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1. Introduction. In the fields of number theory and dynamical sys-
tems, a type of largeness of a set, that of being winning in the sense of
Schmidt games, has quickly become important because fundamental sets in
number theory—badly approximable numbers [8], badly approximable ma-
trices [9]—and fundamental sets in dynamical systems—points with non-
dense orbits under C2-expanding circle maps [12], points with nondense
orbits under linear automorphisms of the torus [1]—exhibit the winning
property while not exhibiting the usual notion of largeness, namely that
of being of full Lebesgue measure. These sets are, moreover, null sets, but
they do satisfy a countable intersection property and have full Hausdorff
dimension, much like conull sets.

The main technique in this paper, the use of the notion of commensu-
rate, is an advance in the application of the technique of Schmidt games
to cases of infinite distortion (in the sense of Markov partitions), whereas
previously only bounded distortion could be handled (1). The technique in
this paper, which handles this new, extra source of infinity, is a significant
extension of the second-named author’s work in [12] for some bounded dis-
tortion cases. We will borrow notation and ideas from [12]. Moreover, we
intend our proof in this paper, which shows that the set of bounded Lüroth
expansions is winning, to be a model for other cases which have infinite
distortion, and such cases are plentiful and natural in number theory and
dynamical systems (2).
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(1) We defer the discussion of distortion to Section 6, especially Subsection 6.2.

(2) Irrational numbers with bounded continued fraction expansions or, equivalently,
bounded Gauss map expansions are already known to be winning. The two known proofs
rely on the fact that the set of these expansions is exactly the set of badly approximable
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1.1. Introduction to Lüroth expansions. Perhaps the simplest ex-
ample of a case with infinite distortion is that of Lüroth expansions. These
expansions are variants of the well-known continued fraction expansions and
n-ary expansions where n > 1 is an integer. Like for these other expansions,
every real number x ∈ X := [0, 1]/(0 ∼ 1) can be written as a finite or
infinite series, called the Lüroth expansion or, equivalently, Lüroth series
of x:

x =
1

a1(x)
+

1

a1(x)(a1(x)− 1)a2(x)
+ · · ·

+
1

a1(x)(a1(x)− 1) · · · an−1(x)(an−1(x)− 1)an(x)
+ · · ·

where the natural number ak(x) ≥ 2 denotes the kth digit for each integer
k ≥ 1. Also like for these other expansions, the digits of the Lüroth expansion
for x are given by a dynamical system, namely T : X → X where

(1.1) Tx =

{
n(n+ 1)x− n if x ∈

[
1

n+1 ,
1
n

)
,

0 if x = 0.

The first digit a1(x) equals n+1 if x ∈
[

1
n+1 ,

1
n

)
for n ≥ 1, and the kth digit

is obtained by iterating the dynamical system: ak(x) = a1(T
k−1x)—when

T k−1x = 0 for a k ≥ 1, there is no digit and we stop the iteration, obtaining
a finite expansion (3). A number x has bounded Lüroth expansion if there
exists a natural number N(x) such that ak(x) ≤ N(x) for all k ≥ 1 and, in
particular, finite Lüroth expansions are bounded. We discuss properties of
Lüroth expansions in Section 3. An introduction to Lüroth expansions and
related number-theoretical objects can be found in a number of references,
including a short monograph [3] by K. Dajani and C. Kraaikamp or another
short monograph [5] by J. Galambos.

2. Statement of results. As a model proof for applying Schmidt
games (4) to cases of infinite distortion, we show:

Theorem 2.1. The set of numbers with bounded Lüroth expansion is
α-winning and α-strong winning for α := 1/8.

Let T be the dynamical system in (1.1) that gives the digits of the Lüroth
expansion. The theorem is equivalent (in a straightforward manner) to the
following dynamical reinterpretation:

numbers. This equivalence is not available for Lüroth expansions, and therefore the proof
given in this paper is the only known proof that the set of bounded Lüroth expansions is
winning. See Section 6.3 for more details.

(3) The number 0 has no Lüroth expansion according to our strict definition.

(4) Schmidt games and winning and strong winning sets are briefly discussed in Sec-
tion 4.
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Corollary 2.2. The set of points in X whose forward orbits under T
miss an open interval with left endpoint 0 is α-winning and α-strong winning
for α := 1/8.

Now the intersection of any other (strong) winning set in R (or X) with
the set of bounded Lüroth expansions is also (strong) winning. Using results
from [7, 1], one possible number-theoretic corollary is

Corollary 2.3. The set of badly approximable numbers with bounded
Lüroth expansion and bounded block n-ary expansion for every natural num-
ber n > 1 is winning and strong winning and thus is a dense set of full
Hausdorff dimension.

