Wronskien et équations différentielles p-adiques

par

JEAN-PAUL BÉZIVIN (Ivry-sur-Seine)

1. Introduction et résultats. Soit p un nombre premier. Nous notons \mathbb{Q}_p le corps des nombres p-adiques, et \mathbb{C}_p un complété d'une clôture algébrique de \mathbb{Q}_p , que l'on munit de la valeur absolue p-adique usuelle.

Nous allons dans la première partie de cet article considérer des propriétés des wronskiens généralisés de séries entières p-adiques (voir les définitions plus bas), en particulier nous allons montrer un résultat liant la croissance d'un wronskien généralisé à la croissance du wronskien ordinaire de m séries entières p-adiques (cf. le théorème 2.1). Comme application, on montre que si le wronskien ordinaire de m fonctions entières p-adiques f_1, \ldots, f_m est un polynôme non nul, alors toutes les fonctions f_k sont des polynômes (cf. le théorème 2.4). Ce résultat a son origine dans [4], et a été utilisé dans le cas m=2 dans [1] pour traiter un cas particulier du probléme ouvert de savoir si la dérivée d'une fonction méromorphe dans tout \mathbb{C}_p , qui n'est pas une fraction rationnelle, a toujours une infinité de zéros.

Dans une seconde partie de cet article nous allons considérer, comme application, des propriétés de fonctions entières et méromorphes p-adiques qui vérifient des équations différentielles à coefficients polynômes.

Nous rappellerons les résultats connus et nous démontrerons que si une équation différentielle linéaire à coefficients polynômes a un système complet de solutions méromorphes dans tout \mathbb{C}_p , alors toutes ses solutions sont des fractions rationnelles (cf. le théorème 3.4).

Dans une troisième partie, nous allons considérer des équations différentielles à coefficients dans $\mathbb{Q}[x]$. On peut alors regarder leurs solutions dans \mathbb{C}_p pour différents nombres premiers p. Nous montrerons que si, pour une infinité de nombres premiers p, une telle équation différentielle (E) a un système complet de solutions fonctions méromorphes linéairement indépendantes dans un disque ouvert de centre 0, de rayon strictement supérieur à 1

²⁰¹⁰ Mathematics Subject Classification: Primary 12H25; Secondary 11S80. Key words and phrases: Wronskian, p-adic differential equation.

dans \mathbb{C}_p , alors toutes les solutions de (E) sont des fractions rationnelles (cf. le théorème 4.6).

2. Wronskiens généralisés. Dans toute cette partie, le nombre premier p est fixé. On rappelle que pour une série entière $f(x) = \sum_{n\geq 0} a_n x^n$ convergente pour $x \in \mathbb{C}_p$, $|x| < \rho$ (avec $\rho > 0$), on note, pour $R \in]0, \rho[$, $|f|(R) = \max\{|a_n|R^n\}$, et que l'application $f \mapsto |f|(R)$ est une norme ultramétrique sur l'espace des séries entières de rayon de convergence au moins ρ , qui de plus est multiplicative, ce qui permet d'étendre la notation au cas des fonctions méromorphes dans le disque $D(0, \rho)$. D'autre part, pour toute fonction méromorphe dans le disque $D(0, \rho)$, on a pour $R \in]0, \rho[$ l'inégalité $|f'|(R) \leq |f|(R)/R$.

Nous allons avoir besoin d'un résultat sur le wronskien de séries entières, ainsi que de quelques notations supplémentaires.

Soient f_1, \ldots, f_m m séries entières à coefficients dans \mathbb{C}_p , et n_1, \ldots, n_m des entiers naturels. Nous posons $\underline{f} = (f_1, \ldots, f_m)$ et $\underline{n} = (n_1, \ldots, n_m)$. Nous appellerons wronskien généralisé et nous noterons $w(f, \underline{n})$ le déterminant

$$w(\underline{f},\underline{n}) = \begin{vmatrix} f_1^{(n_1)} & \dots & f_1^{(n_m)} \\ f_2^{(n_1)} & \dots & f_2^{(n_m)} \\ \dots & \dots & \dots \\ f_m^{(n_1)} & \dots & f_m^{(n_m)} \end{vmatrix}.$$

Dans le cas m=1, on a $w(\underline{f},\underline{n})=f_1^{(n_1)}$. Comme cas particulier, le wronskien "ordinaire" des m fonctions f_1,\ldots,f_m (que nous appellerons simplement "wronskien") est $w(\underline{f},\underline{q})$, où $f=(f_1,\cdots,f_m)$ et $q=(0,\ldots,m-1)$:

$$w(\underline{f},\underline{q}) = \begin{vmatrix} f_1 & \cdots & f_1^{(m-1)} \\ f_2 & \cdots & f_2^{(m-1)} \\ \vdots & \vdots & \ddots & \vdots \\ f_m & \cdots & f_m^{(m-1)} \end{vmatrix}$$

et $w(f,q) = f_1 \text{ si } m = 1.$

Le premier résultat, qui sera à la base de tous les résultats démontrés dans ce papier, est le suivant :

THÉORÈME 2.1. Soient f_1, \ldots, f_m des séries entières à coefficients dans \mathbb{C}_p , de rayon de convergence au moins $\rho > 0$, et n_1, \ldots, n_m des entiers naturels, $\underline{f} = (f_1, \ldots, f_m)$, $\underline{n} = (n_1, \ldots, n_m)$ et $\underline{q} = (0, \ldots, m-1)$. On a alors pour tout $R \in]0, \rho[$ l'inégalité

$$|w(\underline{f},\underline{n})|(R) \le \frac{|w(\underline{f},\underline{q})|(R)}{R^{(n_1+\cdots+n_m)-m(m-1)/2}}.$$

Démonstration. Dans toute la suite, le réel R appartient à $]0, \rho[$.

Le cas m=1. On itère l'inégalité $|f'|(R) \leq |f|(R)/R$, il n'y a pas de difficultés.

Le cas m=2. Soient donc f_1, f_2 deux séries entières dans \mathbb{C}_p (que l'on peut supposer, pour démontrer l'assertion, linéairement indépendantes sur \mathbb{C}_p), de rayon de convergence au moins ρ . On regarde l'équation différentielle vérifiée par ces deux fonctions, qui est

(E)
$$\begin{vmatrix} y & y' & y'' \\ f_1 & f_1' & f_1'' \\ f_2 & f_2' & f_2'' \end{vmatrix} = 0.$$

Elle s'écrit aussi sous la forme $B_2(x)y''(x) + B_1(x)y'(x) + B_0(x)y(x) = 0$, avec pour $\underline{f} = (f_1, f_2), \underline{q_2} = (0, 1), \underline{q_1} = (0, 2)$ et $\underline{q_0} = (1, 2)$, les égalités $B_2(x) = w(\underline{f}, \underline{q_2}), B_1 = -w(\underline{f}, \underline{q_1})$ (on voit que $-B_1$ est la dérivée de B_2), et $B_0 = w(\underline{f}, q_0)$.

On a la relation $|B_1|(R) \leq |B_2|(R)/R$ du fait que $-B_1$ est la dérivée de B_2 . En exprimant que f_1 est solution de l'équation différentielle (E), on trouve que

$$B_0 = -B_2(x)\frac{f_1''(x)}{f_1(x)} - B_1(x)\frac{f_1'(x)}{f_1(x)}.$$

Il en résulte immédiatement que $|B_0|(R) \le |B_2|(R)/R^2$.

