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1. Introduction. Let K be a number field, α1, . . . , αm, λ1, . . . , λm non-
zero elements in K, and S a finite set of places of K (containing all the
infinite places) such that the ring of S-integers

OS = OK,S = {α ∈ K : |α|v ≤ 1 for places v /∈ S}
contains λ1, . . . , λm, α1, . . . , αm, α

−1
1 , . . . , α−1m . Then, for every n ∈ Z,

A(n) = λ1α
n
1 + · · ·+ λmα

n
m ∈ OS .

The expression A(n) will be called a power sum. The following conjecture
was suggested by Skolem [7].

Conjecture 1.1 (Exponential local-global principle). Assume that
for every non-zero ideal a of the ring OS, there exists n ∈ Z such that
A(n) ≡ 0 mod a. Then there exists n ∈ Z such that A(n) = 0.

Some particular cases of this conjecture, all addressing the instance when
m = 2 and {A(n)}n≥0 ⊆ Z, have been dealt with in [1, 4, 5, 6]. For some
results on the analogous Skolem conjecture over function fields, see [9].

In this note, we prove this conjecture in a special case. Let Γ be the
multiplicative group generated by α1, . . . , αm. Then Γ is the product of a
finite abelian group and a free abelian group of finite rank, say ρ. In this
case we shall call A(n) a power sum of rank ρ.

Theorem 1.2. Conjecture 1.1 holds for power sums of rank one.

Surprisingly enough, our proof makes no use of the Chebotarev theorem,
usually an indispensable ingredient in this kind of arguments. Instead, it
relies on two “heavy tools” from Diophantine Approximations. One is the
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celebrated Subspace Theorem of Schmidt–Schlickewei, which is used through
a theorem of Corvaja and Zannier (see Theorem 2.2). The other tool is
Baker’s inequality (see Theorem 3.5).

2. Heights and logarithmic gcd. In this section we recall and/or
introduce the definitions of the height and of the logarithmic gcd, and of
some related quantities, to be used throughout the article. We also state one
theorem of Corvaja and Zannier and obtain its consequence which will be
one of our principal tools.

2.1. Definitions. We normalize the absolute values on number fields so
that they extend standard absolute values on Q: if v | p then |p|v = p−1 and
if v |∞ then |2013|v = 2013. We denote by MK the set of places (normalized
absolute values) of the number field K.

The height of an algebraic number α is defined as

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log+ |α|v,

where K is a number field containing α and log+ = max{log, 0}. It is well-
known that the height does not depend on the particular choice of K, but
only on the number α itself. It is equally well-known that h(α) = h(α−1), so
that

h(α) =
1

[K : Q]

∑
v∈MK

−[Kv : Qv] log− |α|v =
∑
v∈MK

hv(α),

where log− = min{log, 0} and

hv(α) = − [Kv : Qv]

[K : Q]
log− |α|v.

The quantities hv(α) can be viewed as “local heights”. Clearly, hv(α) ≥ 0
for any v and α.

We define the logarithmic gcd of two algebraic numbers α and β, not
both 0, as

lgcd(α, β) =
∑
v∈MK

min{hv(α), hv(β)},

where K is a number field containing both α and β. Again, lgcd depends
only on α and β, not on K. A simple verification shows that for α, β ∈ Z we
have lgcd(α, β) = log gcd(α, β).

Now let K be a number field and S be a set of places of K. We define
the S-height and the S-free height by

hS(α) =
∑
v∈S

hv(α), h¬S(α) = hMKrS(α) = h(α)− hS(α).

Similarly we define lgcdS and lgcd¬S .
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The following properties of heights and logarithmic gcd are straightfor-
ward and will be used in the text without special notice.

Proposition 2.1.

(i) For non-zero algebraic numbers α, β, γ we have

lgcd(αβ, γ) ≤ lgcd(α, γ) + lgcd(β, γ),

and similarly for lgcdS.

In the next items, K is a number field, S is a set of places of K containing
the infinite places, and α, β, γ belong to the ring OS of S-integers.

(ii) α and β are co-prime in OS if and only if lgcd¬S(α, β) = 0.
(iii) If α and β are co-prime in OS then

lgcd¬S(αβ, γ) = lgcd¬S(α, γ) + lgcd¬S(β, γ).

(iv) We have lgcd¬S(α, β) ≤ h¬S(α), with equality exactly when α di-
vides β in OS.

2.2. A theorem of Corvaja and Zannier. One of our main tools will
be the following result of Corvaja and Zannier [2, p. 204, Corollary 1].