A real number x has bounded block-k n-ary expansion if there exists an
N(x) > 0 such that every block of consecutive digits k has at most N(x) dig-
its, and the number x has bounded block n-ary expansion if it has bounded
block-k n-ary expansion for all digits k. There is an obvious dynamical rein-
terpretation of the corollary, an interpretation which allows us to replace
the number-theoretical concept of numbers having bounded block n-ary ex-
pansion with the natural (and more general) dynamical concept of numbers
whose forward orbits (under x 7→ nx mod 1) miss some neighborhood of a
prescribed point.

Our Theorem 2.1 considerably strengthens the result of [10] (on the
Hausdorff dimension of bounded Lüroth expansions) to the winning proper-
ties and allows us to obtain the above corollaries, which are not obtainable
just from knowing the Hausdorff dimension. Furthermore, since the winning
property is preserved by local isometries (see [8]) and the strong winning
property is preserved by quasisymmetric homeomorphisms (see [7]), these
properties allow us to write corollaries similar to Corollary 1.2 of [11], ones
which again are not obtainable just from knowing dimension.

3. Properties of Lüroth expansions. We take the elementary prop-
erties of Lüroth expansions from Chapter 2 of the monograph [3]. As typical
with expansions such as these, we are only concerned with the numbers from
the circle X := [0, 1]/(0 ∼ 1) because these expansions are defined modulo 1.
In this section, an important way of dealing with Lüroth expansions, the key
concept of commensurate, will be introduced.

Let us first, however, introduce some notation. The absolute value of a set
denotes the usual length or, equivalently, the probability Haar measure onX.
The Lüroth element (LE ) of generation 0 is X. For n ∈ N, a Lüroth element
of generation n is a closed interval corresponding to the first n digits in a
Lüroth expansion–this is the left-closed, right-open interval corresponding
to all Lüroth expansions beginning with the given n digits union the right
endpoint of this interval. We refer to these n digits as the Lüroth expansion
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corresponding to this LE. For n ∈ N ∪ {0}, let Gn denote the set of LEs of
generation n. (Hence, G1 := {[1/2, 1], [1/3, 1/2], . . . , [1/k + 1, 1/k], . . .}.)

Given these notions of Lüroth elements and generations, we observe the
following properties:

(1) Let n ∈ N. Every element E ∈ Gn has a unique left-adjacent element
in Gn. We denote this element by E−.

(2) Let n ∈ N. Every element E ∈ Gn that does not correspond to a
Lüroth expansion ending in the digit 2 has a unique right-adjacent
element in Gn. We denote this element by E+.

(3) Given n ∈ N∪{0} and E ∈ Gn, the left endpoint of E is a point x ∈ E
satisfying the following condition: if U is any open set containing x,
then U ∩ E contains infinitely many elements of Gn+1.

(4) For n ∈ N ∪ {0} and E ∈ Gn, the only point of E satisfying the
condition in the previous property is the left endpoint.

(5) The maximum over all diameters of elements in Gn goes to zero as
n goes to infinity.

(6) Let n ∈ N. For every E ∈ Gn there exists a unique F ∈ Gn−1 such
that E ⊂ F .

(7) Let n ∈ N ∪ {0}. The interiors of any two distinct elements of Gn
are disjoint.

Let n ∈ N∪{0} and E ∈ Gn be chosen. A point of E is an accumulation
point of E if it satisfies the condition in property (3). Thus the left endpoint
of any LE is an accumulation point of that element. Property (4) says that
it is the only one. An accumulation point of generation n is an accumulation
point of some LE of generation n. Note that the intersection of the sets
of accumulation points of distinct generations is empty. Also note that the
right endpoint of E is an accumulation point of some generation less than
or equal to n.

In the dynamical point of view, the accumulation points are the preim-
ages of 0 under T . In particular, let E be an LE of generation n. Then the
accumulation point belonging to E is a preimage of 0 under Tn, but not
under Tn−1. And every such preimage is an accumulation point for an LE
of generation n.

For us, a ball is assumed to have nonempty interior and it is usually
assumed to be closed. Let n ∈ N. A closed ball B is commensurate with
generation n (c.w.g. n) if B completely contains an LE of generation n but
no LE of generation n−1. Since every ball is path-connected, it follows that
B can contain at most one accumulation point of all generations up to (and
including) n− 1.

