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1. Introduction. In complex dynamics, the Mandelbrot set is a source
of inspiration for much current research. This set,

M = {c ∈ C : the critical orbit of fc(z) = z2 + c is bounded},
is a complicated and interesting subset of the moduli space of degree two
polynomials. In the past two decades, much research has been done on dy-
namical systems in a non-Archimedean setting. See, for example, [2, 4, 6, 9].
For a survey of the subject, see [3] or [10]. If one examines the Mandelbrot
set over a p-adic field, one finds the object to be much less inspiring. For
any prime p, the p-adic Mandelbrot set for quadratic polynomials as defined
above, replacing C with Cp, is simply the unit disk. But when we consider
an analogous set for polynomials of higher degree, the p-adic Mandelbrot
set for p < d can have a complicated and interesting structure.

Let Pd,p denote the parameter space of monic polynomials f of degree d
defined over Cp with f(0) = 0. Note that every degree d polynomial can
be put in this form via conjugation by an affine linear transformation. We
call a map f post-critically bounded (PCB) if all of its critical points have
bounded orbit under iteration of f . LetMd,p denote the subset of Pd,p that
is PCB. We define the following quantity, which measures the critical radius
of the p-adic Mandelbrot set in Pd,p:
(1.1) r(d, p) = sup

f∈Md,p

max
c∈Cp

f ′(c)=0

{−vp(c)}.

Remark 1.1. One may wonder why we define r(d, p) using the p-adic
valuations of critical points of polynomials in Pd,p rather than using the
p-adic valuations of their coefficients. When p > d, as we will see in The-
orem 4.1, the two notions are equivalent. In other situations, however, pa-
rameterizing by the critical points rather than by the coefficients is more
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natural. For example, when d is a power of p, it is easier to describe Md,p

in terms of the critical points rather than the coefficients, as we will see in
Proposition 4.2. This is because there is one uniform bound on the abso-
lute value of critical points for polynomials inMd,p, but the bounds for the
coefficients ai vary depending on the p-adic valuation of i.

Knowing r(d, p) can be useful in searching for all post-critically finite
polynomials over a given number field, as is done for cubic polynomials
over Q in [7]. For small primes, in particular p < d, the set Md,p may be
complicated and have a fractal-like boundary. We use r(d, p) as a way to
measure its complexity. Just as the critical values for quadratic polynomials
in the classical Mandelbrot set over C are contained in a disk of radius 2
[1, Theorem 9.10.1], the critical points for polynomials inMd,p are contained

in a disk of radius pr(d,p). For p > d or d = pk, it is known that r(d, p) = 0,
but for lack of a suitable reference we will provide an elementary proof.
The following is the main result of this paper, which gives the exact value
of r(d, p) for certain values of p < d.

Theorem 1.2. For 1
2d < p < d we have

r(d, p) =
p

d− 1
.

Further, for p = 1
2d we have r(d, p) = 0.

It may also be interesting to pursue such questions in Berkovich space.
For some work related to critical behavior for polynomials in Berkovich
space, see [11].

In Section 2, we describe the notation and tools used throughout this
paper. Section 3 consists of some lemmas that are frequently employed in
the proofs that follow. In Section 4, we discuss the known results in this
realm and provide elementary proofs for the cases when p > d or d = pk.
We prove our main result in Section 5. Finally, we conclude the paper in
Section 6 with a study of a one-parameter family of cubic polynomials over
C2 to illustrate the fact that Md,p can indeed be quite complicated.

2. Notation and tools. Throughout this paper, we fix a prime num-
ber p and we let

f(z) = zd + ad−1z
d−1 + · · ·+ a1z ∈ Pd,p

be a degree d polynomial in Cp[z]. We suppress the p from our notation
for absolute values and valuations. We denote the critical points of f by
c1, . . . , cd−1, not necessarily distinct, labeled so that

|c1| ≥ · · · ≥ |cd−1|.
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We denote the closed disk centered at a of radius s in Cp by

D̄(a, s) = {z ∈ Cp : |z − a| ≤ s}.
The filled Julia set of f is the set

Kf = {z ∈ Cp : the f -orbit of z is bounded}.
We let R ≥ 0 be the smallest number such that

(2.1) Kf ⊆ D̄(0, pR).