Theorem 2.2. Let Γ be a finitely generated subgroup of Q̄×, and ε > 0.
Then for multiplicatively independent α, β ∈ Γ we have

lgcd(α− 1, β − 1) ≤ εmax{h(α),h(β)}+O(1),

where the constant implied by O(1) depends on Γ and ε, but not on α or β.

The proof of this result is based on the Subspace Theorem of Schlickewei
and Schmidt.

We shall use Theorem 2.2 through the following statement.

Corollary 2.3. Let K be a number field, S a finite subset of MK
containing the infinite places, β, γ ∈ O×S multiplicatively independent, and
ε > 0. Then for k, n ∈ Z we have

lgcd¬S(γk − 1, γn − β) ≤ ε|k|+O(1),

where the implied constant depends on γ, β, K, S and ε, but not on k or n.

Proof. Replacing, if necessary, γ by γ−1, we may assume that k > 0.
Also, since n ≡ n′ mod k implies the congruence γn ≡ γn′ mod (γk − 1) in
the ring OS , we may assume that 0 ≤ n < k. Applying Theorem 2.2 with
Γ = 〈γ, β〉, with γk as α and with γnβ−1 as β, we obtain

lgcd¬S(γk−1, γn−β) = lgcd¬S(γk−1, γnβ−1−1) ≤ lgcd(γk−1, γnβ−1−1)

≤ ε(kh(γ) + h(β)) +O(1) = εh(γ)k +O(1).

Redefining ε, we obtain the result.
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3. Cyclotomic polynomials. In this section we establish properties of
the cyclotomic polynomials, needed for the proof. We denote by Φk(T ) the
kth cyclotomic polynomial. Since T k − 1 =

∏
d|k Φd(T ), we have

(1) Φk(T ) =
∏
d|k

(T d − 1)µ(k/d),

where µ is the Möbius function. We shall systematically use this in what
follows.

3.1. Divisibility. All the results of this subsection are well-known, but
it is easier to supply quick proofs than to find references.

Proposition 3.1. Let k and l be distinct positive integers. Then the
resultant of Φk(T ) and Φl(T ) divides (in Z) a power of kl.

Proof. The resultant of these polynomials is a product of factors of the
type ζk − ζl, where ζk (respectively, ζl) is a primitive kth (respectively, lth)
root of unity. The elementary theory of cyclotomic fields (see, for instance,
[10, Chapters 1 and 2]) implies that ζk − ζl divides kl in the ring Z[ζkl].
Hence the resultant divides a power of kl in Z[ζkl]. Since Q ∩ Z[ζkl] = Z, the
resultant divides the same power of kl in Z.

Corollary 3.2. Let K, S be as in the Introduction, and k, l as in Propo-
sition 3.1.

(i) Assume that S contains the places dividing kl. Then for any γ ∈ OS
we have gcd(Φk(γ), Φl(γ)) = 1 in the ring OS; that is, no prime
ideal of OS divides both Φk(γ) and Φl(γ).

(ii) Assume that S contains the places dividing kl and k - l. Then for
any γ ∈ OS we have gcd(Φk(γ), γl − 1) = 1 in the ring OS.

(iii) Assume that S contains the places dividing k. For γ ∈ O×S let p be
a prime ideal of OS dividing Φk(γ). Then γ is of exact order k in
(OS/p)×. In particular, if for some n ∈ Z we have γn ≡ 1 mod p
then k |n.

Proof. Part (i) is immediate from Proposition 3.1. For (ii) observe
that γl − 1 is a product of factors of the type Φl′(γ) with l′ | l, and by the
assumption none of these l′ is equal to k. Hence (ii) follows from (i). Finally,
(iii) follows immediately from (ii).

3.2. Heights. We need an asymptotic expression for the height of the
algebraic number Φk(γ), in terms of h(γ) and k. In general, if f(x) is a poly-
nomial with algebraic coefficients, then, using basic properties of heights, it
is not difficult to show that h(f(γ)) = deg f h(γ) +O(1) as f is fixed and γ
is varying. We, however, need a result of different type: find the asymptotics
of h(Φk(γ)) as γ is fixed, but k is growing.
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For a positive integer k we denote by ϕ(k) the Euler function and by
ω(k) the number of distinct prime divisors of k.

Proposition 3.3. Let γ be an algebraic number. Then

|h(Φk(γ))− ϕ(k)h(γ)| ≤ 2ω(k)(log k +O(1)),

where the constant implied by O(1) depends on γ, but not on k.

The proof requires a complex analytic lemma.

