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From explicit estimates for primes to
explicit estimates for the Mobius function

by

OLIVIER RAMARE (Lille)

1. Introduction. There is a vast literature concerning explicit esti-
mates for the summatory function of the Mo6bius function: we cite for in-
stance [21], [1], [4], [3], [6], [7], [10], [T1]. The paper [5] proposes a very useful
annoted bibliography covering relevant items up to 1983. It has been known
since the beginning of the 20th century at least (see for instance [I3]) that
showing that M(xz) = >, ., p(n) is o(x) is equivalent to showing that the
Chebyshev function ¢(z) = 3, .
explicit estimates for ¢ (z) — 2 (see for instance [19], [22] and [9]). This is due
to the fact that we can use analytic tools in this problem since the residues
at the poles of the Dirichlet generating series (here —(’(s)/((s)) are known.
However, this situation has no counterpart in the Mobius function case. It
would thus be highly valuable to deduce estimates for M (x) from estimates
for ¢(x) — x, but a precise quantitative link is missing. I proposed some
years back the following conjecture:

A(n) is asymptotic to z. We have good

CONJECTURE (Strong form of Landau’s equivalence Theorem, IT). There

exist positive constants c1 and ca such that
(M(z)l/z <er max [dy) —yl/y+ea” "
cox<y<z/ca

This conjecture is trivially true under the Riemann Hypothesis. In this
connection, we note that [23] proves that in the case of Beurling’s general-
ized integers, one can have Mp(z) = o(x) without having ¢ (z) ~ x. This
reference has been kindly shown to me by Harold Diamond whom I warmly
thank here.

We have not been able to prove such a strong estimate, but we are still
able to derive an estimate for M (x) from estimates for ¢)(x) —x. Our process
can be seen as a generalization of the initial idea of |21, also used in [I0].
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We describe it in Section (3] after a combinatorial preparation. Here is our
main theorem.

THEOREM 1.1. For D > 1078853, we have

0.01301log D — 0.118
@) <

D.
d<D

The last result of this shape is from [10] and has 0.10917 (starting from
D = 695) instead of 0.0130.

Following an idea of [IT] which we recall in the last section, we deduce
from the above the following estimate.
COROLLARY 1.2. For D > 60298, we have

‘ Z /d‘ 0.0260log D — 0. 118
- (log D)?

d<D

The last result of this shape is from [I1] and has 0.2185 (starting from
x = 33) instead of 0.0260. Here are two results that are easier to remember:

COROLLARY 1.3. For D > 60200, we have
logD — 4
|2 w@/d] < s o
= (log D)?
If we replace the —4 by 0, the resulting bound is valid from 24 270 onward.
COROLLARY 1.4. For D > 50000, we have

=" = To0( logD)

If we replace the —10 by 0, the resulting bound is valid from 11815 onward.

We will meet another problem in between, which is to relate quantita-
tively the error term (x) — x with the error term concerning the approx-
imation of ¢(z) = Y n<y A(n)/n by logx — . This problem is surprisingly
difficult but [16] offers a good enough solution.

Notation. We write R(x) = ¢(z) —z and r(z) = ¥(z) —log £+, where
we recall that
(1.1) Y@) = Aln)/n
n<x

We shall use square brackets to denote the integer part and curly parentheses
to denote the fractional part, so that D = [D]+{D}. But since this notation
is used seldom, we shall also use square brackets in their usual function.
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2. A combinatorial tool. In this section we prove a certain formal
identity. Let F' be a function and Z = —F’/F the opposite of its logarithmic
derivative. We look at

F1/F)® = p,.
It is immediate to compute the first values and we find that
(2.1) Poy=F, P=2, P,=2+4+27% P3=27"+327+ 275
In general, the following recursion formula holds:
(2.2) Py =F(Po1/F) =P,_, +ZP;_;.
Here is the result this leads to:
THEOREM 2.1. We have

k!
(k) — i— l)k
F[l/F] N Z kilka! - - (1' kl 2' HZ

sy iki=k

We can prove it by using the recursion formula given above. We now
present a different argument. Let us expand 1/F(s + X) in a Taylor series
around X = 0:

1 X"
— = 1/F(s)]®) 2
F(s + X) D _W/FE®

k>0

We do the same for —F'(s + X)/F (s + X):
—F'(s+ X) Xk
B S itV Z(s)|F) 2

F(s+X) kzzo[ ()]

Integrating formally this expression, we get

k
—log(F(s+ X)/F(s)) = Y_[2(s)]*V 2

k>1

where the constant term is chosen so that the constant term is indeed 0. We
then apply the exponential formula

Xm
exp(Zkak/k:!> ZY (x1,29,...)— "
k>1 m>0 me

where the Y,(z1,22,...) are the complete exponential Bell polynomials
whose expression yields the theorem above.

3. The general argument. Let us specialize F' = ¢ in Theorem [2.1]
The left hand side therein has a simple pole at s = 1 with residue being k!
times the kth Taylor coefficient of 1/{(s) at s = 1. Let us denote by Ry, this
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residue. By a routine argument, we get
(3.1) > 1k (plogh)(£) = Ry L + o(L).
<L

Note that, thanks to Theorem the error term is quantified in terms of
the error term in the approximations of both ¢(z) — z and ¢(z) — log z + 7.
Getting this error term in fact requires using a good enough error term for
both these quantities (see for instance [12]). We then continue

(3.2 S (e 108" ¢ = 3 e (i + oL /) ).

<L d<L

which ensures that ), p1(£) log" ¢ is o(Llog L).
The case k = 2 is most enlightening. In this case, our method consists
in writing
(3.3) > u@)log?l =" p(0)(Ax A(d) — A(d)logd).
(<L de<L

It turns out that the main term of the summatory function of Alog (namely
Llog L) cancels the one of A x A. This requires the prime number theorem.
In deriving the prime number theorem from Selberg’s formula p x log? =
Alog + A% A, it is a well known difficulty to show that both summands
indeed contribute and this is another show-up of the parity principle. We

modify (3.3)) as follows:

(3.4) 27+ Y p(0)log® =Y pu(f)(A* A(d) — A(d)logd + 27).
<L d¢<L

The case k = 1 is classical, but it is interesting to note that this is the
starting point of [21].

4. Some known estimates and straightforward consequences.
LEMMA 4.1 ([18]). max;>1 ¢(t)/t = (113)/113 < 1.04.

Concerning small values, we quote from [I7] the following result:

(4.1) [W(z) -2 <V (8<x<10").
If we change v/ to v/2z, this is valid from 2 = 1 onwards. Furthermore
(4.2) lh(x) — x| <0.8vz (1500 < z < 1019).

LEMMA 4.2.

|(x) — x| <0.0065x/logx (x> 1514928).
Proof. By [8 Théoréme 1.3] improving on [22, Theorem 7], we have
(4.3) |(x) — x| <0.0065z/logz (x> exp(22)).
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We readily extend this estimate to > 3430190 by using (4.2). We then
use the function WalkPsi from the script IntR.gp (with the proper model
function). =

LEMMA 4.3. For x > 7105266, we have
|(x) — z|/z < 0.000213.
Proof. We start with the estimate from [20, (4.1)]
(4.4) [ (x) — z|/z < 0.000213 (x> 10'7).