Equivalently, as shown in [3], we can define R as follows:

R = max
1≤i≤d−1

{
−v(ai)

d− i

}
.

We also set

(2.2) r = −v(c1).

We will often use the fact that

ai = (−1)d−i
d

i
σd−i,

where σj denotes the jth symmetric function of the critical points.

Whenever we count critical points, roots, or periodic points for f , we do
so with multiplicity.

The Newton polygon is a useful object in p-adic analysis that we will
use frequently. Consider a polynomial

g(z) =
n∑
i=0

biz
i.

The Newton polygon for g is the lower convex hull of the set of points
{(i, v(bi))}. If any bi = 0, that point is omitted. (One can think of that
point as being at infinity.) This object encodes information about the roots
of g. In particular, it tells us that g has x roots of absolute value pm if the
Newton polygon for g has a segment of horizontal length x and slope m. For
proofs of these facts, see [8].

One consequence of these facts is that for polynomials, or more gener-
ally, for power series over Cp, a disk in Cp is mapped everywhere n-to-1
(counting with multiplicity) onto its image, which is also a disk. The follow-
ing proposition, whose proof can be found in [3, Corollary 3.11], will prove
useful.

Proposition 2.1. Let f(z) =
∑d

i=0 bi(z − a)i ∈ Cp[z] be a degree d
polynomial and let D = D̄(a, ps) be a disk in Cp. Then f(D) = D̄(f(a), pr),
where

r = max
1≤i≤d

{si− v(bi)}.
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Moreover, f : D → f(D) is everywhere m-to-1 for some positive integer m,
counting with multiplicity.

3. Preliminary lemmas

Lemma 3.1. Let f ∈ Md,p, and let R and r be as defined by (2.1) and
(2.2). If r > 0 and p > 1

2d, then R = r.

Proof. First note that if f is post-critically bounded, then R ≥ r is
necessary. Recall that

(3.1) R = max
1≤i≤d−1

{
−v(ai)

d− i

}
.

Since

|ai| = |σd−i| for i 6= p, and |ap| = p−1|σd−p|,
the only way that R could be strictly greater than r is if −v(ap)/(d− p) is
maximal in the formula (3.1) for R, with

(d− p)r − 1 < −v(σd−p) ≤ (d− p)r.
In this case, R = −v(ap)/(d − p) could be as large as r + 1/(d − p). But if
this is true, then f(c1) is dominated by a single term, namely apc

p
1 with

−v(f(c1)) = −v(apc
p
1) = pr + (d− p)R > R,

contradicting the fact that f is PCB. Thus R = r.

Lemma 3.2. Let f ∈ Cp[x] be a degree d polynomial, let D̄(a, s) be a disk
in Cp, and let m be an integer with p - m. If f maps D̄(a, s) m-to-1 onto
its image, then D̄(a, s) contains exactly m − 1 critical points of f , counted
with multiplicity.

Proof. Without loss of generality, replace f with a conjugate so D̄(a, s) =
D̄(0, 1). Let

f =

d∑
i=0

biz
i.

Then, counting with multiplicity, f(z)− f(0) has m roots in the unit disk,
which implies that m is the largest positive integer such that

v(bm) = min
1≤i≤d

v(bi).

Now consider the Newton polygon for f ′. Since m is the largest integer such
that v(bm) is minimal and p - m, we see that m is also the largest integer such
that v(mbm) is minimal among all v(ibi). Therefore, the Newton polygon
for f ′ has exactly m − 1 non-positive slopes, which implies that there are
m− 1 critical points, counted with multiplicity, in D̄(0, 1).
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4. Motivation: p > d

Theorem 4.1. Let p > d. Then f ∈ Pd,p is PCB if and only if |ci| ≤ 1
for all critical points ci of f .

This is a known result, but since it does not appear in the literature, we
present an elementary proof here.

Proof. First, suppose |ci| ≤ 1 for all i. Then |ai| = |(d/i)σd−i| ≤ 1 for
all i, and so f(D̄(0, 1)) ⊆ D̄(0, 1). Therefore, f is PCB.

Now let f be PCB and suppose, for contradiction, that −v(c1) = r > 0.
Let m be maximal such that −v(cm) = r. (In other words, there are exactly
m critical points with absolute value pr.) First, we show that there are
exactly m roots z1, . . . , zm of f such that −v(zi) = r.