On écrit maintenant l'équation différentielle sous la forme suivante :

(F)
$$y''(x) = A_1(x)y'(x) + A_0(x)y(x)$$

avec $A_1(x) = -B_1(x)/B_2(x)$, $A_0(x) = -B_0(x)/B_2(x)$. Ce qui précède montre que $|A_1|(R) \le 1/R$ et $|A_0|(R) \le 1/R^2$ pour R > 0.

On exprime la dérivée n-ième d'une solution y de (F) sous la forme

$$y^{(n)}(x) = A_{1,n}(x)y'(x) + A_{0,n}(x)y(x).$$

On a les relations de récurrence suivantes :

$$A_{1,n+1} = A'_{1,n} + A_{1,n}A_1 + A_{0,n}$$
 et $A_{0,n+1} = A'_{0,n} + A_{1,n}A_0$.

Montrons que $|A_{1,n}|(R) \leq 1/R^{n-1}$ et $|A_{0,n}|(R) \leq 1/R^n$ pour $n \geq 0$ et $R \in]0, \rho[$. En effet, c'est vrai pour n = 0, car $A_{0,0} = 1$ et $A_{1,0} = 0$, pour n = 1 car $A_{1,1} = 1$ et $A_{0,1} = 0$, et pour n = 2 car $A_{1,2} = A_1$ et $A_{0,2} = A_0$. Ensuite une récurrence facile utilisant les formules de récurrence démontre l'assertion.

On a maintenant la formule matricielle suivante :

$$\begin{pmatrix} f_1^{(n_1)} & f_1^{(n_2)} \\ f_2^{(n_1)} & f_2^{(n_2)} \end{pmatrix} = \begin{pmatrix} f_1 & f_1' \\ f_2 & f_2' \end{pmatrix} \begin{pmatrix} A_{0,n_1} & A_{0,n_2} \\ A_{1,n_1} & A_{1,n_2} \end{pmatrix},$$

ce qui en prenant le déterminant donne avec les notations $\underline{f} = (f_1, f_2)$, $\underline{n} = (n_1, n_2)$ et $q_2 = (0, 1)$ la formule

$$w(\underline{f},\underline{n}) = (A_{0,n_1}A_{1,n_2} - A_{0,n_2}A_{1,n_1})w(\underline{f},\underline{q_2}).$$

Une majoration immédiate du terme $A_{0,n_1}A_{1,n_2} - A_{0,n_2}A_{1,n_1}$ donne comme majorant $1/R^{n_1+n_2-1}$, ce qui termine la démonstration dans ce cas m=2.

Le cas général. Pour prouver le cas général, nous procédons maintenant par récurrence sur m. Nous supposons donc le résultat acquis pour $k \leq m$ séries entières, et des indices quelconques. Nous nous donnons maintenant m+1 séries entières f_1, \ldots, f_{m+1} , des entiers n_1, \ldots, n_{m+1} , nous posons $\underline{f} = (f_1, \ldots, f_{m+1}), \underline{n} = (n_1, \ldots, n_{m+1}), \underline{q} = (0, \ldots, m)$ et il nous faut donc démontrer que

$$|w(\underline{f},\underline{n})|(R) \le \frac{|w(\underline{f},\underline{q})|(R)}{R^{(n_1+\cdots+n_{m+1})-m(m+1)/2}}.$$

On peut sans perte de généralité supposer que f_1, \ldots, f_{m+1} sont linéairement indépendantes sur \mathbb{C}_p . Nous allons suivre essentiellement le schéma de démonstration du cas m=2.

Pour cela, nous écrivons l'équation différentielle vérifiée par les fonctions f_j :

(E)
$$\begin{vmatrix} y & y' & \cdots & y^{(m+1)} \\ f_1 & f'_1 & \cdots & f_1^{(m+1)} \\ \vdots & \vdots & \ddots & \vdots \\ f_{m+1} & f'_{m+1} & \cdots & f_{m+1}^{(m+1)} \end{vmatrix} = 0.$$

Cette équation s'écrit sous la forme

$$B_{m+1}y^{(m+1)} + \dots + B_0y = 0$$

où, en notant $\underline{n}_j = (0, \dots, \widehat{j}, \dots, m+1)$ (où le terme \widehat{j} est omis, \underline{n}_j est donc un m+1-uplet) on a au signe près $B_j = w(\underline{f}, \underline{n}_j)$, avec en particulier $B_{m+1} = w(f, q)$.

Nous allons démontrer que l'on a tout d'abord

$$|B_j|(R) \le |B_{m+1}|(R)/R^{m+1-j}$$
 pour $R > 0$ et $j = 0, \dots, m+1$.

C'est évidemment vrai si j=m+1. Pour j=m, on voit sans peine que B_m est au signe près la dérivée de B_{m+1} , de sorte que $|B_m|(R) \leq |B_{m+1}|(R)/R$. On procède ensuite par récurrence descendante finie sur l'indice k pour montrer l'assertion pour $k \geq 1$: On suppose le résultat acquis pour m+1, $m, \ldots, k+1$, et on le montre pour $k \geq 1$ (on peut supposer que $k \leq m-1$).

On utilise l'équation (E), on écrit qu'elle est vérifiée pour f_1, \ldots, f_{k+1} . On note E_j le premier membre de (E) où l'on a remplacé y par f_j , on a donc $E_j = 0$. On considère ensuite le déterminant $(k+1) \times (k+1)$ ayant pour première ligne $E_1, f_1, f'_1, \ldots, f_1^{(k-1)}$, etc., et pour dernière ligne $E_{k+1}, f_{k+1}, f'_{k+1}, \ldots, f_{k+1}^{(k-1)}$.

Ce déterminant est évidemment nul, puisque sa première colonne est nulle. En développant la première colonne, on trouve que l'expression suivante est nulle :

$$(*) \qquad \sum_{l=k}^{m+1} B_l w(\underline{g_k}, \underline{n_{l,k}})$$

où on a noté $g_k = (f_1, \dots, f_{k+1}), n_{l,k} = (l, 0, \dots, k-1).$

En effet, les déterminants $w(\underline{g_k}, \underline{n_{l,k}})$ sont nuls si $l \leq k-1$, car ils ont deux colonnes égales.

On voit maintenant, puisque $k \leq m-1$, par l'hypothèse de récurrence sur m, que

$$|w(\underline{g_k}, \underline{n_{l,k}})|(R) \le \frac{|w(\underline{g_k}, \underline{q_k})|(R)}{R^{l+k(k-1)/2-k(k+1)/2}} = \frac{|w(\underline{g_k}, \underline{q_k})|(R)}{R^{l-k}}$$

avec $\underline{q_k} = (0, \dots, k)$.

D'autre part, on a $|B_l|(R) \leq |B_{m+1}|(R)/R^{m+1-l}$ pour $l \geq k+1$. On en déduit qu'à l'exception du premier terme de l'expression (*), tous ont leur fonction module maximal majorée par l'expression

$$\frac{|B_{m+1}|(R)}{R^{m+1-l}} \frac{|w(\underline{g_k}, \underline{q_k})|(R)}{R^{l-k}} = \frac{|B_{m+1}|(R)|w(\underline{g_k}, \underline{q_k})|(R)}{R^{m+1-k}}.$$

Donc il en est de même du premier terme $B_k w(\underline{g_k}, \underline{n_{k,k}})$ de (*), et en notant que $w(\underline{g_k}, \underline{n_{k,k}}) = \pm w(\underline{g_k}, \underline{q_k})$ et que $w(\underline{g_k}, \underline{q_k})$ est non nul, ceci prouve l'assertion.