We extend it to > 14500000 by using (4.2). We complete the proof by
using the following Pari/Gp script (see [15]):

{CalculeLambdas(Taille)=
my (pk, Lambdas);
Lambdas = vector(Taille);
forprime(p = 2,Taille,
pk = p;
while(pk <= Taille, Lambdas[pk] = p; pk*=p));
return(Lambdas) ; }

{model (n)=n}

{WalkPsi(zmin, zmax)=
my(res = 0.0, mo, maxi, psiaux = 0.0, Lambdas);
Lambdas = CalculeLambdas(zmax) ;
for(y = 2, zmin,
if (Lambdas[y] !=0, psiaux += log(Lambdas[y]),));
maxi = abs(psiaux-zmin)/model(zmin);
for(y = zmin+1, zmax,
mo = 1/model(y);
maxi = max(maxi, abs(psiaux-y)*mo);
if (Lambdas[y]!=0, psiaux += log(Lambdas[yl),);
maxi = max(maxi, abs(psiaux-y)*mo));

print("|psi(x)-x|/model(x) <= ", maxi, " pour ",
zmin, " <= x <= ", zmax);
return(maxi);} "

LEMMA 4.4. For x > 32054, we have
Wb (z) — 2|/ < 0.003.

Proof. The preceding lemma proves this for 2 > 7105 266. By using (4.2]),
we extend it to z > 102 500. We complete the proof by using the same script
as in the proof of Lemma ]

We quote from [16] the following lemma.
LEMMA 4.5. When x > 23, we have

U () zloga:—v—i-(’)*(

0.0067
logz )
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Let us turn our attention to the summatory function of the M&bius
function. In [6], we find the bound

(4.5) |M(z)| <0571z (33 <z < 10'2).
In [7], we find

(4.6) \M(z)| < /2360 (x> 617973)
(see also [4]) which [2] (published also in [3]) improves to
(4.7) IM(z)| < 2/4345 (z > 2160535).

Bounds for squarefree numbers
LEMMA 4.6. For D > 1 we have

Z w( —D + 0*(0.7VD).
d<D
For D > 10, we can replace 0.7 by 0.5.
Proof. [1] (see also [2 ]) proves that
> i —D + 0*(0.1333V'D) (D > 1664),

d<D
and we use direct inspection using Pari/Gp to conclude. =

LEMMA 4.7. Let D/K > 1. Let f be a non-negative non-decreasing C*
function. Then

L
S 2@ F(D/d) < 131 7(1) + 22 | f()d o35y | DA
K K

ﬁ +3/2
D/L<d<D/K

Proof. We use a simple integration by parts to write

D/d
> @ = Y () + | rwa)
D/L<d<D/K D/L<d<D/K K
L
= Y arm+ Z pA(d) () dt.
D/L<d<D/K K D/L<d<D/t

We then employ Lemma, [4.6] - to get the bound

6D R D i
e (E) + g dt+07\/7f +o7}§<\/:f

Two integrations by parts give the expression
L L
6 6D
(L) + | /(D dt+0.7 (L) + 0.35vD |
K K
The lemma follows readily. m

£(6) dt
$3/2 7
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5. A preliminary estimate on primes. Our aim here is to evaluate
(5.1) Ry(D)= > A(di)R(D/dy).
d1<vD

This remainder term is crucial in the final analysis and will be numerically
one of the dominant terms.

LEMMA 5.1. When D > 1, and vVD>T > 1, we have

A(d) log D 1.04
— 7 < 1.041 .
d;p dlog(D/d) = % 1og(D/T) T log D

Proof. Let f(t) =1/(tlog(D/t)). By a classical summation by parts we
have

DADF() =Y ADFT) =Y A(d)§f’(t) di
it i<t it
< logl('l(?)ij) — 1.04§tf’(t) dt
< bgl(ng) 104 [tf ()] + 1.04§f(t) dt
Nt 1,04D§:T“gtg S 0 tiog D

as required. m

LEMMA 5.2. We have |R4(D)|/D < 0.0065 when D > 10°. When D >
1300000 000, we have |R4(D)|/D < 0.0073.