Since p > d, the Newton polygons for f and f ′ are the same, up to
horizontal translation. Thus, the rightmost segment of the Newton polygon
for f has the same slope and horizontal length as the rightmost segment of
the Newton polygon for f ′, and therefore f has exactly m roots zi such that
−v(zi) = r.

Next, we use Lemma 3.2 to reach a contradiction. Consider f−1(D̄(0, pr)).
This is a union of up to d smaller disks D̄(zi, p

si), where the zi are the roots
of f . Note that, since f is PCB, each critical point must lie in one of these
disks. By Proposition 2.1, we know that si ≤ r/d for each i.

So, each of the m large critical points c1, . . . , cm must lie in the set

V =

m⋃
i=1

D̄(zi, p
si).

This set is a disjoint union of n ≤ m disks. Relabel the subscripts so that

V =

n∐
i=1

D̄(zi, p
si).

Let D̄(zi, p
si) map di-to-1 onto D̄(0, r). Then, since V contains exactly m

preimages of 0, counted with multiplicity, we have
n∑
i=1

di = m.

Let bi be the number of critical points in D̄(zi, p
si). Then Lemma 3.2 tells

us that bi = di − 1, and so the number of critical points, counted with
multiplicity, in V is

n∑
i=1

bi = m− n < m.

This is a contradiction. Thus, if f is PCB, all the critical points lie in the
unit disk.
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In particular, Theorem 4.1 implies that r(d, p) = 0 for p > d. The same is
also true if d = pk for some positive integer k. This result follows immediately
upon comparing the Newton polygons for f and f ′. A proof of this result
can be found in [5], but we present a proof below that is simple and tailored
to the normal form used in this paper.

Proposition 4.2. Let d=pk for some positive integer k, and let f ∈Pd,p.
Then f is PCB if and only if |ci| ≤ 1 for all critical points ci of f .

Proof. First, suppose all the critical points for f lie in the unit disk.
Then all the coefficients of f are p-integral, and so f(D̄(0, 1)) ⊆ D̄(0, 1).
Therefore, f is PCB.

Now, suppose f is PCB. By comparing the Newton polygons for f and f ′,
one sees that the slope of the rightmost segment of the Newton polygon for
f ′ is greater than the slope of the rightmost segment of the Newton polygon
for f . In other words, the largest critical point of f is strictly larger than
the largest root. If this critical point c were outside the unit disk, then
|f(c)| = |c|d > R, and f would not be PCB. Therefore, f is PCB if and only
if all critical points lie in the unit disk.

5. The Mandelbrot radius for primes 1
2d ≤ p < d. So far, we have

seen a few situations in which the p-adic Mandelbrot set can be very easily
described: it is simply a product of unit disks. For primes smaller than d,
this is often not the case. In Section 6, we investigate a one-parameter family
of cubic polynomials over Q2 to illustrate that Md,p can be quite intricate.
While we cannot hope to describe Md,p exactly for p < d, we can get a
sense of the size of Md,p by calculating r(d, p). We now give a lower bound
for r(d, p) when p < d.

Proposition 5.1. Suppose that p < d and that d is not a power of p.
Let k be the largest integer such that pk < d and let ` be the largest integer
such that p` | d. Write d = apk + b, where 1 ≤ a < p and 1 ≤ b < pk. Then

r(d, p) ≥ a(k − `)pk

d− 1
.

Proof. Let α ∈ Cp satisfy the following equation:

αd−1 =
dd

(−apk)apkbb
.

Then the lower bound given in this proposition is realized by the map

f(z) = zb(z − α)ap
k
.

This map has either two or three critical points: α, (b/d)α, and possibly 0.
(Zero is a critical point if b 6= 1.) We choose α above so that f((b/d)α) = α,
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f(α) = 0, and f(0) = 0. Thus, f is post-critically finite, and therefore PCB,
with

−v(α) =
a(k − `)pk

d− 1
.

Since ` is necessarily less than or equal to k, this gives a positive lower
bound for r(d, p) in most situations in which p < d. It does not give a
positive lower bound when d = pkq, where q < p, because in this situation
` = k and thus −v(α) = 0. The next proposition is the beginning of an
exploration of that situation.