Lemma 3.4. For a positive integer k we have

max
|z|≤1

log |Φk(z)| ≤ 2ω(k)(log k +O(1)),

the maximum being over the unit disc on the complex plane, and the implied
constant being absolute.

Proof. By the maximum principle, it suffices to show that

(2) log |Φk(z)| ≤ 2ω(k)(log k +O(1))

for a complex z with |z| = 1. Thus, fix such z. We can write it in a unique
way as z = ζe2πiθ/k, where ζ is a kth root of unity (not necessarily primitive)
and −1/2 < θ ≤ 1/2. Let l be the exact order of ζ; thus, l is a divisor of k
and ζ is a primitive lth root of unity. Let d be any other divisor of k. If l - d
then 2 ≥ |zd − 1| ≥ 2 sin(πd/2k), which implies that

(3)
∣∣log |zd − 1|

∣∣ ≤ log k +O(1).

And if l | d then, we have |zd − 1| = 2 sin(πθd/k). Writing d = d′l, we get

(4) log |zd′l − 1| = log d′ − log(k/lθ) +O(1).

Identity (1) implies that

log |Φk(z)| =
∑
d|k

µ(k/d) log |zd − 1|

=
∑
d|k,l-d

µ(k/d) log |zd − 1|+
∑
d′|k/l

µ((k/l)/d′) log |zld′ − 1|.

Notice that the first sum above has at most 2ω(k) − 1 non-zero summands.
Now substituting here (3) and (4), we obtain

log |Φk(z)| ≤ (2ω(k) − 1)(log k +O(1)) +
∑
d′|k/l

µ

(
k/l

d′

)(
log d′ − log

(
k

lθ

))
= (2ω(k) − 1)(log k +O(1)) + Λ(k/l)− δ log(k/lθ),

where Λ(·) is the von Mangoldt function, δ = 0 if l < k and δ = 1 if l = k.
In any case we obtain (2), proving the lemma.
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Proof of Proposition 3.3. Fix a number field K containing γ. For a finite
place v of K we obviously have

(5) log+ |Φ(γ)|v =

{
ϕ(k) log |γ|v, |γ|v > 1,

1, |γ|v ≤ 1.

For infinite places we have similar “approximate” statements

(6) log+ |Φ(γ)|v
{

= ϕ(k) log |γ|v +O(2ω(k)), |γ|v > 1,

≤ 2ω(k)(log k +O(1)), |γ|v ≤ 1.

The second inequality follows from Lemma 3.4. To prove the first one, as-
sume that |γ|v > 1. Then for n ≥ 1 we have |γn − 1|v = n log |γ|v +O(1).
Using (1) we find

log |Φk(γ)|v =
∑
d|k

µ(k/d) log |γd − 1|v = log |γ|v
∑
d|k

dµ(k/d) +O(2ω(k))

= ϕ(k) log |γ|v +O(2ω(k)),

as desired.
The (in)equalities (5) and (6) imply that∣∣log+ |Φ(γ)|v − ϕ(k) log+ |γ|v

∣∣ {= 0, v finite,

≤ 2ω(k)(log k +O(1)), v infinite.

Summing this up over v ∈MK, we obtain the result.

3.3. Using Baker’s inequality. Besides Theorem 2.2 of Corvaja and
Zannier, our second principal tool is the celebrated inequality of Baker (see
the first two contributions in [11]).

Theorem 3.5. Let γ1, . . . , γr be non-zero algebraic numbers, and v a
place of a number field containing them. Then for any n1, . . . , nr ∈ Z we
have either γn1

1 · · · γnr
r = 1 or

|γn1
1 · · · γ

nr
r − 1|v ≥ e−C logN , N = max{2, n1, . . . , nr},

where C is a positive constant depending on γ1, . . . , γr and v, but not on
n1, . . . , nr.

We deduce from it the following property of cyclotomic polynomials,
inspired by the work of Schinzel [3] and Stewart [8].

Proposition 3.6. Let K be a number field, S a finite set of places of K,
and γ ∈ K not a root of unity. Then for any integer k > 1 we have

hS(Φk(γ)) = O(2ω(k) log k),

where the implied constant depends on K, S and γ, but not on k.

Proof. Since the set S is finite, it suffices to prove that for any v ∈MK
we have

hv(Φk(γ)) = O(2ω(k) log k);
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here and below the constants implied by O(·) depend only on γ and v.
Equivalently, we have to show that

(7)
∣∣log− |Φk(γ)|v

∣∣ = O(2ω(k) log k).

If |γ|v > 1 then log |Φk(γ)|v = ϕ(k) log |γ|v +O(2ω(k)) (see the proof of
Proposition 3.3). It follows that log− |Φk(γ)|v = O(2ω(k)), better than (7).