Remark 3.1. This notion of being commensurate–the essence of the
proof of our main result—requires knowledge of both the length and position
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of B. It is possible for B to be arbitrarily small but commensurate with a
small generation number. Such Bs must be avoided if we are to play the
Schmidt game.

The following lemma is easy to verify:

Lemma 3.2. For every closed ball B of X that is also a proper subset
of X, there exists a unique n ∈ N such that B is c.w.g. n.

The lemma has a corollary:

Corollary 3.3. Any closed ball c.w.g. n (and also properly contained
in X) is properly contained in at most two elements of Gn−1.

Proof. The ball B is an interval and thus path-connected. Proper con-
tainment follows by the definition of commensurate. If B contains three
elements of Gn−1, then pick an interior point from each of these elements.
One of these points is closest to the left endpoint of B and another is closest
to the right endpoint of B. The third point must lie between the other two.
As these elements have pairwise disjoint interiors, every point of the third
element (the one corresponding to the third point) lies in B, implying that
B is not c.w.g. n, a contradiction.

Any LE E is an element of some generation k and thus corresponds
uniquely to a Lüroth expansion with digits a1, . . . , ak. Since our proof is an
intricate and significant extension of the work of the second-named author
in [12], we use some ideas and the notation from that paper: let Ra1...ak := E
and a1 . . . ak be referred to as a (finite) string in the letters N\{1}. For more
on strings and the associated ideas from Markov partitions and symbolic
dynamics, see Section 2 of [12] and Section 6.1 of the present paper. The
following lemma is easy to verify using elementary properties of Lüroth
expansions:

Lemma 3.4. Given an integer b ≥ 2 and an LE Ra1···ak , we have∣∣∣ ⋃
ak+1>b

Ra1···akak+1

∣∣∣ =
1

b
|Ra1···ak |.

4. Schmidt games. In this section, we define Schmidt games and list
their basic properties. W. Schmidt introduced the games which now bear
his name in [8]. Let 0 < α < 1 and 0 < β < 1. Let S be a subset of a
complete metric space M and ρ(·) denote the radius of a closed ball. Two
players, Player B and Player A, alternate choosing nested closed balls

B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ · · ·
on M according to the following rules:

(4.1) ρ(An) = αρ(Bn) and ρ(Bn) = βρ(An−1).
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The second player, Player A, wins if the intersection of these balls lies in S.
A set S is called (α, β)-winning if Player A can always win for the given
α and β. A set S is called α-winning if Player A can always win for the
given α and every β. A set S is called winning if it is α-winning for some α.
Schmidt games have three important properties for us [8]:

• An α-winning set in Rn is dense and of full Hausdorff dimension.
• A countable intersection of α-winning sets is α-winning.
• An α-winning set in Rn with a countable number of points removed is
α-winning.

Recently, C. McMullen introduced a variant of these games in which the
rules (4.1) are replaced by

ρ(An) ≥ αρ(Bn) and ρ(Bn) ≥ βρ(An−1).

This variant results in strong winning sets, and the above properties for
winning sets apply mutatis mutandis to strong winning sets in Rn. Such
strong winning sets are also winning and behave well under quasisymmetric
homeomorphisms [7]. There have been other recent modifications to these
games—see [6, 7, 2].

5. Proof of the theorem. We give the proof for the winning property
first and note that this proof also suffices for the strong winning property. Let
α := 1/8 and 0 < β < 1 be arbitrary. Define c1 := 25 and b := d2c1/(αβ)e.
We will specify a winning strategy for Player A. It is obvious that Player A
can choose a ball that misses any given point of Player B’s current ball. Also,
by playing the game for a finite number of rounds, Player A can force all
subsequent choices of balls to be less than any given radius. Thus, without
loss of generality, we may assume that B1 does not contain the point 0 and
has diameter strictly less than one. Hence B1 is c.w.g. g1 ≥ 1.

Let k := 1. We claim that the ball Bk contains at most one accumulation
point of generation gk − 1. To see this claim, first note that the only way
for Bk to contain an accumulation point of a generation strictly less than
gk − 1 is for the right endpoint of Bk to be this accumulation point (if Bk
contains this accumulation point as some other point, then Bk must contain
an LE of generation strictly less than gk, a contradiction). If Bk contains
two accumulation points of generations up to gk−1, then it must contain an
LE of generation up to gk − 1, a contradiction. Consequently, Bk contains
at most one accumulation point of generations up to gk − 1, and, if Bk
does contain such an accumulation point and this accumulation point has
generation strictly smaller than gk − 1, then the right endpoint of Bk is the
accumulation point.
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If Bk contains an accumulation point, which we denote by pk, of gener-
ations up to gk − 1, then we denote

Br
k := {x ∈ Bk | x ≥ pk}, B`

k := {x ∈ Bk | x ≤ pk}.
For future choices of Player B’s balls (i.e. for integers k > 1), we make the
analogous statements and definitions. We will also handle the case for which
Bk contains no such accumulation point—see Case 3 below.