Proposition 5.2. Let f ∈ Pd,p and suppose d = 2p. Then f is PCB if
and only if |ci| ≤ 1 for all critical points ci of f .

Proof. Proposition 4.2 proves this statement if p = 2, so assume p 6= 2.
Again, one direction is straightforward. If all the critical points are in the
unit disk, then all the coefficients of f are p-integral, and f is PCB.

Now let f be PCB and suppose for contradiction that f has a criti-
cal point outside the unit disk, with −v(c1) = r > 0. By comparing the
rightmost segments of the Newton polygons for f and f ′, since the right-
most vertex for f ′ is one unit above the rightmost vertex for f , we deduce
that in most cases the largest critical point for f is larger than its largest
root. Since we can write f(z) =

∏d
i=1(z − zi), where the zi are the roots

of f counted with multiplicity, in this situation |c1 − zi| = |c1| for all i,
and therefore |f(c1)| = |c1|d. More generally, |fn(c1)| = |c1|d

n
, and thus

f cannot be PCB. The only situation in which this does not happen is if
the rightmost segment of the Newton polygon for f has horizontal length
equal to p, in which case it is possible for the largest root of f to have the
same absolute value as the largest critical point. In this situation, there are
exactly p roots zi with −v(zi) = r, and there are at least p critical points ci
with −v(ci) = r.

Suppose there are exactly k such critical points, counted with multiplic-
ity, where p ≤ k ≤ 2p− 1. Now we use Lemma 3.2 to show that this is only
possible if they are all contained in a disk centered at a root z1 that maps
p-to-1 onto D̄(0, pr). Recall that if f is PCB, then each critical point lies
in a disk D̄(zi, p

si) mapping via f onto D̄(0, pr), where f(zi) = 0. Propo-
sition 2.1 implies that si ≤ r/2p for all i. Since si < r, it is necessary that
each of the k large critical points lies in one of these disks centered at a root
zi with −v(zi) = r. Since there are at least p such critical points and only p
such roots, Lemma 3.2 implies that this is only possible if there is one disk
D̄(z1, p

s) mapping via f onto D̄(0, pr) containing all p such roots and all k
of the largest critical points.
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Writing ci = c1 + εi for 2 ≤ i ≤ k, we calculate f(c1):

f(c1) = c2p1

(
1− 2p

2p− 1

(
k

1

)
+

2p

2p− 2

(
k

2

)
− · · ·+ 2p

(
k

2p− 1

))
+ ε,

where −v(ε) < 2pr.

We will reach a contradiction if the coefficient of c2p1 is a p-adic unit, because
this would imply that −v(f(c1)) = 2pr > r = R, and thus that f is not

PCB. Modulo p, the coefficient of c2p1 is congruent to

1− 2p

p

(
k

p

)
≡ 1− 2 ≡ −1 (mod p).

This is because
(
k
p

)
≡
⌊
k
p

⌋
(mod p) and p ≤ k < 2p. Thus, we reach the

desired conclusion, that f is PCB if and only if all the critical points lie in
the unit disk.

In particular, Proposition 5.2 implies that r(2p, p) = 0. A similar but
more elaborate argument shows that r(3p, p) = 0 as well, but the techniques
used do not generalize to arbitrary r(kp, p).

Now we turn our attention to the case where 1
2d < p < d to prove the

remainder of Theorem 1.2.

Proof of Theorem 1.2. Suppose that 1
2d < p < d. Note that Proposition

5.1 shows that r(d, p) ≥ p/(d− 1). It remains to show that p/(d− 1) is also
an upper bound for r(d, p). Suppose there is a polynomial f ∈Md,p with a
critical point c1 such that −v(c1) = r > 0. Let d = p+k, where 1 ≤ k ≤ p−1.
Lemma 3.1 implies that the critical orbits for f are all contained in D̄(0, pr).
Let m denote the number of critical points with absolute value pr (with
multiplicity), i.e.,

m = max{i : −v(ci) = r}.

We break the proof into two cases. The first case we consider is m < p.

We will refer to {c1, . . . , cm} as the large critical points. Each large critical
point must lie in one of the disks in the following set, where f(zi) = 0 and
si ≤ r/d:

f−1(D̄(0, pr)) =

d⋃
i=1

D̄(zi, p
si).

