p ≡ ((p− 1)! + 1)/p mod p for any odd prime p,

where the sum is over 0 < a < p. The proof [So11], through immediate
application of the easily checked logarithmic relation Q℘(a)/a+Q℘(b)/b ≡
Q℘(ab)/(ab) mod p due to Eisenstein, and of Wilson–Fermat congruences,
carries over to the case of the analogous function field formula obtained by
replacing p by ℘ or N℘ appropriately, and by replacing (p− 1)! by Fd. We
leave this to the reader and point out that in the function field case, in fact,
the congruence improves to equality!

Theorem 3.1. Let a ∈ A run through all non-zero elements of degree
< d (standard reduced congruence class representatives modulo ℘). Then∑

(aN℘−1 − 1) = Fd + 1 = (−1)d(N℘− 1)! + 1.

In particular, the sum of Fermat quotients (or rather Q℘(a)/a’s in our no-
tation, which are appropriate for the reduced system) is the Wilson quotient
(Fd + 1)/℘ in our notation.
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Proof. The proof is an exercise in combining several results of Carlitz:

By [Tha04, Cor. 5.6.4], the left side evaluates to −
∑

(−1)iDd/(LiD
qi

d−i) −
(qd − 1). We have seen that the right side evaluates to (−1)dDd/Ld + 1.

Now [Tha04, 2.5] the Carlitz exponential
∑
zq

i
/Di has inverse function∑

zq
i
(−1)i/Li. Hence the coefficient of zq

d
of the composition is zero. This

exactly translates to the two evaluations above being the same.

Remark 3.2. We mention the congruence connection between the Wilson
quotient and Bernoulli numbers due to Glaisher [So11] that ((p− 1)! + 1)/p
≡ Bp−1 + 1/p− 1 mod p, and record an analog

Fd + 1

℘
=

(−1)d(N℘− 1)! + 1

℘
≡ (−1)dBN℘−1 +

1

℘
mod ℘q−1

(if d > 1, and modulo ℘q−2 if d = 1), which follows from [Tha04, 4.16.1]
and [Tha12, Remark 7.8(ii)]. The Glaisher congruence above works modulo
higher power if Lerch’s formula works modulo higher power of that prime,
which it always does in our case, ‘explaining’ our higher power congruence!

See [SS97] for much more on the notion of Fermat quotient in the function
field setting, e.g., for the theorem that for a non-constant a of degree less
than d, the valuation at ℘ of Q℘(a) is pe − 1, where e is the largest integer
such that a is a peth power in A. In particular, for a given non-constant a,
there are infinitely many ℘ (analogs of ‘Wieferich primes for a’) such that ℘
divides Q℘(a) if and only if a is a pth power (the “if” part being immediate
from just the definitions).

Finally, we mention another trick to produce more Wilson primes in
some situations. Given a ∈ Ad, with a(0) 6= 0, a∗(t) := tda(1/t) ∈ Ad is a
reciprocal polynomial, and we have (a∗)∗ = a and (ab)∗ = a∗b∗ for a, b with
a(0)b(0) 6= 0. Thus ℘ (not equal to t) is a prime if and only if ℘∗ is. (We
can also modify this by correcting the degree if a(0) = 0.)

Theorem 3.3. Let d > 1. If ℘ is a Wilson prime, then the reciprocal
polynomial ℘∗ is also a Wilson prime if and only if d ≡ 1 mod p.

Proof. Let ℘ be a Wilson prime, so that ([d]/℘)q
d ≡ [d]/℘ mod ℘2. Re-

placing t by 1/t and multiplying by appropriate powers of t, modulo (℘∗)2

(from now on in this proof) we have ([d]/℘∗)q
d ≡ t(qd−d+1)(qd−1)[d]/℘∗. Hence

℘∗ is a Wilson prime if and only if t(q
d−d+1)(qd−1) ≡ 1. Now tq

d−1−1 = r℘ for
some r non-zero modulo ℘, and thus tq

d−1 = 1+s℘∗ for some s prime to ℘∗,
by taking reciprocals. Thus, the power of t above is ≡ (1 + s℘∗)q

d−d+1 ≡
1 + (−d+ 1)s℘∗.
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4. Complements: analog of Bell numbers. We consider a ‘Carl-
itzian’ analog of Bell numbers [Be38], which were mentioned above, and
study their periodicity modulo primes in the A case.

We basically replace the usual exponential and factorial in the original
definition by the Carlitz exponential and Carlitz factorial and shift by 1 to
adjust for the additive rather than the multiplicative group involved. Bell
used any number of iterated exponentials, which we can also do, but here we
will restrict to only two iterations, which leads to the numbers mentioned
above.

In other words, let e(z) =
∑
zq

i
/Di be the Carlitz factorial; then de-

fine the analog B[n] of Bell numbers (polynomials in A now) by e(e(z)) =∑
B[n]z

qn/Dn.
Directly from the definitions, we have

B[n] =
∑ Dn

DiD
qi

n−i
= 2 +

n−2∑
j=0

[n] · · · [n− j]qj

[j + 1] · · · [1]qj
.

The interpretation of [n] as the product of monic irreducible polynomials of
degrees dividing n immediately shows that B[n] ∈ A.

Theorem 4.1. We have B[n+d] ≡ B[n] + 1 mod ℘, so that the sequence
B[n] mod ℘ is periodic with period dp.

Proof. In this proof, the congruences are modulo ℘. Since ℘qr is the exact
power of ℘ dividing [r + d] − [r], we have [r + d] ≡ [r], and for r divisible
by d, we have [r + d]/℘ ≡ [r]/℘ 6≡ 0, so that [r + d]/[r] ≡ 1 in that case.
This implies by using the expression above for B[n]’s that

B[n+d] = 2 +
n−2∑
j=0

+
[n+ d] · · · [d+ 1]q

n−1

[n] · · · [1]qn−1 +

n+d−2∑
j=n

≡ B[n] + 1 +
∑

0.

It would be interesting to settle whether dp is the minimal period, and
to understand combinatorial interpretation of these analogs.

5. Complements: refined Wilson theorem and discriminants. By
[Tha12, Thm. 4.1], M := ((N℘− 1)/(q− 1))! modulo ℘ is a q− 1-th root of
(−1)d−1. The question on its distribution, as ℘ varies, was raised in [Tha12]
with some partial results given. We want to point out that the root depends
on the discriminant of ℘ as a polynomial. This follows from the explicit
formula and the observation that modulo ℘, t is a root of the polynomial
℘(t), and other roots are tq

i
, so that M = Dd−1 · · ·D0 =

∏
(tq

i − tq
j
),

where the product is over d > i > j ≥ 0, is congruent modulo ℘ to a
square root of the discriminant. In other words, modulo ℘, M2 is congruent
to the discriminant of ℘ and the question of distribution of this factorial
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gets transformed into distribution of discriminants. An easy implication of
[Tha12, Thm. 4.1] is that when q is odd, for an irreducible ℘, its discriminant
is a square if and only if its degree is odd (fact already noticed in [Dic06]).

We proved some facts (for more information and data on many of these
topics, see [To12]) on the distribution of discriminant/refined Wilson residue,
but in correspondence with the third author, Elkies and Bhargava have
announced a nice complete answer for d = 3, 4, 5.

Note added in proof. For the answer for all q, and complete charac-
terization of multiplicities with respect to various arithmetic derivatives, see
[Tha?].
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