5.1. Initial step. We intend to use induction. For handling the initial
step, let us define a ball B0 ⊃ B1 with radius (b/c1)ρ(B1)—while we only
care about the radius of B0, for definiteness, let B0 have the same center
as B1. There are three cases to consider:

Case 1: The ball B1 contains an accumulation point of generations up
to g1 − 1, and |Br

1| ≥ |B`
1|.

Let p1 denote the accumulation point. Since it is not the right endpoint
of B1, it must be (as shown above) of generation g1 − 1. Let Rγ be the LE
of the same generation as p1 and having p1 as left endpoint (therefore p1 is
the accumulation point of Rγ). Let q denote the left endpoint of Rγ2 and
p+1 denote the accumulation point of generations up to g1 − 1 immediately
to the right of p1. Note that p+1 always exists because 0 is identified with 1
and 1 is a point to the right of all points in B1, a ball which, recall, does
not contain 1. Then Br

1 is properly contained in the closed interval [p1, p
+
1 ].

Consider two subcases. First let Br
1 be properly contained in the interval

[p1, q). It is now clear that Player A can choose A1 to be contained in Br
1 and

disjoint from the closed ball B̄
(
p1,

1
bρ(B0)

)
, the LE Rγ2, and every element

of Gg1−1 \ {Rγ}.
The other subcase is when Br

1 is not properly contained in the interval
[p1, q). By Lemma 3.4, it follows that |Br

1| ≥ 1
2 |Rγ |. Also, since B1 is con-

tained in the union of Rγ and its left-adjacent LE of the same generation
(the left-adjacent LE always exists), then 2|Rγ | > |B1| also follows by the
same lemma. The conclusion of the previous paragraph is immediate.

Now B2 is chosen. If B2 is c.w.g. g1, then Player A may choose any ball
A2 allowed by the Schmidt game. Player A can continue to play in this way
for any Bk c.w.g. g1. We claim, however, that, at some iterate n ≥ 2 of the
game, Bn will be commensurate with a generation strictly greater than g1.
The claim follows because, by choice of A1, A1 can contain only a finite
number of LEs of generation g1. If A1 contains no such LE, then the claim
follows for B2. If A1 does contain such an LE, then it contains one of least
length. Thus, for some iterate n ≥ 2, Bn is too small to contain any such
LE, which implies the claim.

Let j2 ∈ N such that Bj2 is c.w.g. g1 and B1+j2 is c.w.g. g2 > g1. By the
above, B1+j2 ⊂ Rγ \ Rγ2. Form the set of LEs of the relevant generations
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that intersect B1+j2 :

E :=
{
E ∈

g2−1⋃
g=g1

Gg

∣∣∣ E ∩B1+j2 6= ∅
}
.

Since B1+j2 is c.w.g. g2, the ball is contained in at most two elements of
Gg2−1 by Corollary 3.3. Therefore, every element in E must contain one or
the other element of generation g2 − 1 (5). We prove the following lemma,
whose analogous version is also needed for the inductive step.

Lemma 5.1. The diameter of the ball B1+j2 is larger than the diameter
of any interval (p, p + (

√
c1/b)|E|) where E ∈ E and p is the accumulation

point of E.

Proof. Since B1+j2 is c.w.g. g2, there exists an element Eg2 ∈ Gg2 such
that Eg2 ⊂ B1+j2 . Consequently, there exists a unique Eg2−1 ∈ Gg2−1 such
that Eg2 ⊂ Eg2−1. By recursion, we may define the chain of inclusions

Eg2 ⊂ Eg2−1 ⊂ · · · ⊂ Eg1
where Eg ∈ Gg.

Since B1+j2 ⊂ A1, we have Eg1∩A1 6= ∅. By the choice of A1, the Lüroth
expansion corresponding to Eg1 cannot end in the digit 2, which implies that
both E+

g1 and E−g1 exist.
Since B1+j2 ⊂ Bj2 , we have Eg1 ∩ Bj2 6= ∅. Since Bj2 is c.w.g. g1, Bj2

must completely contain (at least) one element of the set {E−g1 , Eg1 , E
+
g1}.