By Lemma 3.2, we must have more than m roots zi such that −v(zi) = r.
Since the Newton polygons for f and f ′ can only differ at one place (namely,
at the pth place), this is only possible if there are exactly k roots of f (and
at most k − 1 critical points) with absolute value pr. This implies that
−v(ap) = kr. Let cm+1 be the largest critical point such that −v(cm+1) < r
and let t = −v(cm+1). Since ap = (d/p)σk, we must have −v(σk) = kr − 1,
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which implies that t ≥ r − 1. Looking at f(cm+1), the sole largest term is
apc

p
m+1, which implies that

−v(f(cm+1)) = kr + pt ≥ dr − p.
If f is PCB, then −v(f(cm+1)) ≤ r, which gives the inequality dr − p ≤ r,
and the desired bound follows.

Now suppose the number of large critical points is m ≥ p. Then, by
analysis of the Newton polygons for f and f ′, either f has a root z1 with
−v(z1) > r, or f has exactly m roots of absolute value pr. The first possi-
bility does not occur, because if −v(z1) > r, then z1 must be in the basin
of infinity, by Lemma 3.1. This is a contradiction, since z1 is preperiodic,
as 0 is a fixed point for f . So, the largest root z1 of f satisfies −v(z1) = r
and the number of large critical points is equal to the number of roots of
absolute value pr. By Lemma 3.2, the only way for f to be PCB is if there
is a disk D̄(c1, p

s) mapping p-to-1 onto D̄(0, pr) containing at least p of the
large critical points, where s ≤ r/d by Proposition 2.1. We will again divide
into two cases.

First, suppose −v(ci − cj) ≤ max{0, s} for all critical points ci, cj . Let
ci = c1 + εi, where −v(εi) ≤ max{0, s}. Then we have

f(c1) = cd1 −
d

d− 1
σ1c

d−1
1 + · · ·+ (−1)d−1

d

1
σd−1c1.

We will use the fact that

σi =

(
p+ k − 1

i

)
ci1 + δi, where − v(δi) < ir,

to simplify our expression for f(c1) to the following:

(5.1) f(c1) = cd1

(
1− d

d− 1

(
d− 1

1

)
+

d

d− 2

(
d− 1

2

)
− · · ·+ (−1)d−1

d

1

(
d− 1

d− 1

))
+ ε.

It remains to check that the coefficient of cd1 is a p-adic unit and to
determine the largest possible absolute value for ε. First, we look at the
coefficient of cd1 in (5.1). This coefficient can be rewritten as follows:

1− d

d− 1

(
d− 1

1

)
+ · · ·+ (−1)d−1

d

1

(
d− 1

d− 1

)
=

d−1∑
i=0

(−1)i
(
d

i

)
.

Since the full alternating sum from 0 to d of binomial coefficients is always
zero, we see that the coefficient of cd1 is either 1 or −1, depending on whether
d is even or odd. Either way, it is a p-adic unit, and so the first term in f(c1)
has absolute value pdr. Since we must have −v(f(c1)) ≤ r in order for f to
be PCB, it is necessary that −v(ε) = dr as well. The only term that can
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possibly be that large is the one corresponding to apc
p
1. Let σj(εi) denote

the jth symmetric function on the εi. Then the portion of apc
p
1 contributing

to ε is

(−1)k
d

p

((
d− 2

k − 1

)
σ1(εi)c

k−1
1 +

(
d− 3

k − 2

)
σ2(εi)c

k−2
1

+ · · ·+
(
p

1

)
σk−1(εi)c1 + σk(εi)

)
cp1.

Note that since
(
d−i−1
k−i

)
is a multiple of p for all i < k, the last term

is the only one that can possibly realize the absolute value pdr. Looking at
x = (−1)k(d/p)σk(εi)c

p
1, we see that

−v(x) ≤ pr + 1 + ks ≤ 1 + r(p+ k/d).

Since −v(x) = dr, we have dr ≤ 1 + pr + kr/d, which implies that r ≤
d/(k(d−1)). This is strictly smaller than p/(d−1) for k > 1, and we obtain
the desired result.