Il reste à montrer le résultat pour k=0; pour cela on écrit que l'équation différentielle (E) est vérifiée par f_1 , on exprime B_0 en fonction de f_1 et de ses dérivées, et des B_k , $k \ge 1$, et l'inégalité à prouver en résulte.

On écrit maintenant (E) sous la forme

(E')
$$y^{(m+1)} = A_m y^{(m)} + \dots + A_0 y$$

avec $A_j = -B_j/B_{m+1}$. On voit donc d'après ce qui précède que les A_j sont des fonctions méromorphes dans le disque $D(0, \rho)$ de \mathbb{C}_p vérifiant $|A_j|(R) \le 1/R^{m+1-j}$.

En dérivant (E'), on trouve que l'on a l'expression

$$y^{(n)} = A_{m,n}y^{(m)} + \dots + A_{0,n}y$$

où les $A_{j,n}$ sont des fonctions méromorphes dans le disque $D(0,\rho)$ de \mathbb{C}_p , qui vérifient les relations

$$A_{j,n+1} = A'_{j,n} + A_{m,n}A_j + A_{j-1,n}$$

si $j \geq 1$, et

$$A_{0,n+1} = A'_{0,n} + A_{m,n}A_0$$

si j = 0.

Nous voulons maintenant démontrer que $|A_{j,n}|(R) \leq 1/R^{n-j}$ pour tout j et tout n. On vérifie que c'est vrai si $n \leq m$ (on a alors $A_{j,n} = 0$ si $j \neq n$, et 1 si j = n), c'est aussi vrai pour n = m + 1 par ce que l'on vient de montrer sur les A_j , et on procède par récurrence sur n.

Si on suppose le résultat acquis pour n, en tenant compte que pour une fonction méromorphe f, on a encore la formule $|f'|(R) \leq |f|(R)/R$, les relations liant les $A_{j,n+1}$ aux $A_{j,n}$ et aux A_j montrent le résultat, qui est donc vrai en toute généralité.

Nous passons maintenant à la dernière partie de la démonstration, en reprenant $f = (f_1, \ldots, f_{m+1}), \underline{n} = (n_1, \ldots, n_{m+1})$ et en posant $q = (0, \ldots, m)$.

On a la formule matricielle

$$\begin{pmatrix} f_1^{(n_1)} & \cdots & f_1^{(n_{m+1})} \\ \vdots & \vdots & \ddots & \vdots \\ f_{m+1}^{(n_1)} & \cdots & f_{m+1}^{(n_{m+1})} \end{pmatrix} = \begin{pmatrix} f_1 & \cdots & f_1^{(m)} \\ \vdots & \ddots & \vdots \\ f_{m+1} & \cdots & f_{m+1}^{(m)} \end{pmatrix} \begin{pmatrix} A_{0,n_1} & \cdots & A_{0,n_{m+1}} \\ \vdots & \ddots & \vdots \\ A_{m,n_1} & \cdots & A_{m,n_{m+1}} \end{pmatrix}$$

qui montre que si D est le déterminant de la matrice

$$M = \begin{pmatrix} A_{0,n_1} & \cdots & A_{0,n_{m+1}} \\ \cdots & \cdots & \cdots \\ A_{m,n_1} & \cdots & A_{m,n_{m+1}} \end{pmatrix},$$

on a la formule $w(f, \underline{n}) = Dw(f, q)$.

Si l'on note $a_{i,j} = A_{i-1,n_j}$, pour $1 \le i \le m+1$, $1 \le j \le m+1$, le déterminant D est une combinaison linéaire à coefficients ± 1 de termes de la forme $P = \prod_{i=1}^{m+1} a_{i,\sigma(i)}$, où σ parcourt les permutations de $\{1,\ldots,m+1\}$. Par ce qui précède, on a $|a_{i,j}|(R) \le 1/R^{n_j-(i-1)}$, ce qui donne $|P|(R) \le 1/R^{(n_1+\cdots+n_{m+1})-m(m+1)/2}$. On a donc la même majoration pour le déterminant D, ce qui termine la démonstration du théorème.

Le résultat s'étend à des fonctions méromorphes :

COROLLAIRE 2.2. Soient f_1, \ldots, f_m des fonctions méromorphes dans un disque $D(0, \rho)$ de \mathbb{C}_p , et n_1, \ldots, n_m des entiers naturels, $\underline{f} = (f_1, \ldots, f_m)$, $\underline{n} = (n_1, \ldots, n_m)$ et $\underline{q} = (0, \ldots, m-1)$. On a alors pour tout $R \in]0, \rho[$ l'inégalité

$$|w(\underline{f},\underline{n})|(R) \leq \frac{|w(\underline{f},\underline{q})|(R)}{R^{(n_1+\cdots+n_m)-m(m-1)/2}}.$$

Démonstration. Fixons $R \in]0, \rho[$, et soit $\rho^* \in]R, \rho[$. Il existe un polynôme P non nul tel que les $g_k = Pf_k$ soient des séries entières de rayon de convergence au moins ρ^* . Posons Q = 1/P, de sorte que $f_k = Qg_k$.

On montre sans peine que $w(\underline{f},\underline{q})=Q^mw(\underline{g},\underline{q}).$ On a maintenant pour $j\in\{1,\dots,m\}$ l'égalité

$$f_k^{(n_j)} = \sum_{l_i=0}^{n_j} \binom{n_j}{l_j} Q^{(n_j-l_j)} g_k^{(l_j)}.$$

On en déduit que

$$w(\underline{f},\underline{n}) = \sum_{l_1,\dots,l_m} \left(\prod_{j=1}^m \binom{n_j}{l_j} \prod_{j=1}^m Q^{(n_j-l_j)} \right) w(\underline{g},\underline{l})$$

où $\underline{l} = (l_1, \dots, l_m)$, et l_j varie entre 0 et n_j . On a

$$\left| \prod_{j=1}^{m} {n_j \choose l_j} \right| \le 1 \quad \text{et} \quad \left| \prod_{j=1}^{m} Q^{(n_j - l_j)} \right| (R) \le \frac{|Q|(R)^m}{R^{\sum n_j - \sum l_j}},$$

et puisque les g_k sont des séries entières de rayon de convergence au moins $\rho^* > R$, on a par le théorème 2.1 l'inégalité

$$|w(\underline{g},\underline{l})|(R) \le \frac{|w(\underline{g},\underline{q})|(R)}{R^{\sum l_j - m(m-1)/2}}.$$

Par suite,

$$\left| \left(\prod_{j=1}^{m} {n_j \choose l_j} \prod_{j=1}^{m} Q^{(n_j - l_j)} \right) w(\underline{g}, \underline{l}) \right| (R) \le \frac{|Q|(R)^m |w(\underline{g}, \underline{q})|(R)}{R^{\sum n_j - m(m-1)/2}}.$$

Comme $|w(f,\underline{n})|(R)$ est inférieur au maximum de ces quantités, on a

$$|w(\underline{f},\underline{n})|(R) \leq \frac{|Q|(R)^m|w(\underline{g},\underline{q})|(R)}{R^{\sum n_j - m(m-1)/2}} = \frac{|w(\underline{f},\underline{q})|(R)}{R^{(n_1 + \dots + n_m) - m(m-1)/2}}$$

puisque $w(\underline{f},\underline{q})=Q^mw(\underline{g},\underline{q}),$ ce qui termine la démonstration. lacktriangledown