Let B̃j2 denote the closed ball with the same center as Bj2 but with√
c1 times the radius. By an easy argument using Lemma 3.4, we then

have Eg1 ⊂ B̃j2 . Now note that
√
c1 |B1+j2 | ≥

√
c1

2c1
b |Bj2 | ≥

c1
b |Eg| for

g1 ≤ g ≤ g2, which implies the desired result.

Corollary 5.2. Let g2 > g1 + 1. The ball B1+j2 is disjoint from every
interval

(
p, p+ 1

b |E|
)

where E is an LE of generations from g1 to g2−2 and
p is the accumulation point of E.

Proof. Let F and F− be the (possibly) two LEs of generation g2 − 1
whose union contains (properly) B1+j2 (by Corollary 3.3). Since F and F−

are adjacent LEs, they lie in the same LE of generation g2 − 2 (if not, then
B1+j2 is not c.w.g. g2, which is a contradiction) and thus the same LE—call
it F ′—of whatever generation E is. There are two cases.

Case A: The LEs E and F ′ are distinct elements of the same gener-
ation. The LEs E and F ′ can only intersect at an endpoint, which is an
accumulation point of either E or F ′. However, since B1+j2 is contained
in F ′, it is disjoint from the interior of E, implying the desired result.

(5) Even more, every element of E not of generation g2−1 must contain both (if there
are two).
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Case B: The LEs E and F ′ are the same element. Assume that the con-
clusion does not hold. Let E := Rγ for some string γ. Now by the elementary
properties of Lüroth expansions ([3]), |Rγb| = 1

b(b−1) |Rγ |—note that the LE

Rγb is disjoint from
[
p, p + 1

b |E|
)

and
[
p, p + 1

b−1 |E|
]

=
[
p, p + 1

b |E|
)
∪ Rγb

by elementary Lüroth expansion properties (see also Lemma 3.4). Since p is
the left endpoint of E and since B1+j2 is contained in E, then the assump-
tion implies that the left endpoint of B1+j2 is contained in

[
p, p + 1

b |E|
)
.

Therefore, Lemma 5.1 shows that B1+j2 contains Rγb, an LE of generation
at most g2 − 1. This contradicts the fact that B1+j2 is c.w.g. g2.

If the interior of B1+j2 contains an accumulation point q of generations
up to g2 − 1, then it must be of generation g2 − 1 (otherwise, B1+j2 is not
c.w.g. g2). Let Eq be the LE corresponding to q. Let q− be the accumulation
point of E−q . Then the only two intervals that Player A must avoid and that

may (possibly) intersect B1+j2 are
(
q−, q− + 1

b |E
−
q |
)

and
(
q, q + 1

b |Eq|
)
. If

the interior of B1+j2 does not contain an accumulation point of generations
up to g2 − 1, then B1+j2 lies completely in some Eq ∈ Gg2−1 where q is
the corresponding accumulation point—and the one interval that Player A
must avoid is

(
q, q + 1

b |Eq|
)
. In either case, Lemma 5.1 implies that B1+j2

is at least
√
c1/2 times larger than the (union of) interval(s) Player A must

avoid, and Corollary 5.2 implies that if g2 > g1+1, then B1+j2 automatically

avoids any intervals
(
p, p+ 1

b |E|
)

where E ∈
⋃g2−2
g=g1

Gg.

Case 2: The ball B1 contains an accumulation point of generations up
to g1 − 1, and |Br

1| < |B`
1|.

Let p1 denote the accumulation point. SinceB1 is c.w.g. g1,B
`
1 is properly

contained in an element Rγ ∈ Gg1−1 by Corollary 3.3. Then p1 is the right
endpoint of Rγ . Player A chooses A1 to be the closed ball with right end-
point p1. Since |B`

1| < |Rγ | and α is small enough, A1 ⊂ Rγ2 and, moreover,
if p is the accumulation point of Rγ2, then A1 is disjoint from

[
p, p+ 1

b |Rγ2|
)
.

Therefore, A1 is disjoint from all intervals
(
p, p+ 1

b |E|
)

where p is an accu-
mulation point of generations up to g1 and E is the LE corresponding to p.