We will now treat the k = 1 case separately. Suppose d = p+ 1 and all p
critical points are in a disk centered at c1 of radius ps. The above argument
shows that, if f is PCB, then we must have −v(σ1(εi)) = r − 1. We will
improve our upper bound for s to prove the result in this case. We know
that D̄(c1, p

s) maps p-to-1 onto D̄(0, pr). Writing f(z) so that it is centered
at c1, we have

f(z) = f ′(c1)(z− c1)+
f ′′(c1)

2!
(z− c1)2 + · · ·+ f (p)(c1)

p!
(z− c1)p+(z− c1)p+1.

This allows us to see that, by Proposition 2.1,

r = max
1≤i≤d

{−v(f (i)(c1)/i!) + is}.

In particular, r ≥ ps+ 1− v(f (p)(c1)), which implies that

(5.2) s ≤ r − 1 + v(f (p)(c1))

p
.

To calculate f (p)(c1), we note that

f (p)(z) = (p+ 1)!z + p!ap = (p+ 1)!z − (p+ 1)!

p
σ1.

Plugging in z = c1, we calculate

f (p)(c1) = (p+ 1)!c1 −
(p+ 1)!

p
(pc1 + σ1(εi)) = −(p+ 1)!

p
σ1(εi).

This implies that −v(f (p)(c1)) = −v(σ1(εi)) = r − 1. Plugging this into
(5.2), we find that s ≤ 0. Finally, since r − 1 = −v(σ1(εi)) ≤ s ≤ 0, we see
that r ≤ 1, as desired.
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Now we return to the general situation to treat the final case, in which
there are at least p large critical points and there exist ci, cj such that
−v(ci − cj) ≥ max{0, s}. Without loss of generality, let ci = c1, where c1 is
in the disk D̄(c1, p

s) which contains at least p critical points. There must be
a fixed point α for f such that −v(c1 − α) ≤ 0. We see this by examining
the equation

f(c1)− c1 =
d∏
i=1

(c1 − αi).

Here the αi are the fixed points for f . Since the left hand side of this equation
must have absolute value at most pr, the same must be true of the right hand
side. Since 0 is a fixed point, we can let αd = 0. Then, since −v(c1− 0) = r,
we are left with

−v
(d−1∏
i=1

(c1 − αi)
)
≤ 0.

This implies that there is some αi satisfying −v(c1−αi) ≤ 0. Call this fixed
point α.

Next, conjugate f by the affine linear transformation φ(z) = z + α. The
new map fφ = φ−1 ◦ f ◦ φ is of the desired form (monic with f(0) = 0) and
is PCB because f is PCB. Note that fφ has at least p, but no more than
d− 2, critical points in D̄(0, pt), where t = max{s, 0}. This implies that the
number of large critical points for fφ is strictly less than p. We have already
dealt with this case, and so we know that all the critical points γi for fφ

satisfy −v(γi) ≤ p/(d− 1). So, we can conclude that

−v(γi) = −v(ci − α) ≤ p

d− 1

for all critical points ci of f . If any ci satisfies −v(ci) ≤ p/(d − 1), we can
conclude that −v(α) ≤ p/(d−1) as well, and we reach the desired conclusion.
However, if all critical points have the same absolute value as α, the result
does not yet follow.

Suppose that −v(ci) = r for all i and that there exists ci such that
ci 6∈ D̄(c1, p

s). We have just shown that −v(ci − α) ≤ p/(d − 1), which
implies that −v(ci − cj) ≤ p/(d − 1) for all i, j. Therefore, we can proceed
assuming that s < p/(d − 1). Since not all critical points are in D̄(c1, p

s),
there is another disk in the set V = f−1(D̄(0, pr)) containing n ≥ 1 critical
points and (by Lemma 3.2) n + 1 roots. Thus, since all the large critical
points and roots must be contained in V in accordance with Lemma 3.2,
the number of roots of absolute value pr outside D̄(c1, p

s) must exceed the
number of critical points outside D̄(c1, p

s) by at least one, and therefore the
number of critical points inside D̄(c1, p

s) must be greater than p, as there
are exactly p roots in D̄(c1, p

s).
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Let c1, . . . , cp+1 ∈ D̄(c1, p
s) and write all critical points as before, with

ci = c1 + εi. Here, εi ≤ s ≤ r/d for 2 ≤ i ≤ p + 1, and εj ≤ p/(d − 1) for
j > p+ 1. Looking at equation (5.1), we examine the size of ε. Once again,
in order to have the necessary cancellation with the leading term, it must
be true that −v(ε) = dr, which can only be achieved if −v(σk(εi)) = kr− 1.
But

−v(σk(εi)) ≤ (k − 2)
p

d− 1
+ 2s ≤ (k − 2)

p

d− 1
+

2r

d
.