The proof that follows is somewhat clumsy due to the fact that we have
not been able to compute Ry(D) for D up to 10'°. By inspecting the ex-
pression defining R4 and the proof below, the reader will see one could try
to get a better bound for

> A(d)R(D/d).
D/4<d<y/D
Indeed, one can compute the exact values of R(D/d) and try to approximate
them properly so as not to loose the sign changes in the expression. A proper
model is even given by the explicit formula for ¢ (x). We have however tried
to use the resulting polynomial, namely  — 3 - 21/2+97 /(1/2 4 i) with
G = 20, G = 30 and G = 200, but the approximation was very weak. It may
be better to find directly a numerical fit for R(z) in this limited range. It
should be noted that the function R(z) is highly erratical. Such a process
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would be important since the value 0.0065 that we get here decides a large
part of the final value in Theorem [1.1

Proof of Lemma . When D > 15149282, by Lemmas and we
have

A(d) 1.04
D)|/D <0. ——— < 0. . . .
|R4(D)|/D < 0.0065 > dlog(D/d)_00065 <073+logD>
d<v'D

This implies that |R4(D)|/D < 0.00499 in the given range. When 100 <
D < 15149282, we set T = D/10'% and write

Ad) 1 A(d)
|R4(D)|/D < 0.000213 > 5 T o > i
d<T T<d<vD

< 0.000213 4(T')

1 VD) — (T 1 VP () — (T
Dm(w( D>1/4w< )Jr2 S Y( )US/;ZJ( )du>7

_|_

i.e. on using ¥ (u) < u+ /u,
|R4(D)|/D < 0.000213 4(T')

1 (¢<@>_¢<T>+1“Sﬁw<u> du)
DY/2\ D/4 T2 2 7 ud/2

< 0.000213 ¢(T)
1/4 .
1 <\/5+D T \/T+D1/4—\/T+log\/T5>,

+ D1/2 D1/4 T1/2
i.e. since ¢(z) < logx when z > 1,

|R4(D)|/D < 0.0002131log T

D
+ <2D1/4 —2VT 42+ log \TF>

D1/2
We deduce that |R4(D)|/D < 0.0065 when D > 10'%. When now 10° < D
< 10'9, we proceed as follows:

1500

1 <¢(1500) 1 S

[Ra(D)|/D <

15001/2 2 ud/?

o))

0.8 (w(\/ﬁ) —(1500) 1 ? ¥(u) — ¥(1500) du>'

D1/2 D1/4 + 92 u3/2

1500
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We readily compute that 1(1500) = 1509.27 + O0*(0.01), so that

1509.3
D)|/DY? < (0.2 — 0.8) ——"_
|R4(D)|/ <(0 08)15001/2

The right hand side is not more than 0.0073 when D > 1300000 000. =

+0.642 + 0.8 - 1.04 (2DY/* — 1500%/2).

6. The relevant error term for the primes. The main actor of this
section is the remainder term R5 defined by

(6.1) > (A A(d) — A(d)logd) = —2[Dl]y + R3(D).
d<D

The object of this section is to derive explicit estimate for R3 from explicit
estimates for . Most of the work has already been done in the previous
section, and we essentially put things in shape. Here is our result.

LEMMA 6.1. When D > 1435319, we have |R5(D)|/D < 0.0213.
We start by an expression for R3.
LEMMA 6.2.

|R3(D)| < 2D|r(v'D)| + 2D'?R(v/D) + R(V'D)? + R(D)log D

Dot
+1+2y+2Ry(D) + | | R(t)
1

t
where Ry is defined in (5.1).
Proof. The proof is fully pedestrian. We have

D
> A(d)logd = (D)log D — | 4(t) dt/t
d<D 1

D
=DlogD — D+ 1+ R(D)log D — | R(t)dt/t.
1
Concerning the other summand, the Dirichlet hyperbola formula yields

Z A(dy)A(dz) = 2 Z A(dr)y(D/dr) — (V' D)?

did2<D d1<vD
oy
d1<\/>

—2VDR(VD) - 2+2 ) A(di)R(D/dy)
di1<vVD

=DlogD —2Dv—-D
+2Dr(VD) — 2V DR(VD) — R(VD)? + 2R4(D).
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We arrive at Rj(D) = R3(D) — 1+ 2R4(D) — R(D)log D + {7 R(t) dt/t,
where

(6.2)  Rs(D) =2Dr(vVD) —2v{D} — 2V DR(V/D) — R(vV'D)?.
The lemma follows readily. m

LEMMA 6.3. For the real number D satisfying 3 < D < 110000000, we
have

|R3(D)| < 1.80v/Dlog D.
When 110000000 < D < 1800000000, we have
|R3(D)| < 1.93VDlog D.