Now B2 is chosen. By the choice of A1, A1 is c.w.g. g > g1 and, even
more precisely, Rγ2γ̃2 ⊂ A1 ⊂ Rγ2γ̃ where γ̃ is a string of g−g1−1 repeating
digits 2. Thus, |A1| > |Rγ2γ̃2| = 1

2 |Rγ2γ̃ | by Lemma 3.4. Let B2 be c.w.g.
g2—hence g2 ≥ g. If g2 = g, then B2 is contained in E := Rγ2γ̃ , an LE of
generation g2 − 1. If g2 > g, then, by Corollary 3.3, B2 must be contained
in at most two adjacent LE of generation g2 − 1 both of which lie in Rγ2γ̃ ;
denote these two elements by E− and E.

Thus, for g2 ≥ g, we have |E−| < |E| ≤ |Rγ2γ̃ |. Consequently,

|B2| ≥
2c1
αb
|A1| ≥

c1
αb
|Rγ2γ̃ |,
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which is much larger than the (at most two) interval(s)—
[
q−, q− + 1

b |E
−|
)

and
[
q, q+ 1

b |E|
)

where q− and q are the accumulation points of E− and E,
respectively—that Player A must avoid.

Lemma 5.3. Let g2 > g1 + 1. The ball B2 is disjoint from every interval(
p, p+ 1

b |F |
)

where F is an LE of generations from g1 to g2− 2 and p is the
accumulation point of F .

Proof. Since E and E− are adjacent LEs of generation g2 − 1, they lie
in the same LE of generation g2 − 2 and thus the same LE—call it E′—of
whatever generation F is. There are two cases.

Case A: The LEs F and E′ are distinct elements of the same genera-
tion. The proof is analogous to the proof of Case A of Corollary 5.2.

Case B: The LEs F and E′ are the same element. There are two sub-
cases to consider. The first is when F is of generations g1 to g− 2 (provided
that g > g1 + 1; otherwise, this subcase is not needed). Since A1 ⊂ Rγ2γ̃
where γ̃ is a string of g − g1 − 1 repeating digits 2, the result is clear from
the elementary properties of Lüroth expansions and the size of b.

The second subcase is when F is of generations g − 1 to g2 − 2. Assume
that the conclusion does not hold. The condition of this case, Case B, implies
that F ⊂ Rγ2γ̃ . Let θ be the (possibly empty) string such that F = Rγ2γ̃θ
and p be the left endpoint of F . Thus |Rγ2γ̃θb| = 1

b(b−1) |Rγ2γ̃θ|—note that

the LE Rγ2γ̃θb is disjoint from
[
p, p + 1

b |F |
)

and we have
[
p, p + 1

b−1 |F |
]

=[
p, p+ 1

b |F |
)
∪Rγ2γ̃θb. Since p is the left endpoint of F and since B2 is con-

tained in F , the assumption implies that the left endpoint of B2 is contained
in
[
p, p + 1

b |F |
)
. Since |B2| ≥ 2c1

αb |A1| ≥ c1
αb |Rγ2γ̃ | ≥

c1
αb |F |, we deduce that

B2 contains Rγ2γ̃θb, an LE of generation at most g2 − 1. This contradicts
the fact that B2 is c.w.g. g2.

Let j2 = 1; then we conclude as in Case 1.

Case 3: The ball B1 does not contain an accumulation point of genera-
tions up to g1 − 1.

The given condition on B1 implies that it is completely contained in
the interior of an LE E of generation g1 − 1. Now since B1 is c.w.g. g1,
it completely contains an LE of generation g1—if it were to contain such
an element with last digit 2, it would contain an accumulation point of
generations up to g1 − 1, a contradiction. Therefore, it contains an LE of
generation g1 with last digit not 2.

Let p1 be the accumulation point corresponding to E. And let p+1 be
the accumulation point of generations up to g1 − 1 which is also the right
endpoint of E.
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Setting E = Rγ and treating B1 as we did Br
1 in Case 1, we handle this

case exactly as Case 1, except for the following. Recall the definition of q
from Case 1. The first subcase is handled exactly as in Case 1. The second
subcase—in which B1 is not properly contained in the interval [p1, q)—is
handled as follows. Since B1 is c.w.g. g1, it cannot be properly contained
in Rγ2. Therefore, the condition of this subcase implies that B1 contains q.
Hence, it must contain Rγ3 because it is c.w.g. g1 and it cannot contain Rγ2.
Therefore, B1 is large relative to Rγ (more precisely, it is at least 1/6 the
length of Rγ) and it is clear that A1 can be chosen to be disjoint from the
closed ball B̄

(
p1,

1
bρ(B0)

)
, the LE Rγ2, and every element of Gg1−1 \ {Rγ}.

The remainder of Case 3 is handled exactly as the remainder of Case 1.

This completes the three cases and the initial step of the induction.