On peut en déduire une propriété des wronskiens généralisés de polynômes :

COROLLAIRE 2.3. Soit $m \geq 1, P_1, \ldots, P_m$ des polynômes à coefficients dans un corps K de caractéristique nulle, et n_1, \ldots, n_m des entiers. On pose $\underline{P} = (P_1, \ldots, P_m), \ \underline{n} = (n_1, \ldots, n_m)$ et $\underline{q} = (0, \ldots, m-1)$. Soit d_1 le degré de $w(\underline{P}, \underline{q})$ et d_2 le degré de $w(\underline{P}, \underline{n})$ (avec la convention que le degré du polynôme nul est $-\infty$). On a alors l'inéqulité

$$d_2 \le d_1 - (n_1 + \dots + n_m) + m(m-1)/2.$$

 $D\acute{e}monstration$. Tout se passe dans un sous-corps L de K, extension de type fini de \mathbb{Q} . On peut supposer que L est un sous-corps d'un corps \mathbb{C}_p convenable, il suffit donc de montrer l'assertion quand $K = \mathbb{C}_p$. On peut aussi supposer que $w(\underline{P},\underline{n})$ et $w(\underline{P},\underline{q})$ sont non nuls, en notant que si $w(\underline{P},\underline{q})$ est nul, il en est de même de $w(\underline{P},\underline{n})$.

Soit R > 0 un réel assez grand pour que l'on ait $|w(\underline{P},\underline{n})|(R) = c_2 R^{d_2}$ et $|w(\underline{P},\underline{q})|(R) = c_1 R^{d_1}$ où c_1 et c_2 sont des constantes. Par le théorème 2.1, on a alors

$$|w(\underline{P},\underline{n})|(R) = c_2 R^{d_2} \le \frac{|w(\underline{P},\underline{q})|(R)}{R^{(n_1 + \dots + n_m) - m(m-1)/2}}$$
$$= c_1 R^{d_1 - (n_1 + \dots + n_m) + m(m-1)/2}$$

et l'inégalité demandée en résulte immédiatement.

THÉORÈME 2.4. Soient f_1, \ldots, f_m des fonctions entières sur \mathbb{C}_p ; on note $\underline{f} = (f_1, \ldots, f_m)$ et $\underline{q} = (0, \ldots, m-1)$. Si l'on suppose que le wronskien $\underline{w}(\underline{f}, \underline{q})$ de ces m fonctions est un polynôme non nul, alors toutes les fonctions f_k sont des polynômes.

 $D\acute{e}monstration.$ Nous allons encore faire une récurrence sur m, le cas de m=1 étant trivial.

Le cas où m=2. On suppose donc que le wronskien de f_1 et f_2 est un polynôme non nul Q. On commence par le cas où ce polynôme est une constante. On regarde alors l'équation vérifiée par f_1 et f_2 , qui est $B_2(x)y''(x) + B_1(x)y'(x) + B_0(x)y(x) = 0$, avec donc $B_2(x) = w(\underline{f},\underline{q}) = c \neq 0$. On a les estimations $|B_1|(R) \leq |B_2|(R)/R$ et $|B_0|(R) \leq |B_2|(R)/R^2$; par suite, comme leur module maximal tend vers 0 si R tend vers l'infini, les deux fonctions entières B_1 et B_0 sont nulles, l'équation est cy'' = 0, et f_1 et f_2 sont des polynômes.

On poursuit en faisant une récurrence sur le degré de Q; on suppose le résultat acquis quand le degré de Q est $\leq h$. Supposons maintenant que le degré de Q est h+1. Le wronskien de f_1' et de f_2' est (au signe près) B_0 , et compte tenu de la majoration $|B_0|(R) \leq |B_2|(R)/R^2$ et du théorème de Liouville p-adique, c'est un polynôme de degré $\leq h+1-2=h-1$. S'il est non nul, l'hypothèse de récurrence montre que f_1' et f_2' sont des polynômes, donc aussi f_1 et f_2 . S'il est nul, les fonctions f_1' et f_2' sont dépendantes, on peut supposer qu'il existe des constantes a,b telles que $f_2=af_1+b$, et on a $b\neq 0$ car f_1 et f_2 sont linéairement indépendantes. Alors le wronskien de f_1 et f_2 est au signe près bf_1' , c'est un polynôme, donc f_1' en est un aussi, et donc aussi f_1 , puis f_2 .

Le cas général de m fonctions. On commence par regarder le cas où le wronskien Q est une constante non nulle. On reprend l'équation différentielle vérifiée par les fonctions f_j sous la forme $B_m(x)y^{(m)}(x)+\cdots+B_0(x)y(x)$. Les coefficients B_j sont des wronskiens généralisés, et comme on l'a vu dans la preuve du théorème 2.1, on a les estimations $|B_j|(R) \leq |B_m|(R)/R^{m-j}$ pour tout j et pour R > 0. Comme les fonctions B_j s'expriment comme des polynômes en les fonctions f_k et leurs dérivées, ce sont des fonctions entières

dans \mathbb{C}_p ; comme B_m est une constante, en faisant tendre R vers l'infini, on voit que $|B_j|(R)$ tend vers 0 si R tend vers l'infini pour j < m. Donc $B_j = 0$ si j < m, l'équation différentielle s'écrit $cy^{(m)} = 0$, et toutes les fonctions f_j sont des polynômes.

On procède ensuite par récurrence sur le degré de Q. Supposons le résultat acquis si le degré de Q est $\leq h$, et considérons maintenant le cas où le degré de Q est h+1. Le wronskien généralisé $S=w(\underline{f},\underline{t})$, où $t=(1,\ldots,m)$ (qui est le wronskien des dérivées des f_k), vérifie par le théorème 2.1 l'estimation $|S|(R) \leq |Q|(R)/R^m$. Par suite, toujours par le théorème de Liouville p-adique, S est un polynôme de degré $\leq h+1-m < h$. Si ce polynôme est non nul, alors l'hypothèse de récurrence s'applique, et montre que les f'_k sont des polynômes, et c'est donc aussi le cas des f_k .

Si le polynôme S est nul, c'est que les dérivées des f_k sont dépendantes. Le rang r du système de fonctions f'_1, \ldots, f'_m est donc $\leq m-1$. On peut supposer que f'_1, \ldots, f'_r sont linéairement indépendantes. Alors toute dérivée f'_j s'exprime comme combinaison linéaire de f'_1, \ldots, f'_r , et il en résulte que toute fonction f_j est combinaison linéaire de f_1, \ldots, f_r et de la fonction constante et égale à 1. Le sous-espace vectoriel engendré par les fonctions f_1, \ldots, f_m , qui est de dimension m, est alors inclus dans le sous-espace vectoriel engendré par $f_1, \ldots, f_r, 1$, qui est de dimension $\leq r+1$. On en déduit que $r \geq m-1$, donc finalement r=m-1.