Now assume that |γ|v ≤ 1. Using Theorem 3.5 with r = 1, we deduce
that |γn − 1|v ≥ e−C logn with C > 0 depending on γ and v. Hence

log 2 ≥ log |γn − 1|v ≥ −C log n,

which implies that
∣∣log |γn − 1|v

∣∣ = O(log n). Using (1), we obtain

log |Φk(γ)|v =
∑
d|k

µ(k/d) log |γd − 1|v = O(2ω(k) log k),

which proves (7).

Combining Propositions 3.3 and 3.6, we obtain

Corollary 3.7. In the set-up of Proposition 3.6 we have

h¬S(Φk(γ)) = ϕ(k)h(γ) +O(2ω(k) log k).

4. Proof of Theorem 1.2. Let A(n) = λ1α
n
1 + · · ·+ λmα

n
m be a power

sum of rank 1. Assume that

(L) for every non-zero ideal a of the ring OS there exists n ∈ Z such that
A(n) ≡ 0 mod a.

We want to prove that

(G) there exists n ∈ Z such that A(n) = 0.

4.1. General observations. We start with some general observations,
which hold true for any power sum, not just power sums of rank 1.

Extension of the set of places. We may replace the set S by any bigger
(finite) set of places. Indeed, condition (G) does not depend on S, and con-
dition (L) becomes weaker when S is replaced by a bigger set. In particular,
extending the set S, we may assume that

(8) λ1, . . . , λm ∈ O×S .

Extension of the base field. We may replace the field K by a finite ex-
tension K′, the set S being replaced by the set of places S′ of K′ extending
those from K. Condition (G) is again not concerned, and condition (L) is
replaced by an equivalent one (each ideal of OK′,S′ is contained in an ideal
coming from OK,S).
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The group Γ is torsion-free. We may assume that the group Γ , gener-
ated by the “roots” α1, . . . , αm, is torsion-free. Indeed, since it is finitely
generated, its torsion subgroup is finite; denote its order by µ. Then the
group Γµ = {xµ : x ∈ Γ} is torsion-free. Now consider instead of A(n) the
power sum

Ã(n) = A(µn)A(µn+ 1) · · ·A(µn+ µ− 1) = λ̃1α̃
n
1 + · · ·+ λ̃m̃α̃

n
m̃.

Clearly, each of the conditions (L) and (G) holds simultaneously for A(n)

and Ã(n), and the group generated by α̃1, . . . , α̃m is contained in Γµ, a

torsion-free group. Hence we may replace A(n) by Ã(n) and assume that Γ
is torsion-free.

4.2. Using the rank 1 assumption. Now we use the assumption that
the rank of Γ is 1. Since we may assume that Γ is torsion-free, this means
that Γ = 〈γ〉, where γ ∈ K× is not a root of unity. Write αj = γνj with
νj ∈ Z. Assuming that ν1 < · · · < νm, we write

A(n) = λmγ
ν1nP (γn),

where

P (T ) = T νm−ν1 +
λm−1
λm

T νm−1−ν1 + · · ·+ λ2
λm

T ν2−ν1 +
λ1
λm
∈ K[T ].

Extending the field K, we may assume that it contains all the roots of the
polynomial P (T ). It follows from (8) that

(9) the roots of P (T ) are S-units.

Condition (G) is equivalent to saying that one of the roots of P (T )
belongs to Γ . Thus, we assume from now on that

(10) no root of P (T ) belongs to Γ ,

and we shall find a non-zero ideal a of OS such that P (γn) 6≡ 0 mod a for
any n ∈ Z. This will prove the theorem, since A(n) is equal to P (γn) times
an S-unit.

4.3. The ideal a. We are going now to define the ideal a. First of all,
we split the polynomial P (T ) into two factors: P (T ) = Pind(T )Pdep(T ), such
that each of the roots of Pind(T ) is multiplicatively independent of γ, and
those of Pdep(T ) are multiplicatively dependent on γ. Fix a positive integer q
such that βq ∈ Γ for every root β of Pdep(T ). Then for every such β we have
βq = γr, where r = r(β) ∈ Z. Further, fix a prime number p, not dividing q
and such that

(11) r(β) 6≡ r(β′) mod p
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for any roots β, β′ of Pdep(T ) such that r(β) 6= r(β′). Extending the set S
we may assume that

(12) all places dividing pq belong to S.

Assumption (12) has one implication that will be crucial in the sequel.

Observation. Let ζµ be a primitive µth root of unity for some µ | pq.
Then ζµ is of exact order µ modulo p for any prime ideal p of OS.

