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Mock modular forms and singular combinatorial series
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Amanda Folsom and Susie Kimport (New Haven, CT)

1. Introduction and statement of results. Let p(n) := #{integer
partitions of n}, where a partition of n ∈ N is defined to be any non-
increasing sequence of positive integers that sums to n. For example, the
partitions of 4 are: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1, so that p(4) = 5.
It is well known that the partition generating function satisfies

1 +
∑
n≥1

p(n)qn = q1/24η−1(τ)

upon specializing q = qτ := e2πiτ , τ ∈ H the upper complex half-plane,
where η(τ) := q1/24

∏
n≥1(1 − qn) is Dedekind’s η-function, a weight 1/2

modular form. More recently, Bringmann and Ono [8] studied the gen-
erating function for partition ranks, where the rank of a partition, after
Dyson, is defined to be the largest part of the partition minus the number
of parts. For example, the rank of the partition 2 + 1 + 1 is 2 − 3 = −1. If
N(m,n) := #{partitions of n with rank equal to m}, it is well known that
the associated two-variable generating function satisfies

1 +
∑
m∈Z

∑
n≥1

N(m,n)wmqn = 1 +
∑
n≥1

qn
2

(wq; q)n(w−1q; q)n
,(1.1)

where the q-Pochhammer symbol is defined for integers n ≥ 1 by (a; q)n :=
(1− a)(1− aq) · · · (1− aqn−1), and (a; q)0 := 1. In particular,

R(1; q) = 1 +
∑
n≥1

p(n)qn = q1/24η−1(τ),(1.2)

R(−1; q) = 1 +
∑
n≥1

qn
2

(−q; q)2n
= f(q),(1.3)

where f(q) is not a modular form, but one of Ramanujan’s original third
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order mock theta functions. Two major questions in number theory sur-
rounding f(q) and the other Ramanujan mock theta functions, 17 peculiar
q-series similar in shape to (1.3), persisted in the decades following Ramanu-
jan’s death in 1920:

1. How do Ramanujan’s mock theta functions fit into the theory of mod-
ular forms?

2. Is there an exact formula for the Fourier coefficients of the mock theta
function f(q)?

It was not until the groundbreaking 2002 thesis of Zwegers [26] that
the answer to the first question was finally provided: Ramanujan’s mock
theta functions exhibit suitable modular transformation properties after
they are completed by the addition of certain non-holomorphic functions.
(See [19, 24, 26] for example, and §3 for more detail.) Unifying (1.2) and
(1.3), Bringmann and Ono remarkably showed more generally in [8] that
upon specialization of the parameter w to certain complex roots of unity,
the rank generating function of (1.1) can be completed by the addition of a
suitable non-holomorphic integral to exhibit appropriate modular transfor-
mation properties. In particular, they establish the following theorem.

Theorem ([8, Theorem 1.1]). If 0 < a < c, then

q−`c/24R(ζac ; q`c) +
i sin(πa/c)`

1/2
c√

3

i∞�

−z

Θ(a/c; `cτ)√
−i(τ + z)

dτ

is a weak Maass form of weight 1/2 on Γc.

Here, ζn := e2πi/n is an nth root of unity, Θ(a/c; `cτ) is a certain weight
3/2 cusp form, `c := lcm(2c2, 24), and Γc is a particular subgroup of SL2(Z).
Weak Maass forms, originally defined by Bruiner and Funke [10], are (non-
holomorphic) generalizations of ordinary modular forms that in addition to
satisfying appropriate modular transformations, must be eigenfunctions of
a certain weight k Laplacian operator. The theory of weak Maass forms has
been substantially developed in the wake of Zwegers’s thesis in recent years.
(See [19] for a detailed history, and §3 for more detail and explicit defintions.)

Turning to the second question above, Andrews and Dragonette [1, 12]
established a detailed asymptotic formula for the Fourier coefficients of the
f(q) mock theta function that was in fact conjectured to give an exact for-
mula for the coefficients. Namely, let α(n) denote the nth Fourier coefficient
of f(q), that is,

f(q) = 1 +
∑
n≥1

α(n)qn = 1 + q − 2q2 + 3q3 − 3q4 + 3q5 − 5q6 + · · · .

Andrews and Dragonette conjectured for n ≥ 1 that the coefficients α(n)
are equal to



Mock modular forms 259

(1.4) π(24n− 1)−1/4
∑
`≥1

(−1)b(`+1)/2cA2`(n− `(1 + (−1)`)/4)

`

× I1/2
(
π
√

24n− 1

12`

)
,

where Iα(x) denotes the usual I-Bessel function, and the Kloosterman sum
A`(n) is defined in (6.24) below. A second celebrated result of Bringmann
and Ono [7] establishes that indeed, the Andrews–Dragonette conjecture is
true: (1.4) gives an exact formula for the Fourier coefficients α(n) of the
mock theta function f(q), thus answering the second major question above.