On peut donc supposer que f'_m s'exprime comme combinaison linéaire à coefficients dans \mathbb{C}_p des autres dérivées :

$$f'_m = a_1 f'_1 + \dots + a_{m-1} f'_{m-1},$$

et que f_1',\dots,f_{m-1}' sont linéairement indépendantes. On en conclut que

$$f_m = a_1 f_1 + \dots + a_{m-1} f_{m-1} + b,$$

où la constante b est non nulle puisque les f_k sont linéairement indépendantes. On voit alors facilement que le wronskien de f_1, \ldots, f_m est égal (au signe près) à b multiplié par le wronskien de f'_1, \ldots, f'_{m-1} . Par suite, ce dernier est un polynôme non nul, et l'hypothèse de récurrence (sur m) montre que tous les f'_k , $1 \le k \le m-1$, sont des polynômes, donc aussi les f_k , $k=1,\ldots,m-1$, c'est donc le cas aussi pour f_m , ce qui termine la démonstration. \blacksquare

REMARQUE 2.5. (1) Le résultat n'est plus vrai dans le cas où le corps de base est \mathbb{C} . En effet, dans le cas de deux fonctions, si l'on considère les fonctions entières $f_1(x) = Q_1(x) \exp(x)$ et $f_2(x) = Q_2(x) \exp(-x)$ avec Q_1 et Q_2 polynômes non nuls, le wronskien de f_1 et f_2 est $2Q_1(x)Q_2(x) = P(x)$, polynôme non nul. Mais f_1 et f_2 ne sont pas des polynômes.

(2) Cela ne marche plus avec des fonctions méromorphes à la place de fonctions entières. En effet, soit g une fonction entière non nulle quelconque,

et h une primitive de $g(x)^2$. On pose $f_1 = h/g$ et $f_2 = 1/g$. On a alors $f'_1 = (h'g - g'h)/g^2$, et $f'_2 = -g'/g^2$, donc

$$f_1'f_2 - f_1f_2' = \frac{h'}{q^2} = 1.$$

Comme la fonction g est arbitraire, dans le cas méromorphe, le fait que le wronskien soit constant n'implique pas que les fonctions soient des fractions rationnelles.

3. Équations différentielles avec des solutions méromorphes dans \mathbb{C}_p tout entier. Il est connu que si une fonction f, méromorphe dans tout \mathbb{C}_p , vérifie une équation différentielle linéaire à coefficients polynômes de $\overline{\mathbb{Q}}[x]$, alors f est une fraction rationnelle :

THÉORÈME 3.1 (voir [2]). Soit $s \ge 1$, et P_k , $k = 0, \ldots, s$, des polynômes à coefficients dans $\overline{\mathbb{Q}}$, avec P_s non nul. Soit f une solution méromorphe dans \mathbb{C}_p de l'équation différentielle

$$P_s(x)y^{(s)}(x) + \dots + P_0(x)y(x) = 0.$$

Alors f est une fraction rationnelle.

Par contre, si l'on n'impose plus la condition sur les coefficients de l'équation différentielle d'appartenir à $\overline{\mathbb{Q}}[x]$, alors il existe des telles fonctions transcendantes :

Théorème 3.2 (voir [3, Theorem B]). Il existe des solutions entières transcendantes d'équations différentielles linéaires p-adiques à coefficients polynômes.

Notre but est de démontrer un résultat sur des fonctions méromorphes; nous commençons par le démontrer dans le cas où les fonctions sont entières, autrement dit la proposition suivante :

PROPOSITION 3.3. Soit $s \geq 1$, et P_0, P_1, \ldots, P_s des polynômes à coefficients dans \mathbb{C}_p , avec P_s non nul. Si l'équation différentielle

(E)
$$P_s(x)y^{(s)}(x) + \dots + P_0(x)y(x) = 0$$

a un système complet de solutions qui sont des fonctions entières dans \mathbb{C}_p , alors toutes les solutions de (E) sont des polynômes.

Démonstration. Soit W le wronskien des solutions données f_1, \ldots, f_s , entières et constituant une base de l'espace des solutions. La fonction W est donc une fonction entière non nulle.

Un calcul immédiat donne que la dérivée de W vérifie $P_sW'+P_{s-1}W=0$.

Si $P_{s-1} = 0$, on trouve W constante non nulle, et tous les f_k sont des polynômes d'après le théorème 2.4. On suppose donc dans la suite que P_{s-1} est non nul.

Soit T la fraction rationnelle $T = -P_{s-1}/P_s = W'/W$, qui est non nulle. En prenant le module maximum, on trouve que $|T|(R) \le 1/R$; il en résulte que T possède des pôles, car autrement T serait un polynôme, donc nul par l'inégalité précèdente, et on vient d'exclure ce cas. Dans la décomposition en éléments simples de T, il n'y a donc pas de partie entière. Comme elle est égale à W'/W avec W non nulle, ses pôles sont tous simples, avec résidus dans \mathbb{N} . Il en résulte immédiatement que T s'écrit S'/S, où S est un polynôme. Par suite W est un multiple de S, donc un polynôme.

Le théorème 2.4 montre alors que tous les f_k sont des polynômes, ce qui termine la démonstration. \blacksquare

Nous allons maintenant démontrer le résultat principal de cette partie :

Théorème 3.4. Soit $s \geq 1$, et P_0, P_1, \ldots, P_s des polynômes à coefficients dans \mathbb{C}_p , avec P_s non nul. Si l'équation différentielle

(E)
$$P_s(x)y^{(s)}(x) + \dots + P_0(x)y(x) = 0$$

a un système complet de solutions qui sont des fonctions méromorphes dans \mathbb{C}_p , alors toutes les solutions de (E) sont des fractions rationnelles.

Démonstration. Soit y une solution méromorphe de l'équation différentielle (E). Si ω est un pôle de y qui n'est pas un zéro de P_s , un petit coup d'oeil sur le développement de Laurent de y en ω donne une contradiction. Donc tous les pôles de y sont des zéros de P_s , et par suite sont en nombre fini.

Soient f_1, \ldots, f_s les solutions méromorphes linéairement indépendantes de (E). D'après ce qui précède, il existe un polynôme Q non nul tel que les fonctions $g_j(x) = Q(x)f_j(x)$ soient des fonctions entières. Comme les fonctions g_j sont linéairement indépendantes, et vérifient clairement une équation différentielle d'ordre s à coefficients polynômes, ce sont des polynômes par la proposition 3.3. Il en résulte que les f_j sont des fractions rationnelles, ce qui termine la démonstration.

4. Équations différentielles à coefficients dans $\mathbb{Q}[x]$. Nous allons commencer par un résultat en supposant que les solutions sont des séries entières de rayon de convergence strictement supérieur à 1 :

PROPOSITION 4.1. Soit $s \geq 2$, et P_k , k = 0, ..., s, s + 1, polynômes à coefficients dans \mathbb{Q} , avec P_s non nul. On considère l'équation différentielle

(E_s)
$$P_s(x)y^{(s)}(x) + \dots + P_0(x)y(x) = 0.$$

On suppose sans perte de généralité que les polynômes P_k sont premiers entre eux, et que P_s est unitaire.

On fait l'hypothèse qu'il existe un ensemble infini F de nombres premiers p tels que, pour $p \in F$, (E_s) a s solutions séries formelles $y_{k,p}$ à coefficients

dans \mathbb{C}_p , dont le rayon de convergence est strictement supérieur à 1, et linéairement indépendantes sur \mathbb{C}_p .

Alors toutes les solutions de (E_s) sont des polynômes.

Pour la démonstration nous aurons besoin de plusieurs lemmes. Dans toute cette partie, on se donne un entier $s \geq 1$, et une équation (E_s) vérifiant les hypothèses de la proposition 4.1. Si Q est un polynôme, on note d(Q) son degré.