Indeed, if this is not true, then p | ζµ′ − 1 for some µ′ |µ, µ′ > 1, which
implies that p |µ, contradicting (12).

We let a be the principal ideal generated by a = Φpl(γ)Φplq(γ), where Φk
denotes the kth cyclotomic polynomial and the positive integer l will be
specified later. We will show that both Pind(γn) and Pdep(γn) have a “small”
common divisor with a. This will imply that, when l is chosen suitably, P (γn)
cannot be divisible by a for any n.

Until the end of the proof the constants implied by O(·) may depend on
the polynomial P (T ), on γ, on p and q, and on the parameter ε introduced
below, but they do not depend on l or n.

We claim the following.

Claim I. Fix ε > 0. Then for any n ∈ Z we have

lgcd¬S(Pind(γn), a) ≤ εpl +O(1).

Claim D. Let n be a rational integer. Then in the ring OS we have
either gcd(Pdep(γn), Φpl(γ)) = 1 or gcd(Pdep(γn), Φplq(γ)) = 1.

We postpone the proof of the claims until later, and now show how they
imply the theorem.

4.4. Proof of the theorem (assuming the claims). Assuming the
claims, we will now show that when the parameter l is chosen large enough,
we have P (γn) 6≡ 0 mod a for any n ∈ Z.

Thus, assume that for some n we have P (γn) ≡ 0 mod a. In other words,
both Φpl(γ) and Φplq(γ) divide P (γn) in the ring OS . In addition, Corol-
lary 3.2(i) together with (12) implies that they are co-prime in OS . It follows
that

lgcd¬S(P (γn), a) = lgcd¬S(P (γn), Φpl(γ)) + lgcd¬S(P (γn), Φplq(γ))(13)

= h¬S(Φpl(γ)) + h¬S(Φplq(γ))

= ϕ(pl)h(γ) + ϕ(plq)h(γ) +O(l)

(see Corollary 3.7).

On the other hand, Claim D implies that

lgcd¬S(Pdep(γn), a) ≤ max{h¬S(Φpl(γ)), h¬S(Φplq(γ))} = ϕ(plq)h(γ) +O(l),
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again by Corollary 3.7. Combining this with Claim I, we obtain

(14) lgcd¬S(P (γn), a) ≤ εpl + ϕ(plq)h(γ) +O(l).

Now select ε to have ε < (1− p−1)h(γ). Then (13) and (14) become contra-
dictory for large l. This proves the theorem.

4.5. Proof of Claim I. Clearly, a | γplq − 1. Corollary 2.3 implies that

lgcd¬S(γn − β, a) ≤ lgcd¬S(γn − β, γplq − 1) ≤ εplq +O(1).

Hence

lgcd¬S(Pind(γn), a) ≤ εplq degPind +O(1).

Redefining ε, we obtain the result.

4.6. Proof of Claim D. Let us assume the contrary and let p, p′ be
prime ideals of OS such that

p | gcd(Pdep(γn), Φpl(γ)) and p′ | gcd(Pdep(γn), Φplq(γ)).

There exist (not necessarily distinct) roots β, β′ of Pdep(T ) such that

γn ≡ β mod p, γn ≡ β′ mod p′.

Further, let r ∈ Z be such that βq = γr (see the beginning of Subsection 4.3).
Then γqn−r ≡ 1 mod p.

On the other hand, Corollary 3.2(iii) implies that for any root β of
Pind(T ) we have

(15) γ is of exact order pl in (OS/p)×.

In particular, qn ≡ r mod pl. Similarly, if r′ ∈ Z is such that (β′)q = γr
′
then

Corollary 3.2(iii) implies that qn ≡ r′ mod plq. We obtain the congruence
r ≡ r′ mod p, which, by our choice of p (see (11)), implies that r = r′. Thus,
we have qn ≡ r mod plq, which gives q | r. It follows that β = ζγν with ν ∈ Z
and ζ a qth root of unity, not necessarily primitive.

Now it is time to use our basic assumption (10). We deduce that β /∈ Γ ,
which means that ζ 6= 1. Thus, ζ = ζµ is a primitive µth root of unity with
µ | q and µ > 1.

Since ζµ ≡ γn−ν mod p, the image of ζµ in (OS/p)× belongs to the sub-
group generated by the image of γ. Hence the order of ζµ modulo p divides
the order of γ. But the order of ζµ is µ (see the Observation in Subsec-
tion 4.3), and the order of γ is pl (see (15)). Thus, µ | pl, which contradicts
co-primarity of p and q. This proves the claim.
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