This gives the inequality

kr − 1 ≤ (k − 2)
p

p+ k − 1
+

2r

p+ k
,

which reduces (after a bit of algebra) to

r ≤ (p+ k)(k − 1− p+ pk)

(p+ k − 1)(pk + k2 − 2)
≤ p

p+ k − 1
=

p

d− 1
,

as desired.

6. A one-parameter family of cubic polynomials over C2. We
have alluded to the fact thatMd,p can be an interesting set when p < d. The
following example of a one-parameter family of cubic polynomials reveals
that the boundary of this Mandelbrot set can be complicated and fractal-
like.

Consider the following one-parameter family of cubic polynomials, where
the parameter t ∈ C2:

(6.1) ft(z) = z3 − 3
2 tz

2.

Of the two critical points, one (zero) is a fixed point and the other is t. Note
that t = 1 corresponds to a post-critically finite map (i.e., all critical points
are preperiodic), with the free critical point 1 mapping to the fixed point
−1/2.

Proposition 6.1. Consider the one-parameter family of cubic polyno-
mials in defined in (6.1). For the sequence of parameters tk = 1 + 22k con-
verging to t = 1, the corresponding polynomials ftk for k ≥ 2 are not PCB.
There is another sequence, tm = 1 + 3 · 22m+1, also converging to t = 1, for
which the corresponding polynomials for m ≥ 2 are all PCB.

Proposition 6.1 shows that t = 1 is on the boundary of the p-adic Man-
delbrot set for this family of polynomials, in that it is arbitrarily close in the
parameter space to parameters corresponding to both PCB and non-PCB
maps. For p > d, such examples do not exist, as Md,p is simply the unit
polydisk in Pd,p ' Cd−1p , which has empty boundary.
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Proof of Proposition 6.1. First, consider the sequence (tk), where tk =
1 + 22k ∈ C2. As k approaches infinity, tk approaches 1 in C2. We will now
show that for k ≥ 2, the orbit of the critical point tk under ftk is unbounded.
In fact, we can say something stronger. If t ≡ 1 + 22k (mod 22k+1) for some
k ∈ Z with k ≥ 2, then ft is not PCB. Let t ∈ C2 and k ≥ 2 be such that
t ≡ 1 + 22k (mod 22k+1).

We begin by calculating the first few iterates of t under ft:

ft(t) = −1

2
t3 ≡ −1

2
(mod 22k−1),

f2t (t) = −1

8
t9 − 3

8
t7 ≡ −1

2
(mod 22k−2),

f3t (t) = − 1

512
t15(t12 + 9t10 + 27t8 + 27t6 + 12t4 + 72t2 + 108)

≡ −1

2
(mod 22k−4).

From here, each iterate moves further away from −1
2 , so that for 2 ≤ i ≤ k

we have

v

(
f it (t) +

1

2

)
= 2k − 2i+ 2.

Thus, v(fkt (t)+1/2) = 2 and we can write fkt (t) = −1/2+4u, where |u| = 1.
A quick calculation then shows that |f2(−1/2 + 4u)| = 4. Note that in this
case, R = 1. So, since fk+2

t (t) 6∈ D̄(0, 2R), the orbit of t is unbounded.
Now we turn our attention to the other sequence. Let tm = 1+3 ·22m+1.

We will show that the orbit of tm under iteration of ftm is bounded. For ease
of notation, let t = tm for some m ≥ 2. Once again, we begin by calculating
the first few iterates:

ft(t) ≡ −1/2− 9 · 22m (mod 24m+1),

f2t (t) ≡ −1/2− 45 · 22m−1 (mod 24m−1),

f3t (t) ≡ −1/2− 423 · 22m−3 (mod 24m−3).