Here, we turn our attention to the problem of understanding the auto-
morphic properties of certain combinatorial q-series arising from k-marked
Durfee symbols, as originally defined by Andrews in [2]. To each partition,
Andrews associates a Durfee symbol. For example, the Durfee symbol(

2

2 1

)
4

represents the partition 5+5+4+4+2+1 of 21. Using k copies of the integers,
Andrews more generally defines k-marked Durfee symbols. Analogous to the
rank of a partition, Andrews defines a notion of rank for each of the k
copies of the integers used to define the k-marked Durfee symbols. (See §2
for more detailed definitions and descriptions.) If Dk(m1, . . . ,mk;n) denotes
the number of k-marked Durfee symbols arising from partitions of n with
ith rank equal to mi, Andrews [2] shows that the k + 1-variable generating
function may be expressed as follows.

Theorem ([2, Theorem 10]). For k ≥ 1,
∞∑

n1,...,nk=−∞

∑
n≥0
Dk(n1, . . . , nk;n)xn1

1 x
n2
2 · · ·x

nk
k q

n = Rk(x; q),(1.5)

where

(1.6) Rk(x; q)

:=
∑
m1≥0

m2,...,mk≥0

q(m1+···+mk)2+(m1+···+mk−1)+(m1+···+mk−2)+···+m1

(x1q; q)m1(q/x1; q)m1(x2qm1 ; q)m2+1(qm1/x2; q)m2+1

× (x3q
m1+m2 ; q)−1m3+1

(
qm1+m2

x3
; q

)−1
m3+1

· · · (xkqm1+···+mk−1 ; q)−1mk+1

(
qm1+···+mk−1

xk
; q

)−1
mk+1

and x := (x1, . . . , xk).
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When k = 1, one recovers Dyson’s rank, that is, D1(n1;n) = N(n1, n).
The modularity of the associated two-variable generating function R1(x; q)
= R(x; q) was studied in [8] as described above. When k = 2, the modularity
of R2(1, 1; q) was originally studied by Bringmann in [4], who shows that

R2(1, 1; q) :=
1

(q)∞

∑
n6=0

(−1)n−1q3n(n+1)/2

(1− qn)2
,

where (a; q)∞ :=
∏
j≥0(1 − aqj) and (q)∞ := (q; q)∞, is a quasimock theta

function (see §3). In [5], Bringmann, Garvan, and Mahlburg show more
generally that Rk(1, . . . , 1; q) is a quasimock theta function for k ≥ 2. (See
[4] and [5] for precise details of these statements.)

Here, we establish the automorphic properties of general infinite familes
of combinatorial q-series Rk(x1, . . . , xk; q), for more arbitrary parameters
(x1, . . . , xk), thereby treating families of k-marked Durfee functions with
additional singularities to those of Rk(1, . . . , 1; q). We point out that the
techniques of Andrews [2] and Bringmann [4] are not directly applicable in
our setting due to the presence of such additional singularities. We show
that these singular combinatorial families are essentially mixed mock and
quasimock modular forms, and we provide their explicit non-holomorphic
completions. To this end, we define a non-holomorphic completion B̂k(ζk; q)
of the combinatorial series Rk(ζk; q) by

B̂k(ζk; q) := q−1/24(B+
k (ζk; q) +B−k (ζk; q)).(1.7)

Here, the “holomorphic part” q−1/24B+
k (ζk; q) of B̂k(ζk; q) is defined by

B+
k (ζk; q) := Rk(ζk; q) + bk(ζk; q),(1.8)

where the combinatorial series Rk(ζk; q) is defined in (1.6), and the holomor-
phic function bk(ζk; q) is defined in (4.4) below. The “non-holomorphic part”

q−1/24B−k (ζk; q) of B̂k(ζk; q) is defined in (4.3). Analogous to Theorem 1.1
of [8] stated above, we establish the following theorem.

Theorem 1.1. If k ≥ 2 is an integer, then

B̂k(ζk; q) = Ĥ(ζk; q) + Â(ζk; q),

where Ĥ(ζk; q), defined in (4.25), is a non-holomorphic modular form of

weight 3/2 on Γk,N with character χ−1γ , and Â(ζk; q), defined in (4.26), is a

non-holomorphic modular form of weight 1/2 on Γk,N with character χ−1γ .

Here, ζk = ζk,N is a length k vector consisting of roots of unity defined

in (4.21), the subgroup Γk,N ⊆ SL2(Z) under which B̂k(ζk; q) transforms is
defined in (4.28), and Nebentypus character χ−1γ is given in Lemma 3.2.

Remark 1. Loosely speaking, Zagier has recently defined a mixed mock
modular form [25] to be a finite sum of products of mock modular forms and
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modular forms. Other recent works in which this notion of a mixed mock
modular form appears include [6], [11], [14], and [21], for example. Here,

the holomorphic parts B+
k of B̂k, which are defined in (1.8) in terms of Rk,

consist of linear combinations of mixed mock modular forms, and also terms
consisting of derivatives d

duφ(u, τ)
∣∣
u=0

of mock Jacobi forms φ(u, τ) in the
Jacobi u variable evaluated at u = 0, multiplied by modular forms. See §4
for explicit details, and the modular transformations of the associated forms.

Remark 2. We point out that the dependence of the vector ζk on k is
reflected only in the length of the vector, and not (necessarily) in the roots
of unity that are its components. In particular, the vector components may
be chosen to be nth roots of unity for different values of n (see (4.21), and
Examples 1 and 2 below).