5.2. Induction step. Our induction index is n. Let j1 := 1. Let Jn :=∑n
i=1 ji. By the induction hypothesis, BJn is c.w.g. gn > gn−1; therefore,

there exist (by Corollary 3.3) either two LEs E and E− of generation gn−1
such that BJn ⊂ E−∪E or one LE E of generation gn−1 such that BJn ⊂ E.
If gn > g1+1, then, also by the induction hypothesis, BJn avoids

(
q, q+ 1

b |F |
)

where q is an accumulation point of generations g1 up to gn−2 and F is the
LE corresponding to q. Finally, again by the induction hypothesis, |BJn | is
(at least)

√
c1/2 times larger than

∣∣(p−, p− + 1
b |E
−|
)
∪
(
p, p+ 1

b |E|
)∣∣ where

p is the accumulation point of E and p− is the accumulation point of E−.

Thus, it is possible for Player A to chose AJn to be disjoint from all(
p, p+ 1

b |E|
)

where E is an LE of generation gn−1 and p is the accumulation
point of E. We choose AJn , which will be so disjoint, by considering three
cases:

Case 1: The ball BJn contains an accumulation point of generations up
to gn − 1, and |Br

Jn
| ≥ |B`

Jn
|.

This case is handled in the analogous way to Case 1 of the initial step—
except B1 is replaced by BJn , A1 is replaced by AJn , B2 is replaced by
BJn+1, and so on. Also, the two subcases give similar conclusions as in the
inductive step, except AJn is disjoint from

(
pn, pn + 1

b |Rγ |
)

and the LE Rγ2
(recall that pn must be an accumulation point of generation gn − 1 for this
case). The rest of this case is analogous to the initial step.

Case 2: The ball BJn contains an accumulation point of generations up
to gn − 1, and |Br

Jn
| < |B`

Jn
|.

This case is handled in the analogous way to Case 2 of the initial step—
except B1 is replaced by BJn , A1 is replaced by AJn , B2 is replaced by
BJn+1, and so on.
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Case 3: The ball BJn does not contain an accumulation point of gener-
ations up to gn − 1.

This case is handled in the analogous way to Case 3 of the initial step—
except B1 is replaced by BJn , A1 is replaced by AJn , B2 is replaced by BJn+1,
and so on. (Note that, as in Case 1 of the induction step, the two subcases
follow easily. For the first subcase, proceed as in Case 1 of the induction
step; for the second subcase, proceed as in Case 3 of the initial step.)

This completes the induction.

5.3. Finishing the proof for winning. Let x ∈ X. If E is an LE, let
pE be the accumulation point of E. The induction above shows that the set

BL(b) :=

{
x ∈ X

∣∣∣∣ x /∈ ⋃
m≥n

⋃
E∈Gm

(
pE , pE +

1

b
|E|
)

for some n = n(x) ∈ N

and x /∈
n−1⋃
m=0

⋃
E∈Gm

(pE , pE + c|E|) for some c = c(x) > 0

}
is (α, β)-winning. (Note that a given point x lies in at most two LEs of the
same generation. Therefore, for a fixed n(x) ∈ N, x lies in either n + 1 or
n+ 2 LEs of generations up to n.) Consequently, the set BL :=

⋃
a≥b BL(b)

is α-winning.

Now let x ∈ BL. Then x /∈
⋃
m≥0

⋃
E∈Gm

(pE , pE + c̃|E|) where c̃ :=
min{c, 1/a}. Thus, BL is contained in the set of numbers with bounded
Lüroth expansion. And the proof of the theorem for α-winning is complete.

Finally, note that accumulation points have two Lüroth expansions (us-
ing a slightly less strict algorithm than the one given in Section 1). One ex-
pansion is finite and the other has trailing digits 2—in either case, bounded.
Removing all accumulation points from BL, however, still results in an α-
winning set.

5.4. Proof for strong winning. Recall that we must find a winning
strategy for Player A. Therefore, we may and do constrain Player A’s choices
of radius size to be always equal to α times the radius of Player B’s current
ball. With this constraint, the preceding proof, without change, shows that
BL is α-strong winning.

6. Conclusion. In this section, we compare the result in this paper
to the second-named author’s result in [12], discuss infinite versus bounded
distortion, and suggest further applications of the technique in this paper.