Lemme 4.2. On se place sous les hypothèses de la proposition 4.1. On suppose P_0 non nul. Une équation vérifiée par les dérivées des solutions de (E_s) est de la forme

$$Q_s(x)z^{(s)}(x) + Q_{s-1}z^{(s-1)}(x) + \dots + Q_0(x)z(x) = 0$$

avec $Q_s(x)=P_0(x)P_s(x)$, et $Q_k(x)=-[P_0'P_{k+1}-P_0P_{k+1}'-P_0P_k]$ pour $0\leq k\leq s-1$. Dans le cas où P_0 est nul, cette équation est

$$P_s(x)z^{(s-1)} + \dots + P_1(x)z(x) = 0.$$

 $D\acute{e}monstration.$ L'assertion est claire si P_0 est nul. Dans le cas contraire, on écrit

$$y^{(s)} = -\sum_{k=0}^{s-1} \frac{P_k}{P_s} y^{(k)}$$

et on dérive, d'où

$$y^{(s+1)} = -\sum_{k=0}^{s-1} \frac{P_k' P_s - P_k P_s'}{P_s^2} y^{(k)} - \sum_{k=0}^{s-1} \frac{P_k}{P_s} y^{(k+1)}.$$

On a aussi, puisque P_0 est non nul,

$$y = -\sum_{j=1}^{s} \frac{P_j}{P_0} y^{(j)}.$$

On remplace dans la première égalité le terme y, qui n'apparaît que dans la première expression, par cette égalité, et l'on trouve

$$y^{(s+1)} = \sum_{k=1}^{s} B_k y^{(k)}$$

avec $B_k = (P_0'P_k - P_0P_k' - P_0P_{k-1})/P_0P_s$ pour $1 \le k \le s$; on multiplie par P_0P_s pour trouver une équation différentielle à coefficients dans $\mathbb{Q}[x]$.

LEMME 4.3. On se place sous les hypothèses de la proposition 4.1. Soit $p \in F$. Notons $\underline{y_p} = (y_{1,p}, \dots, y_{s,p})$, et $\underline{n_k} = (0, \dots, \widehat{k}, \dots, s)$ pour $0 \le k \le s$. On a pour tout k l'égalité

$$w(y_p, \underline{n_s})P_k = \varepsilon_k w(y_p, \underline{n_k})P_s$$

avec $\varepsilon_k = (-1)^k$.

 $D\acute{e}monstration.$ Une autre équation différentielle vérifiée par les solutions $y_{k,p}$ est

$$w(\underline{y_p},\underline{n_s})y^{(s)}(x) + \dots + \varepsilon_k w(\underline{y_p},\underline{n_k})y^{(k)}(x) + \dots + \varepsilon_0 w(\underline{y_p},\underline{n_0})y(x) = 0.$$

On fait la différence entre l'équation différentielle (E_s) que l'on multiplie par $w(\underline{y_p},\underline{n_s})$ et l'équation précédente multipliée par P_s , ce qui permet de trouver une équation différentielle d'ordre $\leq s-1$ vérifiée par les $y_{k,p},\ 1\leq k\leq s$. Cette équation différentielle a donc tous ses coefficients nuls. On en déduit que l'on a pour tout k l'égalité

$$w(\underline{y_p}, \underline{n_s})P_k = \varepsilon_k w(\underline{y_p}, \underline{n_k})P_s$$

avec $\varepsilon_k = (-1)^{s-k}$.

LEMME 4.4. On se place sous les hypothèses de la proposition 4.1. Il existe deux polynômes A et S dans $\mathbb{Q}[x]$, unitaires, tels que $A(x) = S(x)P_s(x)$, vérifiant les conditions suivantes :

Soit $p \in F$. Notons $\underline{y_p} = (y_{1,p}, \dots, y_{s,p})$ et $\underline{n_k} = (0, \dots, \widehat{k}, \dots, s)$ pour $0 \le k \le s$. On a pour tout k la relation $w(\underline{y_p}, \underline{n_k})(x) = \varepsilon_k \mu_p S(x) P_k(x)$ avec $\varepsilon_k = (-1)^{s-k}$ et μ_p constante non nulle dans \mathbb{C}_p . En particulier, le wronskien $w_p = w(y_p, \underline{n_s})$ des $y_{k,p}$ est égal à $\mu_p S(x) P_s(x) = \mu_p A(x)$.

Démonstration. On commence par prendre un $p \in F$, que nous allons particulariser plus tard.

Tout d'abord, le déterminant d'ordre s dont la ligne d'indice j est $(\sum_{k=0}^s P_k(x) y_{j,p}^{(k)}(x), y_{j,p}, y_{j,p}', \dots, y_{j,p}^{(s-2)})$ est nul, puisqu'il a sa première colonne nulle. Par suite, en développant et en notant $\underline{t_{s-1}} = (s-1,0,\dots,s-2)$ et $t_s = (s,0,\dots,s-2)$, on a

$$P_{s-1}(x)w(y_p, t_{s-1}) + P_s(x)w(y_p, t_s) = 0$$

ou encore $w_p P_{s-1} + P_s w_p' = 0$ avec $w_p = w(\underline{y_p}, \underline{n_s})$. Soit $T = -P_{s-1}/P_s$, on a donc $w_p'/w_p = T$.

Nous voulons montrer tout d'abord que $w_p = \mu_p A$, où μ_p est une constante dans \mathbb{C}_p , non nulle, et A un polynôme unitaire à coefficients dans \mathbb{Q} , indépendant de $p \in F$.

Si $P_{s-1}=0$, on a ce résultat avec A=1. On suppose donc dans la suite que $P_{s-1}\neq 0$.

On choisit $p \in F$ assez grand de sorte que pour $R \in]1, \rho[$ on ait $|T|(R) = R^{d(P_{s-1})-d(P_s)}$, où $d(P_{s-1})$ et $d(P_s)$ sont les degrés de P_{s-1} et P_s . L'égalité $w_p'/w_p = T$ montre que $|T|(R) \le 1/R$, d'où $d(P_{s-1}) \le d(P_s) - 1$.

Donc T n'est pas un polynôme, et sa décomposition en éléments simples dans $\overline{\mathbb{Q}}$ s'écrit

$$T = \sum_{\omega} \sum_{j=1}^{n_{\omega}} \frac{\lambda_{j,\omega}}{(x-\omega)^j}$$

où tous les coefficients qui interviennent sont dans $\overline{\mathbb{Q}}$. On peut trouver un nombre premier $p \in F$ assez grand tel que les ω soient non nuls, et les autres coefficients non nuls soient tous de module 1 dans \mathbb{C}_p .

Comme w_p'/w_p a tous ses pôles simples, de résidus dans \mathbb{N}^* , on en déduit que

$$T = \sum_{\omega} \frac{n_{\omega}}{x - \omega} = \frac{A'}{A}$$
 avec $A = \prod (x - \omega)^{n_{\omega}}$.

La construction montre que $A \in \overline{\mathbb{Q}}[x]$. Soit \mathbb{K} un corps de nombres contenant tous les ω , et soit σ dans le groupe de Galois de \mathbb{K} sur \mathbb{Q} . Si on note A_{σ} l'image par σ de A, on a encore l'égalité $-P_{s-1}/P_s = A'_{\sigma}/A_{\sigma}$, ce qui montre que A_{σ} est un multiple scalaire de A. Mais A et A_{σ} sont unitaires, donc ils sont égaux, et $A \in \mathbb{Q}[x]$. On note de plus que comme A est l'unique polynôme unitaire à coefficients dans \mathbb{Q} tel que $-P_{s-1}/P_s = A'/A$, il est indépendant de $p \in F$.