The techniques we use to prove Theorem 1.1 may be adapted appropri-
ately to study other singular families. As an example, we consider a second
infinite family of k = 2r + 1-marked Durfee symbols for integers r ≥ 1, with
x = ζ′2r , a length 2r+1 vector of roots of unity defined in (5.1), on a subgroup
Γ ′r ⊆ SL2(Z) defined in (5.14). To this end, we define a non-holomorphic

completion Ĉ2r+1(ζ
′
2r ; q

24) of the combinatorial series R2r+1(ζ
′
2r ; q

24) by

Ĉ2r+1(ζ
′
2r ; q

24) := q−1C+
2r+1(ζ

′
2r ; q

24) + C−2r+1(ζ
′
2r ; q

24).(1.9)

Here, the “holomorphic part” q−1C+
k (ζ′2r ; q

24) of Ĉk(ζ
′
2r ; q

24) is defined by

C+
2r+1(ζ

′
2r ; q

24) := R2r+1(ζ
′
2r ; q

24) + c2r+1(ζ
′
2r ; q

24),(1.10)

where the combinatorial series R2r+1(ζ
′
2r ; q

24) is defined in (1.6), and the
holomorphic function c2r+1(ζ

′
2r ; q

24) is defined in (5.3). The “non-holomor-

phic part” C−2r+1(ζ
′
2r ; q

24) of the function Ĉ2r+1(ζ
′
2r ; q

24) is defined in (5.4).

Theorem 1.2. If r ≥ 1 is an integer, then q−1Ĉ2r+1(ζ
′
2r ; q

24) is a non-
holomorphic modular form of weight 3/2 on Γ ′r with character (12· ).

Remark 3. The function Ĉ2r+1(ζ
′
2r ; q) is of similar shape to the function

B̂k(ζk; q) as described in Remark 1, yet also includes the quasimodular form
E2(τ) (defined in (3.1)). See §4 for explicit details.

We illustrate the diversity of the combinatorial series to which Theorems
1.1 and 1.2 apply in the following examples.

Example 1. We begin with a more colorful example, chosen to contrast
with Example 2. We let k = 7, and choose ζ7 = (ζ423, ζ

4
23, ζ5, ζ5, ζ

11
108, ζ3, i).

In this case, the combinatorial generating function R7(ζk; q) is of the form

1

(q)∞

∑
n≥1

(−1)n−1q(3n
2+11n)/2(1−q2n)2(1−qn)2(1−q3n)−1(1−q4n)−1(

1−2 cos
(
8π
23

)
qn+q2n

)2(
1−2 cos

(
2π
5

)
qn+q2n

)2(
1−2 cos

(
11π
54

)
qn+q2n

) .
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By Theorem 1.1, this function is essentially a sum of mixed mock modu-
lar forms. The completed non-holomorphic combinatorial function is given
explicitly by (1.7).

Example 2. A perhaps tamer example to be contrasted with Example 1
is the combinatorial generating function

R3(1, 1,−1; q) = R3(q) :=
1

(q)∞

∑
n6=0

(−1)n−1q3n(n+1)/2

(1− q2n)2
(1.11)

=:

∞∑
n=1

a3(n)qn,

which arises after specializing r = 1 in Theorem 1.2. If we let Ni,k(r, t;n)
denote the number of k-marked Durfee symbols of n with ith rank congruent
to r modulo t, then (as explained in [2] and §2) the series R3(q) is the
combinatorial generating function

R3(q) =

∞∑
n=1

N3,3(0, 2;n)qn −
∞∑
n=1

N3,3(1, 2;n)qn,

so that

a3(n) = N3,3(0, 2;n)−N3,3(1, 2;n).(1.12)

We point out the similar combinatorial description of the coefficients a3(n)
described in (1.12) and the coefficients α(n) of Ramanujan’s mock theta
function f(q) discussed above, which may be expressed as

f(q) = 1 +
∞∑
n=1

N(0, 2;n)qn −
∞∑
n=1

N(1, 2;n)qn,

where N(r, t;n) := N1,1(r, t;n). Here, by Theorem 1.2, R3(q) is essentially
a mixed quasimock modular form. The completed non-holomorphic combi-
natorial function is given by (1.9).

Next we address an open problem of Andrews.

Open Problem (Andrews [2, Problem 11]). In light of Bringmann’s
asymptotics for the rank partition functions. . . and the recent breakthroughs
by Bringmann and Ono on the exact formulas for the coefficients in
the power series of the mock theta functions. . . provide similar results for
Dk(n). . .

Bringmann has addressed the special case pertaining to R2(1, 1; q) in [4].
Here we address another special case of Andrews’s open problem pertaining
to R3(1, 1,−1; q) as defined in (1.11), which arises after setting r = 1 in
our family R2r+1 of Theorem 1.2. We establish the following asymptotic
result.
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Theorem 1.3. Let ε > 0. Then for all n ≥ 1,

a3(n) =

bn1/2c∑
`=1

A`(n)

[
π(24n− 1)1/4

48`
I−1/2

(
π

6`

√
24n− 1

)
− 3

8(24n− 1)1/4

(1.13)

× I1/2
(
π

6`

√
24n− 1

)
− 5π

48`(24n− 1)3/4
I3/2

(
π

6k

√
24n− 1

)]

−
bn1/2c∑
`=1
` even

Ae`(n)

[
π

8`(24n− 1)1/4
I1/2

(
π

6`

√
24n− 1

)]
+O(n1+ε).