In general, for 3 ≤ i ≤ m+ 1, we have

f it (t) ≡ −1/2− ci · 22m−2i+3 (mod 22m−2i+7), where ci ≡ 7 (mod 8).

More specifically, ci = 9(ci−1+22i−3). This shows that we can write fm+1
t (t)

= −1/2 − 2(7 + 8u) for some odd integer u. Calculating one more iterate,
we see that

fm+2
t (t) = ft(−29/2− 16u) ≡ 0 (mod 4).

This puts t in the basin of attraction of 0, because ft maps D̄(0, 1/2) onto
itself.

A more careful calculation shows that this proof can be extended to any
t such that t ≡ 1 + 3 · 22m+1 (mod 22m+3).
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This example shows that this 2-adic Mandelbrot set, that is, {t ∈ C2 :
ft is PCB}, has a complicated boundary. While this set is difficult to visual-
ize over C2, we can begin to draw it if we restrict to Q2. LetMt = {t ∈ Q2 :
ft is PCB}. For |t| > 1, note that R = −v

(
3
2 t
)

= −v(t)+1. We now calculate
|ft(t)|:

|ft(t)| =
∣∣−1

2 t
3
∣∣ = 2|t|3 > 2|t| = 2R.

Therefore, the orbit of t is unbounded for all t outside the unit disk. Next
note that ft maps D̄(0, 1) into itself for |t| ≤ 1/2. So t ∈Mt for |t| ≤ 1/2. If
we are interested in the boundary ofMt, we therefore only have to consider
t for which |t| = 1.

1

1

1

1

1

3

7

15

31

5 3

9

9

7

2317 15725

Fig. 1. Critical orbit behavior for ft with |t| = 1.

We can represent a neighborhood in Q2 as a binary tree, as every disk
in Q2 is composed of two disjoint disks. For example, the disk D̄(1, 1/2) =
{t ∈ Q2 : |t| = 1}, which will be the root of our tree, is composed of D̄(1, 1/4)
and D̄(3, 1/4). Each disk in turn branches into two smaller disks. Traversing
down the tree, one “zooms in” on a point in Q2. See Figure 1 for a depiction
of the first few levels of this tree. We color a node black if the entire disk is
in Mt, we color a node white if the entire disk is outside Mt, and we color
a node gray if it contains some points in Mt and some points outside it.
The number that labels each node denotes the center of the disk the node
represents. As one moves down the left side of the tree, one zooms in on the
post-critically finite boundary point t = 1. This tree is symmetrical, because
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Fig. 2. Critical orbit behavior for ft with t ∈ D̄(1, 1/8).

fnt (t) = −fn−t(−t), and so ft is PCB if and only if f−t is PCB. In Figure 2,
we depict the disk D̄(1, 1/8) and the tree that emanates from it to give a
sense of the complexity of Mt.

Note that as one zooms in on t = 1, a self-similar pattern emerges, as
illustrated in Figure 3 and as shown in Proposition 6.1. This is reminis-
cent of the classical Mandelbrot set over C and its fractal-like boundary.
Beginning at D̄(1, 2−(2k+1)) for any k > 1, we see in Figure 3 that the pat-
tern repeats every time we move two levels down the tree toward 1. The disk
D̄(1 + 22k+2, 2−(2k+3)) corresponds to non-PCB maps, while the disks
D̄(1 + 3 · 22k+1, 2−(2k+3)) and D̄(1 + 5 · 22k+1, 2−(2k+4)) correspond to PCB
maps. The parameter values in the disk D̄(1 + 22k+1, 2−(2k+4)), labeled in
Figure 3 with a question mark, exhibit quite complicated behavior. Some
data collected with SAGE shows that for many values of k one often has
to move twenty or more levels down the tree before one finds a disk that is
entirely PCB or entirely non-PCB. Furthermore, the locations of these disks
vary with k, and there is no apparent pattern. This is where the boundary
of Mt seems to be most intricate.
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1

1

1

1

1

1

1+2
2k+1

?

?

Fig. 3. Critical orbit behavior for ft as t → 1. The top node corresponds to the disk
D̄(1, 2−(2k+1)) for some k ≥ 2.

Our examination of this one-parameter family of cubic polynomials in Q2

shows that Md,p can be quite complicated and interesting for p < d and is
an object worthy of further study.
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