We used a Pari/Gp script. The only non-obvious point is that we have
precomputed the values of Ax A — Axlog on intervals of length 2 - 10%. On
letting this script run longer (about twenty days), I would most probably be
able to show that the bound |R%(D)| < 2v/Dlog D holds when D < 1010,
This would improve a bit on the final result.

LEMMA 6.4.
108
| R(t)dt/t = —129.559 + 0*(0.01).
1

We used a Pari/Gp script as above, but the running time was much
shorter.

Proof of Lemma . Assume that D > 1.3 -10°. We start with Lem-
ma We bound 7(v/D) via Lemma (this requires D > 232), then
R(V/D) by Lemma [4.4 (this requires D > 320542), and R(D)log D by using
Lemma (this requires D > 1514928). We bound R4 by appealing to
Lemma We conclude by appealing to Lemma All of that amounts
to the bound

4-0.0067 D
log D
+0.0073 D + 132 + 0.000213D — 0.000213 - 108.

|R5(D)| < + 0.006 D + (0.003)2D + 0.0065 D
We arrive at
(6.3) |R5(D)|/D < 0.0213

when D > 1.3 -10°. Thanks to Lemma we extend this bound to D >
1435319. u
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7. Estimating M (D). We appeal to (3.4) and use the Dirichlet hyper-
bola formula. In this manner we get our starting equation:

() S udlegtd=2y+ Y u(dR3(D/d)

d<D d<D/K
+ Y Ri(k) > p(d).
k<K D/(k+1)<d<D/k

This equation is much more important than it looks since a bound for R} (k)
that is < k/(logk)? shows that the second sum converges. A more usual
treatment would consist in writing

> uld)log?d=2y+ Y p(d)R3(D/d)

d<D d<D/K
+ Y (AxA—Alog+27)(k) > pld),
k<K D/K<d<D/k

as in [21] for instance. However, when we bound M (D/k) — M(D/(k + 1))
roughly by D/(k(k+1)) in (7.1)), we get DY, - |R5(k)|/(k(k + 1)), which
is expected to be O(D). On bounding M (D/k) — M(D/K) by D/k in the
second expression, we only get D>, |A* A — Alog — 2v|(k)/k, which
is of size Dlog? K. Practically, if we want to use a bound of the shape
|M(z)| < x/4345, we will loose the differentiating aspect and will bound
|M(D/k) — M(D/(k +1))| by 2D/(4345k) and not by D/(4345k?). Tt is
thus better to use differentiation-difference on the variable R;(k) when k is
fairly small. It turns out that small is large enough! We write

(7:2) ; R3(k)(M(D/k) — M(D/(k + 1))
- = > (AxA— Alog+2v)(k)M(D/k) + R5(K)M(D/K).

LEMMA 7.1. k;VIf(Len K = 462848, we have
5 AxA— A}Cog +2(k) | |R§I({K)]

< 0.03739 x 4345.
k<K

We can use the simple bound (6.3)) to get, for D/K > 2160535,

2y 6 D
2
‘Z 1(d) log d‘/D < 2400213 <7r2 log = + 1.166) +0.03739
d<D
< 0.0130log D — 0.144
with K = 462 848. Note that this lower bound of K has been chosen to

satisfy
462848 x 2160535 < 10'2.
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Concerning the smaller values, we use summation by parts:
D