Here, Iα(x) denotes the usual I-Bessel function of order α, and the
Kloosterman sums A`(n) and Ae`(n) are defined in (6.24) and (6.25) re-
spectively. In particular, the first term in (1.13) gives the main term in the
asymptotic expansion for a3(n).

Corollary 1.4. Assuming the notation above, as n→∞, we have

a3(n) ∼
√

3

48
e
π
6

√
24n−1.

The remainder of the paper is structured as follows. In §2, we provide
preliminary results and definitions pertaining to k-marked Durfee symbols.
In §3 we describe relevant automorphic objects and various associated prop-
erties. In §4 we prove Theorem 1.1, and in §5 we prove Theorem 1.2. In
§6 we prove Theorem 1.3, and as a corollary (Corollary 6.4) provide modu-
lar transformation laws for a family of universal mock theta functions after
Gordon-McIntosh [16].

2. k-marked Durfee symbols. Here we recall the definition of k-
marked Durfee symbols as defined by Andrews in [2] and their connection
to the functions Rk(x; q) as defined in (1.6). Recall that the Durfee square
(named by Sylvester) is the largest square of nodes in the Ferrers graph of
a partition (see [3]). Andrews associates to each partition a Durfee sym-
bol where the top row consists of the columns to the right of the Durfee
square, the bottom row consists of the rows below the Durfee square, and
the subscript denotes the side length of the Durfee square. The number be-
ing partitioned is equal to the sum of the rows plus the size of the Durfee
square. The example considered in §1,(

2

2 1

)
4

,(2.1)

represents the partition 5+5+4+4+2+1 of the number 2+2+1+42 = 21.



264 A. Folsom and S. Kimport

To define the k-marked Durfee symbol, Andrews uses k copies of the inte-
gers (k∈N), denoted by {11, 21, 31, . . . }, {12, 22, 32, . . . }, . . . , {1k, 2k, 3k, . . . }
(see [2]). The k-marked Durfee symbols are formed as before, but use the
k copies of the integers as the parts in both rows. The number being parti-
tioned is equal to the sum of the rows plus the size of the Durfee square. In
addition, the following restrictions are imposed:

(1) the sequence of subscripts in each row is non-increasing;
(2) each of the subscripts 1, . . . , k − 1 must occur at least once in the

top row; and
(3) if M1, . . . ,Mk−1 are the largest parts with their respective subscripts

in the top row, then all parts in the bottom row with subscript 1 lie
in [1,M1], with subscript 2 lie in [M1,M2], . . . , with subscript k− 1
lie in [Mk−2,Mk−1], and with subscript k lie in [Mk−1, S], where S
is the side of the Durfee square.

For example, three of the 133 3-marked Durfee symbols for 7 are:(
22 11

)
2

,

(
13 12 11

13 13 11

)
1

,

(
12 11

11

)
2

.

For partitions of n formed using one copy of the integers, Dyson’s notion
of the rank of a partition (i.e. the largest part minus the number of parts of
the partition as defined in §1) can be obtained using the Durfee symbol. For
example, the rank of the partition 5 + 5 + 4 + 4 + 2 + 1 of 21 is 5− 6 = −1.
Alternatively, the rank of a partition can be obtained from the Durfee symbol
as the number of entries in the top row minus the number of entries in the
bottom row. Using the Durfee symbol for 5 + 5 + 4 + 4 + 2 + 1 given in (2.1),
we find that the rank is indeed 1− 2 = −1.

Andrews associates a similar notion of rank to each of the k copies of
the integers used to define the k-marked Durfee symbols. Suppose δ is a k-
marked Durfee symbol, and denote by τi(δ) (respectively βi(δ)) the number
of entries in the top (resp. bottom) row of δ with subscript i. Then Andrews
defines ρi(δ), the ith rank of δ, by

ρi(δ) =

{
τi(δ)− βi(δ)− 1 for 1 ≤ i < k,

τi(δ)− βi(δ) for i = k.

Andrews notes that for k = 1, ρ1(δ) is Dyson’s rank. Defining

Dk(m1, . . . ,mk;n)

to be the number of k-marked Durfee symbols arising from partitions of n
with ith rank equal to mi, Andrews [2] established that the k + 1-variable
generating function is given by (1.5).
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3. Automorphic forms. In this section, we define relevant automor-
phic objects, and give various associated properties.

3.1. Weak Maass forms. Assume that κ ∈ 1
2Z, and Γ is a congruence

subgroup of either SL2(Z) or Γ0(4), depending on whether or not κ ∈ Z.
The weight κ slash operator, defined for a matrix γ =

(
a b
c d

)
∈ Γ and any

function f : H→ C, is given by

f
∣∣
κ
γ(τ) := j(γ, τ)−2κf

(
aτ + b

cτ + d

)
where

j(γ, τ) :=

{√
cτ + d if κ ∈ Z,(
c
d

)
ε−1d
√
cτ + d if κ ∈ 1

2Z \ Z.

Here

εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

To define weak Maass forms, we also require the weight κ hyperbolic Laplace
operator (τ = x+ iy)

∆κ := −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iκy

(
∂

∂x
+ i

∂

∂y

)
.