Notons maintenant que si on prend p de nouveau quelconque dans F, on a $w_p'/w_p = A'/A$, d'où on déduit qu'il existe $\mu_p \in \mathbb{C}_p$ tel que $w_p = \mu_p A$, et μ_p est non nul, puisque w_p est non nul.

On reprend maintenant les égalités obtenues dans le lemme 4.3 : pour un entier k on a

$$w(\underline{y_p},\underline{n_s})P_k = \varepsilon_k w(\underline{y_p},\underline{n_k})P_s.$$

Donc $\mu_p A P_k = \varepsilon_k w(y_p, \underline{n_k}) P_s$. Par suite, la fraction rationnelle $A P_k / P_s$ est développable en série entière de rayon de convergence > 1. On particularise de nouveau $p \in F$, en le choisissant assez grand de façon que tous les zéros de P_s soient de module ≤ 1 . Un zéro ω de P_s apparaît donc dans P_s avec une multiplicité inférieure ou égale à celle avec laquelle il apparaît dans $A P_k$. Comme les P_k , $0 \leq k \leq s$, sont premiers entre eux, il existe k tel que $P_k(\omega)$ soit non nul; la multiplicité de ω dans P_s est donc inférieure ou égale à la multiplicité de ω dans A, et on a montré que P_s divise A, et bien sûr cette propriété est vraie dans $\mathbb{Q}[x]$. On peut donc poser $A(x) = S(x)P_s(x)$, où S est un polynôme unitaire à coefficients dans \mathbb{Q} , indépendant comme P_s et A de $p \in F$. Si on reprend maintenant un p quelconque appartenant à F, l'égalité $\mu_p A(x)P_k(x) = \varepsilon_k w(\underline{y_p},\underline{n_k})(x)P_s(x)$ donne alors $\mu_p S(x)P_s(x)P_k(x) = \varepsilon_k w(\underline{y_p},\underline{n_k})(x)P_s(x)$, et donc finalement $\varepsilon_k \mu_p S(x)P_k(x) = w(y_p,n_k)(x)$.

Démonstration de la proposition 4.1. Nous allons procéder par récurrence sur l'ordre s de l'équation différentielle.

Supposons tout d'abord que l'ordre est égal à 1. On laisse le lecteur constater que l'on a prouvé l'assertion dans le début de la preuve du lemme 4.4.

Nous supposons maintenant acquis le cas d'une équation d'ordre $\leq s-1$, et nous montrons l'assertion pour l'ordre s.

Supposons tout d'abord que $P_0=0$. Dans ce cas, comme on l'a vu dans le lemme 4.2, on dispose d'une équation (H) d'ordre s-1 qui est vérifiée par les dérivées des solutions de l'équation (E_s). Pour $p \in F$, soit r le rang de la famille $y'_{p,k}$; on a donc $r \leq s-1$, on peut supposer que les $y'_{p,k}$, $1 \leq k \leq r$, sont linéairement indépendantes. Tout $y'_{p,k}$ est combinaison linéaire de ces r fonctions, on en déduit que tout $y_{p,k}$ est combinaison linéaire des $y_{p,k}$, $1 \leq k \leq r$, et de la série constante égale à 1, et comme le sous-espace vectoriel engendré par les $y_{k,p}$, $1 \leq k \leq s$, et de dimension s, on a $r+1 \geq s$, donc r=s-1. Par suite, pour tout $p \in F$, l'équation différentielle (H) d'ordre s-1 possède un système complet de solutions séries entières à coefficients dans \mathbb{C}_p de rayon de convergence s-1. Par l'hypothèse de récurrence, toute solution de (H) est un polynôme, donc aussi toute solution de (E_s).

On peut donc supposer que $P_0 \neq 0$. Dans ce cas, le lemme 4.2 fournit une équation différentielle d'ordre s (parce que le coefficient de $z^{(s)}$ est $P_0P_s \neq 0$), vérifiée par les dérivées des solutions de (E_s) . On peut normaliser cette équation en supposant que ses polynômes coefficients sont premiers entre eux, et que le polynôme coefficient de $z^{(s)}$ est unitaire. On l'écrit

(E_{s,1})
$$P_{s,1}(x)z^{(s)}(x) + \dots + P_{0,1}(x)z(x) = 0.$$

Si $P_{0,1}$ est non nul, on peut répéter l'opération. Nous voulons montrer que l'on ne peut faire cela indéfiniment; pour cela, nous raisonnons par l'absurde. On suppose donc que pour tout $h \geq 0$, une équation vérifiée par les dérivées h-ièmes des solutions de l'équation (E_s) est de la forme

(E_{s,h})
$$P_{s,h}(x)z^{(s)}(x) + \dots + P_{0,h}(x)z(x) = 0$$

avec les propriétés que $P_{s,h}$ est unitaire (donc non nul), $P_{0,h}$ non nul et les $P_{k,h}$ ($0 \le k \le s$) premiers entre eux.

Il en résulte que pour h quelconque et $p \in F$, les $y_{p,k}^{(h)}$, $1 \le k \le s$, sont linéairement indépendants sur \mathbb{C}_p . En effet, sinon, soit $h_0 \ge 1$ le plus petit entier tel que les $y_{p,k}^{(h)}$ soient dépendants; alors on voit comme on l'a déjà rencontré que la constante 1 est solution de l'équation (\mathbb{E}_{s,h_0-1}) , donc $P_{0,h_0-1} = 0$, contrairement à l'hypothèse faite.

On peut alors appliquer le lemme 4.4 pour l'équation $(E_{s,h})$. Il existe donc des polynômes unitaires à coefficients dans \mathbb{Q} , $A_h(x)$, $S_h(x)$, tels que $A_h(x) = S_h(x)P_{s,h}(x)$, et que pour tout $p \in F$, on a $w(\underline{y_p^{(h)}}, \underline{n_k}) = \varepsilon_k \mu_{p,h} S_h(x) P_{k,h}(x)$, avec $\mu_{p,h}$ constante non nulle dans \mathbb{C}_p .

Nous considérons de manière particulière $A(x) = A_0(x)$, et nous choisissons un entier j tel que js > d(A) (on rappelle que pour un polynôme U, on note d(U) son degré).

Nous faisons aussi le choix d'un entier premier $p \in F$ assez grand de façon que, pour tout $h \leq j$, tous les zéros des polynômes A_h soient de module ≤ 1 , et que le coefficient δ_h du terme de plus haut degré dans $P_{0,h}$ soit de module 1.

On a pour $h \leq j$ la relation $w(\underline{y_p^{(h)}}, \underline{n_0}) = w(\underline{y_p^{(h+1)}}, \underline{n_s})$, ce qui donne $\varepsilon_0 \mu_{p,h} S_h(x) P_{0,h}(x) = \varepsilon_s \mu_{p,h+1} S_{h+1}(x) P_{s,h+1}(x)$.

En considérant les coefficients des termes de plus haut degré, il vient

que $\varepsilon_0 \mu_{p,h} \delta_h = \varepsilon_s \mu_{p,h+1}$, d'où l'on déduit que la valeur absolue de $\mu_{p,h+1}$ est égale à la valeur absolue de $\mu_{p,h}$. Donc pour tout $h \leq j$, la valeur absolue de $\mu_{p,h}$ est égale à celle de $\mu_{p,0} = \mu_p$.