6.1. Infinite versus finite element Markov partitions. To distin-
guish between the result in this paper and the work in Section 5 of [12], it
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helps to consider strings and their associated Markov partitions. The basic
idea is that the strings encode the motion of the associated dynamical sys-
tem (in our case the Lüroth map T ), and this encoding is established using
Markov partitions. In our case, the collection of Lüroth elements in G1 is a
natural choice for a Markov partition associated with T . In particular, G1

satisfies the definition of a Markov partition for T as stated in Section 2.1
of [12]—except that the cardinality of G1 is not finite, but infinite. Note also
that the definition of Rα for a (finite) string α and properties (2.6)–(2.13)
of [12] also hold for G1. (For completeness, the transition matrix for our T is
an infinite matrix of all 1’s in the letters N \ {1}.) Hence, G1 is an example
of an infinite element Markov partition, while the Markov partitions in [12]
are the usual (finite element) Markov partitions.

But, although G1 is an infinite element Markov partition, it is, perhaps,
the simplest example. It and its associated Lüroth expansions are the infinite
element analog of n-ary expansions where n > 1 is an integer. In this latter
case, we can take the simplest Markov partition of

{[
0, 1n

]
, . . . ,

[
n−1
n , 1

]}
. If,

further, we only ask to miss an open neighborhood with 0 as the left end-
point, then the proof in [12] greatly simplifies: the difficulty in that proof is
in dealing with missing a neighborhood of an arbitrary point and in deal-
ing with the nonlinearity of the dynamical system (6). Moreover, missing a
neighborhood of 0 for the n-ary expansion was already shown by Schmidt
in 1966 [8].

6.2. Infinite versus bounded distortion. What is different between
this infinite element Markov partition and the usual finite element Markov
partitions is distortion. In particular, finite element Markov partitions have
the bounded distortion property, or equivalently, have bounded distortion (in
the sense of Markov partitions), in that, over a fixed, finite window of gen-
erations, the ratio of length (or other relevant measure) of the element with
largest length to smallest length is finite (and this finite bound depends only
on the size of the window). Explicitly, the bounded distortion property is
the property given in Lemma 2.2 of [12]. Finite element Markov partitions
have this property (as the lemma asserts), while our infinite element Markov
partition clearly does not, even if the window is the smallest that it can be,
namely over the same generation (7). Thus, our dynamical system has infi-
nite distortion (in the sense of Markov partitions), while the ones considered
in [12] have bounded distortion. And this difference does not allow us to port

(6) As far as the authors know, the nonlinear case of this type of result in higher
dimensions is still open.

(7) It seems appropriate to refer to this property as infinite distortion, while leaving
unbounded distortion for the case where, as one slides the fixed window toward infinity,
the bound on distortion grows to infinity.
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the proofs from [12], even in the simplest case of missing an open neighbor-
hood with left endpoint 0—the infinite distortion, which manifests itself in
our notion of accumulation points for the Lüroth expansion, is a new source
of infinity and a new source of difficulties. But the infinite distortion is also
a new source of solutions, in that the accumulation points, which manifest
the infinite distortion, are also used, via the proofs of Lemma 5.1 and Corol-
lary 5.2, to our advantage because these points can be distinguished from
nonaccumulation points via the geometry of the expansion and the notion
of commensurate.

6.3. Further applications. We intend the proof in this paper to be a
model for applying Schmidt games to cases where infinite distortion exists.
These cases naturally occur in number theory and dynamical systems, espe-
cially in other types of expansions. Many further applications are possible.

We mention one such application. The continued fraction expansion is
the most natural expansion because it leads to notions of best approxima-
tions—the applications of continued fractions are far-reaching and impor-
tant. Like for its variant the Lüroth expansion, the digits of the continued
fraction expansion are generated by a dynamical system, in this case the
well-known Gauss map, which is a system where infinite distortion exists,
much like our map T . Applying our proof technique, but modifying it to
handle the fact that accumulation points for the Gauss map alternate be-
tween left and right endpoints of the “Gauss elements” for odd and even
generation numbers, should lead to another proof that the set of real num-
bers with bounded continued fraction expansion or, equivalently, the set of
badly approximable numbers is winning. The two known proofs are based
on the repulsion of the elements of a Farey sequence for fixed denomina-
tors [8], which is a number-theoretic proof, and on bounded orbits under
the geodesic flow in the space of unimodular lattices [4], which is a dynami-
cal proof. The proof involving the flow, however, is not the most elementary
dynamical proof because the geodesic flow can be regarded as a suspen-
sion of the Gauss map and thus is not the dynamical system which defines
the continued fraction expansion, but an induced system. A proof adapting
our technique in this paper would just involve the Gauss map and be an
elementary dynamical proof.
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