Definition 3.1. Let κ ∈ 1
2Z, N a positive integer, χ a Dirichlet charac-

ter modulo N , λ ∈ C. A weak Maass form of weight κ for Γ with Nebentypus
character χ and Laplace eigenvalue λ is a smooth function f : H→ C satis-
fying:

(1) For all γ =
(
a b
c d

)
∈ Γ and all τ ∈ H, we have f

∣∣
κ
γ(τ) = χ(d)f(τ).

(2) ∆κf = λf.
(3) The function f has at most linear exponential growth at all cusps.

Harmonic weak Maass forms (originally defined by Bruinier–Funke [10])
are those weak Maass forms with eigenvalue λ = 0, and have been of partic-
ular interest. (In [10], one can find a more precise description of condition (3)
in the definition above.) It is known that harmonic weak Maass forms natu-
rally decompose into two parts: a holomorphic part and a non-holomorphic
part. For example, it is known [17, 23] that the generating function for
Hurwitz class numbers H(n) of binary quadratic forms of discriminant −n
is (essentially) the holomorphic part of the following weak Maass form of
weight 3/2 and level 4, the Zagier–Eisenstein series:

− 1

12
+

∑
n≥1

n≡0,3 (mod 4)

H(n)qn +
1 + i

16π

i∞�

−τ

Θ(z)

(z + τ)3/2
dz,
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where Θ(τ) :=
∑

n q
n2
. The holomorphic parts of harmonic weak Maass

forms are called mock modular forms [24].

3.2. Holomorphic and almost holomorphic modular forms. A
harmonic weak Maass form with trivial non-holomorphic part is a weakly
holomorphic modular form (i.e. is holomorphic on H, but may have poles
in cusps). If the aforementioned modular forms are also holomorphic in
the cusps, they are called holomorphic modular forms. A special ordinary
modular form we require here is Dedekind’s η-function, defined by

η(τ) := q1/24
∏
n≥1

(1− qn).

This function is well known to satisfy the following transformation law [20].

Lemma 3.2. For γ =
(
a b
c d

)
∈ SL2(Z), we have

η(γτ) = χγ(cτ + d)1/2η(τ),

where

χγ :=

{
eπib/12 if c = 0, d = 1,
√
−i ω−1d,ce

πia+d
12c if c > 0,

with ωd,c := eπis(d,c), and the Dedekind sum s(m, t) is given for coprime
integers m and t by

s(m, t) :=
∑
jmod t

((
j

t

))((
mj

t

))
,

where ((x)) := x− bxc − 1/2 if x ∈ R \ Z, and ((x)) := 0 if x ∈ Z.

We also encounter almost holomorphic modular forms, which as origi-
nally defined by Kaneko–Zagier [18], transform like usual modular forms,
but are polynomials in 1/y, where y = Im(τ), with holomorphic coeffi-
cients. Well known examples of almost holomorphic modular forms include
derivatives of holomorphic modular forms, as well as the non-holomorphic
Eisenstein series Ê2, defined by Ê2(τ) := E2(τ)− 3/πy, with “holomorphic
part” E2(τ) given by

E2(τ) := 1− 24
∑
n≥1

σ1(n)qn,(3.1)

where σ1(n) is the sum of positive integer divisors of n. In general, the
holomorphic part of an almost holomorphic modular form is called a quasi-
modular form.

3.3. Holomorphic and mock Jacobi forms. In [26], Zwegers studied
another type of automorphic object commonly referred to as a mock Jacobi
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form. Before describing these forms, we recall the definition of a holomorphic
Jacobi form, after Eichler and Zagier [13].

Definition 3.3. A holomorphic Jacobi form of weight κ and index M
(κ,M ∈ N) on a subgroup Γ ⊆ SL2(Z) of finite index is a holomorphic
function ϕ(z; τ) : C × H → C which for all γ =

(
a b
c d

)
∈ Γ and λ, µ ∈ Z

satisfies

(1) ϕ
(

z
cτ+d ; γτ

)
= (cτ + d)κe

2πiMcz2

cτ+d ϕ(z; τ),

(2) ϕ(z + λτ + µ; τ) = e−2πiM(λ2τ+2λz)ϕ(z; τ),

(3) ϕ(z; τ) has a Fourier development of the form
∑

n,r c(n, r)q
ne2πirz

with c(n, r) = 0 unless n ≥ r2/4M .

Jacobi forms with multipliers and of half-integral weight, meromorphic
Jacobi forms, and weak Jacobi forms are defined similarly with suitable
modifications made, and have been studied in [13] and [26], for example.
A canonical example of a (weight 1/2) Jacobi form is Jacobi’s theta function,
defined by

(3.2) ϑ(z; τ) = ϑ(z) :=
∑

ν∈1/2+Z

eπiν
2τ+2πiν(z+1/2);

here and throughout, we may omit the dependence of various functions on
the variable τ when the context is clear. In [27], Zwegers considers a family
of “level `” Appell–Lerch functions, ` ∈ N, extending work in [26] pertaining
to the case ` = 1. For u, v ∈ C, τ ∈ H these functions are defined by

A`(u, v; τ) := eπi`u
∑
n∈Z

(−1)`nq`n(n+1)/2e2πinv

1− qne2πiu
.