S u@logzd =" p(d)log? D -2 | 3" u(d) logtt dt

d<D d<D 1 d<t

which gives, when 33 < D < 1012,

33
log t dt
DR

1 d<t

‘Z 1(d) log? d‘ < 0.571V/Dlog? D + 2
d<D

D

log t dt
+2-0571 | 25
33 \/%
< 0.571VDlog? D + 2.284v/Dlog D + 4.568V' D — 43,

and this is < 0.0130log D—0.144 when D > 8613 000. We extend this bound
to D > 2161205 by direct computations using Pari/Gp.
Let us state formally:

LEMMA 7.2. For D > 2161205, we have

‘Z 1(d) log? d‘/D < 0.01301log D — 0.144.
d<D

8. A general formula and proof of Theorem Let (f(n)) be a
sequence of complex numbers. We consider, for integer k > 0, the weighted
summatory function

(8.1) My(f,D) =" f(n)log"n.
n<D

We want to derive information on My(f, D) from information on My(f, D).
The traditional way to do that is in essence due to [I4] and goes via a
differential equation. It turns out that it is clearer and somewhat more
precise to use the identity that follows.

LEMMA 8.1. For k>0 and D > Dy we have

D
Dy

Mo(f, D
olf, D) = logh D " logk Dy

This formula in a special case is also used in [21] and [10].

Proof. Indeed, we have

D
] B g ML) R S

D, 1108 log® Dy n<D Do<n<D
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Proof of Theorem[1.1 In the notation of Lemma we have M (D) =
Mo(p, D). By Lemma [7.2] with Dy = 2161205 we have

0.0130log D — 0.144 Ms(p, D
M(D)] < - D+ M(Dy) — 22U Do)
log= D log” Dy
D
0.0130logt — 0.144
+2 | v dt
Do S)
D
0.0130log D — 0.144 0.0130logt — 0.144
< ek D-348+2 | o8 dt
log= D Dy log”t
0.0130log D — 0.118
< 0e2D D —3.48
D
Dy 0.236
= 00260 — | P
g Lo p, tlog

(We used Pari/Gp to compute the quantity M (Dg) — My (u, Do)/log? D).
We conclude by direct verification, again relying on Pari/Gp. =

9. From M to m. We take the following lemma from [I1], (1.1)].

LeEMMA 9.1 (El Marraki). We have

D

IM(D)| | 1{ |M(®)|dt  logD

< —+ = .
mD) < ==+ 5V ——+—5

1
This lemma may look trivial enough, but its teeth are hidden. Indeed, the
usual summation by parts would bound |m(D)| by an expression containing
the integral of |M(t)|/t>. An upper bound for |M(t)| of the shape ct/logt
would then result in the useless bound m(D) < loglog D.

Proof of Lemma [9.1. We reproduce the proof, as it is short and the

preprint we refer to is difficult to find. We have two equations, namely
D

(9.1) m(D) = Ml()D> i M(tt2) dt
and .
(9.2) | [ﬂ M(:) U _os D,

1
We deduce from the above that

M(D) 1 L§<D - [DDM(t)dt | logD.

t

mD)=—p=+p

The lemma follows readily. m
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Proof of Corollary[1.3. We have, when D > Dy = 1078853,
D

0.0130log D — 0.118 1  0.0130logt — 0.118
D)| < - dt
Im(D)I < (log D)2 +Dl§ (log t)?
0
+1l§° [M(1)|dt |, log D
D)t D
0.0130log D —0.118 | 1 ’i’ 0.0130 dt
(log D)? D logt
Do
D

1 S 0.118dt+301+10gD
D - (logt)? D ‘

0
We continue by an integration by parts and some numerical computations:
D

(D)) < ©020010g D —0.118 _ 0105 S dt —9795 + log D
m N
- (log D)? D - (logt)? D ’
0
0.0260log D — 0.118 1 187 dt  ~9795 +log D
= (log D)2 D) D
0

This proves that |m(D)|(log D)? < 0.0260log D — 0.118 as soon as D >
1078 853. We extend this bound by direct inspection. m
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