On a maintenant, en posant $m_j = (j, j+1, \dots, j+s-1),$

$$\varepsilon_s \mu_{p,j} S_j(x) P_{s,j}(x) = w(\underline{y_p^{(j)}}, \underline{n_s}) = w(\underline{y_p}, \underline{m_j}).$$

Soit R > 1, assez proche de 1. On a l'inégalité

$$|w(\underline{y_p},\underline{m_j})|(R) \le \frac{|w(\underline{y_p},\underline{n_s})|(R)}{R^{js}};$$

soit

$$|\mu_{p,j}| |S_j|(R)|P_{s,j}|(R) \le \frac{|\mu_p| |S_0|(R)|P_{s,0}|(R)}{R^{sj}}.$$

Compte tenu de la propriété des $\mu_{p,h}$, du fait que les S_h et $P_{s,h}$ sont unitaires et ont tous leur zéros de modules ≤ 1 , on en tire que $R^{d(S_j)+d(P_{s,j})} \leq R^{d(S_0)+d(P_{s,0})-js}$, d'où, puisque R > 1,

$$d(P_{s,j}) \le d(S_j) + d(P_{s,j}) \le d(S_0) + d(P_{s,0}) - js = d(A) - js < 0,$$

ce qui est absurde puisque $P_{s,j}$ est non nul, et cette contradiction prouve l'assertion.

Il existe donc un premier entier j_0 tel que $P_{0,j_0}=0$ (on a $j_0\geq 1$); par conséquent, $P_{0,h}\neq 0$ pour $h\leq j_0-1$. On applique alors le raisonnement déjà fait (le cas $P_0=0$ vu en début de démonstration), qui montre que l'équation

$$P_{s,j_0}z^{(s-1)} + \dots + P_{1,j_0}(x)z(x) = 0$$

d'ordre s-1 vérifie les hypothèses de la proposition 4.1. Par l'hypothèse de récurrence, toutes ses solutions sont des polynômes, donc aussi toutes les solutions de l'équation (E_{s,j_0}) . Par suite, si y est une solution de l'équation (E_s) , sa dérivée j_0 -ième est un polynôme, et donc y est lui-même un polynôme, ce qui termine la démonstration.

Pour la démonstration du résultat général, nous aurons besoin du lemme suivant :

LEMME 4.5. Soit $s \geq 1$, et P_k , $0 \leq k \leq s$, des polynômes de $\mathbb{Q}[x]$ avec P_s non nul. Il existe un nombre $m \geq 1$, ne dépendant que des P_k , tel que si p est un nombre premier, et y une solution de (E_s) méromorphe dans un disque de centre 0, rayon R > 0, dans \mathbb{C}_p , alors $z(x) = P_s(x)^m y(x)$ est une série entière de rayon de convergence $\geq R$.

Démonstration. On note tout d'abord qu'un pôle ω de la solution y est nécessairement un zéro du polynôme P_s , car sinon, si c'est un pôle d'ordre N de y, ce serait un pôle d'ordre s+N du terme $P_s(x)y^{(s)}(x)$, qui ne pourrait être détruit par les termes $P_k(x)y^{(k)}(x)$, où ω est un pôle d'ordre inférieur. Notons Ω l'ensemble des zéros de P_s , et V l'ensemble des indices k tels que $P_k \neq 0$. Pour $\omega \in \Omega$ et $k \in V$, on pose $P_k(x) = (x-\omega)^{m_k}Q_k(x)$, avec $Q_k(\omega)$ non nul, $m_k \geq 0$. Soit M_1 le maximum des m_k , $k \in V$, et supposons que $\omega \in \Omega$ soit un pôle de y, d'ordre $N > M_1$. Alors ω est un pôle de tous les $P_k(x)y^{(k)}(x)$, $k \in V$, et si le développement de Puiseux de y en ω est de la forme $y(x) = \alpha/(x-\omega)^N + \cdots$ avec α non nul, le premier terme du développement de Puiseux dans $P_k(x)y^{(k)}(x)$ pour $k \in V$ est

$$Q_k(\omega)(-1)^k N(N+1)\cdots(N+k-1)\frac{\alpha}{(x-\omega)^{N+k-m_k}}.$$

Soit h le maximum des $N+k-m_k$, $k \in V$. Il existe une partie non vide A de V tel que si $k \in A$, on a $N+k-m_k=h$. On doit alors avoir

$$\left(\sum_{k\in A} Q_k(\omega)(-1)^k N(N+1)\cdots(N+k-1)\right)\alpha = 0.$$

Par suite, l'ensemble A contient au moins deux éléments, et comme α est non nul, $\sum_{k\in A}Q_k(\omega)(-1)^kx(x+1)\cdots(x+k-1)$ est un polynôme non nul, dont une solution est l'entier N. Si l'on considère l'ensemble des polynômes construits de cette manière, on a un ensemble fini de polynômes non nuls, ne dépendant que des P_k , et tel que si ω est un pôle de y d'ordre $N>M_1$, alors N est une racine d'un de ces polynômes. Il résulte de ceci que l'ordre d'un pôle ω de y est majoré par une constante ne dépendant que des P_k (et pas de l'entier premier p). L'existence de l'entier m en résulte immédiatement.

THÉORÈME 4.6. Soit $s \geq 2$, et P_k , k = 0, ..., s, s + 1, des polynômes à coefficients dans \mathbb{Q} , avec P_s non nul. On considère l'équation différentielle

(E_s)
$$P_s(x)y^{(s)}(x) + \dots + P_0(x)y(x) = 0.$$

On fait l'hypothèse qu'il existe un ensemble infini F de nombres premiers p tels que, pour $p \in F$, (E_s) a s solutions fonctions méromorphes dans \mathbb{C}_p ,

dont le rayon de méromorphie est strictement supérieur à 1, et linéairement indépendantes sur \mathbb{C}_p .

Alors toutes les solutions de (E_s) sont des fractions rationnelles.

Démonstration. Soit m l'entier défini dans le lemme 4.5, et (G) l'équation différentielle vérifiée par les $P_s(x)^m y(x)$ où y est une solution de (E_s) . Alors (G) est comme (E_s) une équation différentielle que l'on peut supposer à coefficients dans $\mathbb{Q}[x]$. Soit $p \in F$. Les solutions $y_{k,p}$, $1 \leq k \leq s$, méromorphes, de rayon de méromorphie > 1, linéairement indépendantes, de (E_s) donnent par ce procédé des solutions $z_{k,p}(x) = P_s(x)^m y_{k,p}(x)$ de l'équation (G), linéairement indépendantes, qui seront par le lemme 4.5 des solutions développables en série entière de rayon de convergence > 1. Par la proposition 4.1, toute solution de (G) est un polynôme. Par suite, toute solution de (E_s) est une fraction rationnelle.

Références

- K. Boussaf, A. Escassut and J. Ojeda, Zeroes of the derivative of a p-adic meromorphic function and applications, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 367–372.
- [2] A. Boutabaa, On some p-adic functional equations, in: Lecture Notes in Pure Appl. Math. 192, Dekker, 1997, 49–59.
- [3] A. Boutabaa, A note on p-adic linear differential equations, J. Number Theory 87 (2001), 301–305.
- [4] A. Escassut and J. Ojeda, Exceptional values of p-adic analytic functions and derivatives, Complex Var. Elliptic Equations 56 (2011), 263–269.

Jean-Paul Bézivin 1, Allée Edouard Quincey 94200, Ivry-sur-Seine, France E-mail: jp.bezivin@orange.fr

> Reçu le 5.6.2012 et révisé le 8.11.2012 (7086)