Alone, the A`(u, v; τ) do not transform like Jacobi forms as in Definition 3.3.
Zwegers completes the series A`(u, v; τ) to non-holomorphic functions

Â`(u, v; τ) defined by

Â`(u, v; τ) :=

A`(u, v; τ) +
i

2

`−1∑
j=0

e2πijuϑ

(
v + jτ +

`− 1

2
; `τ

)
R

(̀
u− v − jτ − `− 1

2
; `τ

)
,

where ϑ(z; τ) is as in (3.2), and

R(u; τ) :=
∑

ν∈1/2+Z

{
sgn(ν)− E

((
ν +

Im(u)

Im(τ)

)√
2 Im(τ)

)}
× (−1)ν−1/2q−ν

2/2e−2πiνu,
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with u ∈ C, τ ∈ H, and

E(z) := 2

z�

0

e−πu
2
du, z ∈ R.

Proposition (Zwegers [27]). For all n1, n2,m1,m2 ∈ Z and γ =
(
a b
c d

)
∈ SL2(Z), the completed level ` Appell functions Â` satisfy

Â`(u+ n1τ +m1, v + n2τ +m2; τ)(3.3)

= (−1)`(n1+m1)e2πi(u(`n1−n2)−vn1)q`n
2
1/2−n1n2Â`(u, v; τ),

Â`

(
u

cτ + d
,

v

cτ + d
; γτ

)
= (cτ + d)eπic(−`u

2+2uv)/(cτ+d)Â`(u, v; τ).(3.4)

4. Proof of Theorem 1.1. In §4.1, we define three auxiliary functions
F̂m,s(z, τ), Ĝm,s(z, τ) and Ĥm,s(z; τ), and establish their modular transfor-
mation properties. In §4.2, we relate the singular combinatorial generating
functions Rk(ζk; q) to the auxiliary functions. In §4.3, we prove Theorem 1.1.

4.1. Auxiliary functions I. Let z := (z1, . . . , zk) ∈ Rk, for some fixed
integer k ≥ 2, and let N be a fixed integer satisfying 0 ≤ N ≤ bk/2c. For
such fixed pairs (k,N) we define for each 1 ≤ m ≤ N and N+1 ≤ n ≤ k−N
respectively

Πm(z, w) := (1− e(−2zm))(4.1)

×
N∏
j=1
j 6=m

(e(w+zm)− e(zj))2
(

1− 1

e(w + zm + zj)

)2

×
k−N∏
`=N+1

(e(w + zm)− e(z`))
(

1− 1

e(w + zm + z`)

)
,

Π†n(z) :=

N∏
j=1

(e(zn)− e(zj))2
(

1− 1

e(zn + zj)

)2

(4.2)

×
k−N∏
`=N+1
6̀=n

(e(zn)− e(z`))
(

1− 1

e(zn + z`)

)
,

where w ∈ R, and here and throughout, e(x) := e2πix. (As usual, we take
the empty product to equal 1.) Using the products defined in (4.1) and
(4.2), we define, assuming the notation above, with s ∈ R, the following
limiting differences of higher Appell functions, and their corresponding “non-
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holomorphic parts”, respectively, by

F+
m,s(z; τ) := lim

w→0

e(−zm)

e(w)− e(−w)

×
(
esπiw

A3(−w + zm,−2τ ; τ)

Πm(z,−w)
− e−sπiwA3(w + zm,−2τ ; τ)

Πm(z, w)

)
,

F−m,s(z; τ) := lim
w→0

e(−zm)

e(w)− e(−w)

×
(
esπiw

R3(−w + zm,−2τ ; τ)

Πm(z,−w)
− e−sπiwR3(w + zm,−2τ ; τ)

Πm(z, w)

)
,

where

R3(u, v; τ) :=
i

2

2∑
j=0

e(ju)ϑ(v + jτ + 1; 3τ)R(3u− v − jτ − 1; 3τ).

Using F−m,s(z; τ), R3(u, v; τ), Πm(z;w) and Π†n(z), we also define the “non-
holomorphic” function

(4.3) B−k (ζk; q) :=
1

(q)∞

N∑
i=1

(ζ−αi2βi
F−i,1(αk, w; τ)− ζ−3αi2βi

F−i,3(αk, w; τ))

+
1

(q)∞

k−N∑
i=N+1

(ζ−3αi2βi
− ζ−αi2βi

)
R3(αi/βi,−2τ ; τ)

Π†i (αk)

+
1

(q)∞

N∑
j=1

ζ
−αj
2βj

ζ
−αj
βj

2

(
3

Πj(αk, 0)
+

d
dwΠj(αk, w)

∣∣
w=0

πi(Πj(αk, 0))2

)
R3

(
αj
βj
,−2τ ; τ

)

− 1

(q)∞

N∑
j=1

ζ
−3αj
2βj

ζ
−αj
βj

2

(
1

Πj(αk, 0)
+

d
dwΠj(αk, w)

∣∣
w=0

πi(Πj(αk, 0))2

)
R3

(
αj
βj
,−2τ ; τ

)
,

and using A3(u, v; τ) also the holomorphic function

(4.4) bk(ζk; q) :=

1

(q)∞

N∑
j=1

ζ
−αj
2βj

ζ
−αj
βj

2

(
3

Πj(αk, 0)
+

d
dwΠj(αk, w)

∣∣
w=0

πi(Πj(αk, 0))2

)
A3

(
αj
βj
,−2τ ; τ

)

− 1

(q)∞

N∑
j=1

ζ
−3αj
2βj

ζ
−αj
βj

2

(
1

Πj(αk, 0)
+

d
dwΠj(αk, w)

∣∣
w=0

πi(Πj(αk, 0))2

)
A3

(
αj
βj
,−2τ ; τ

)
,

where the vectors αk are defined in (4.20). We will show in §4.2 and §4.3
how (4.3) and (4.4) may indeed be used to “complete” the combinatorial
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function Rk(ζk; q). Before doing so, using F+
m,s, F

−
m,s, and Â3, we define

F̂m,s(z; τ) := F+
m,s(z; τ) + F−m,s(z; τ),

(4.5)

Ĝm,s(αk; τ) :=
ζ−αmβm

2

(
4− s

Πm(αk, 0)
+

d
dwΠm(αk, w)

∣∣
w=0

πi(Πm(αk, 0))2

)
× Â3

(
αm
βm

,−2τ ; τ

)
,

Ĥm,s(αk; τ) := F̂m,s(αk; τ) + Ĝm,s(αk; τ).(4.6)

We establish the following proposition which gives the modular transforma-
tion properties of the non-holomorphic functions F̂m,s, Ĝm,s, and Ĥm,s, for
a fixed integer m, 1 ≤ m ≤ N .

Proposition 4.1. Let γ :=
(
a b
c d

)
∈ Γ0(2β2m) ∩ Γ1(2βm). We have

F̂m,s(αk; γτ) = (cτ + d)2F̂m,s(αk; τ)(4.7)

+ ((cτ + d)2 − (cτ + d))Ĝm,s(αk; τ),

Ĝm,s(αk; γτ) = (cτ + d)Ĝm,s(αk; τ),(4.8)

Ĥm,s(αk; γτ) = (cτ + d)2Ĥm,s(αk; τ).(4.9)

Proof. We first prove (4.7). For ease of notation, we let α = αm and β =
βm, and define the supplementary functions

ε±α/β(w) = ε±α/β(w; τ, γ) := eπic(−3(cτ+d)(α/β±w)
2−4(aτ+b)(α/β±w)),

ξ±α/β(w) = ξ±α/β(w; τ, γ) := e−2πi(α/β±w)(cτ+d)(−2a+2),

ψ±α/β(w) = ψ±α/β(w; τ, γ) := e
3πi(α

β
(c+d−1))

e
6πicα
β

(α/β±w(cτ+d))
q

3c2α2

2β2
+ 2cα

β .

We compute, using (3.3) and (3.4), that

(4.10) Â3(α/β ± w,−2γτ ; γτ)

= (cτ + d)ε±α/β(w)ξ±α/β(w)ψ±α/β(w)Â3(α/β ± w(cτ + d),−2τ ; τ),

where we have imposed the stated hypotheses on γ. Using (4.5) and (4.10),
we rewrite

F̂m,s(αk; γτ) = (cτ + d)(f+m,s(αk; γ, τ) + f−m,s(αk; γ, τ)),(4.11)
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where

f+m,s(αk; γ, τ) := lim
w→0

e(−α/β)

e(w)− e(−w)

×
(
esπiw

A3(α/β − w(cτ + d),−2τ ; τ)

Πm(αk,−w)
ε−α/β(w)ξ−α/β(w)ψ−α/β(w)

− e−sπiwA3(α/β + w(cτ + d),−2τ ; τ)

Πm(αk, w)
ε+α/β(w)ξ+α/β(w)ψ+

α/β(w)

)
,

f−m,s(αk; γ, τ) := lim
w→0

e(−α/β)

e(w)− e(−w)

×
(
esπiw

R3(α/β − w(cτ + d),−2τ ; τ)

Πm(αk,−w)
ε−α/β(w)ξ−α/β(w)ψ−α/β(w)

− e−sπiwR3(α/β + w(cτ + d),−2τ ; τ)

Πm(αk, w)
ε+α/β(w)ξ+α/β(w)ψ+

α/β(w)

)
.

We first consider f+m,s(αk; γ, τ). Before rewriting this function, we define
additional supplementary functions

h(w) = hs,n(αm/βm, w; γ, τ) :=
esπiw+3πi(−w+αm/βm)

1− e(−w + αm/βm)qn
,

h̃(w) = h̃s,n(αm/βm, w; γ, τ) := h(w(cτ + d))g(w),

where

g(w) = gs(αm/βm, w; γ, τ)

:= e−sπiw(cτ+d)+sπiwε−αm/βm(w)ξ−αm/βm(w)ψ−αm/βm(w).

In what follows, we will use the following formulas, which are not difficult
to show:

(4.12)

d

dw
h(w)

∣∣∣∣
w=0

= − 2πie3πiα/β

(1− ζαβ qn)2
+
πie3πiα/β(s− 1)

1− ζαβ qn
,

h(0) =
e3πiα/β

1− ζαβ qn
,

where again for ease of notation we have replaced αm/βm by α/β. After two
lengthy yet straightforward calculations, using the hypotheses on γ, we find
that

d

dw
h̃(w)

∣∣∣∣
w=0

= −2πie3πiα/β(cτ + d)

(1− ζαβ qn)2
(4.13)

+
πie3πiα/β(3(cτ + d) + (s− 4))

1− ζαβ qn
,
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h̃(0) =
e3πiα/β

1− ζαβ qn
.(4.14)

Using (4.12)–(4.14), and L’Hôpital’s rule, we find that

(4.15) lim
w→0

1

e(w)− e(−w)

(esπiwe−3πiw(cτ+d)ε−α/β(w)ξ−α/β(w)ψ−α/β(w)

Πm(αk,−w)(1− ζαβ e(−w(cτ + d))qn)

−
e−sπiwe3πiw(cτ+d)ε+α/β(w)ξ+α/β(w)ψ+

α/β(w)

Πm(αk, w)(1− ζαβ e(w(cτ + d))qn)

)

=
e3πiα/β

(Πm(αk, 0))2

(
−(cτ + d)

(1− ζαβ qn)2
+

3(cτ + d) + (s− 4)

2(1− ζαβ qn)

− d

dw
Πm(αk, w)

∣∣∣∣
w=0

e3πiα/β

2πi(1− ζαβ qn)

)
.

We point out that the hypotheses on α, β guarantee that 1 − ζαβ qn 6= 0 for
all n ∈ Z. Using (4.15) we find that

f+m,s(αk; γ, τ) = −
(cτ + d)ζαm2βm

Πm(αk, 0)

∑
n

(−1)nq(3n
2+n)/2

(1− ζαmβm q
n)2

+

(
ζ−αmβm

(3(cτ + d) + (s− 4))

2Πm(αk, 0)
−
ζ−αmβm

d
dwΠm(αk, w)

∣∣
w=0

2πi(Πm(αk, 0))2

)
A3

(
αm
βm

,−2τ ; τ

)
.

In a similar manner, we find that

F+
m,s(αk; τ) =

−ζαm2βm

Πm(αk, 0)

∑
n

(−1)nq(3n
2+n)/2

(1− ζαmβm q
n)2

+

(
ζ−αmβm

(s− 1)

2Πm(αk, 0)
−
ζ−αmβm

d
dwΠm(αk, w)

∣∣
w=0

2πi(Πm(αk, 0))2

)
A3

(
αm
βm

,−2τ ; τ

)
.

Thus,

(4.16) f+m,s(αk; γ, τ) = (cτ + d)F+
m,s(αk; τ)

+
ζ−αmβm

2
(cτ + d− 1)

(
4− s

Πm(αk, 0)
+

d
dwΠm(αk, w)

∣∣
w=0

πi(Πm(αk, 0))2

)
A3

(
αm
βm

,−2τ ; τ

)
.

Next we treat f−m,s(αk; γ, τ). For ease of notation, we will write R3(u, v; τ)
= R3(u). We compute that
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(4.17) lim
w→0

ζ−αmβm

e(w)− e(−w)

×
(
esπiw

R3(α/β − w(cτ + d))

Πm(αk,−w)
ε−α/β(w)ξ−α/β(w)ψ−α/β(w)

− e−sπiwR3(α/β + w(cτ + d))

Πm(αk, w)
ε+α/β(w)ξ+α/β(w)ψ+

α/β(w)

)

= ζ−αβ

(
s− 4 + 4(cτ + d)

2Πm(αk, 0)
−

d
dwΠm(αk, w)

∣∣
w=0

2πi(Πm(αk, 0))2

)
R3

(
α

β

)

−
ζ−αβ (cτ + d)

2πiΠm(αk, 0)

d

du
R3(u)

∣∣∣∣
u=α/β

where as before, (4.17) follows after a lengthy but straightforward calculation
using the hypotheses on γ and L’Hôpital’s rule. Similarly, we find that

F−m,s(αk; τ) = ζ−αβ

(
s

2Πm(αk, 0)
−

d
dwΠm(αk, w)

∣∣
w=0

2πi(Πm(αk, 0))2

)
R3

(
α

β

)
(4.18)

−
ζ−αβ

2πiΠm(αk, 0)

d

du
R3(u)

∣∣∣∣
u=α/β.

Thus we have

(4.19) f−m,s(αk; γ, τ) = (cτ + d)F−m,s(αk; τ)

+
ζ−αβ

2
(cτ + d− 1)

(
4− s

Πm(αk, 0)
+

d
dwΠm(αk, w)

∣∣
w=0

πi(Πm(αk, 0))2

)
R3

(
α

β

)
.

Using (4.11), (4.16), and (4.19) we find (4.7) as claimed. The transformation
of (4.8) follows after a short calculation using (3.3) and (3.4), making use
of the hypotheses imposed on the matrices γ. Finally, by way of (4.7), (4.8)
and definition (4.6), we also have (4.9) as claimed.

4.2. The singular series Rk(ζk; q). In light of Proposition 4.1, in or-
der to prove Theorem 1.1, we would like to relate the combinatorial series
Rk (ζk; q) to the auxiliary functions defined in §4.1. To this end, we establish
the following proposition.

Proposition 4.2. Let k and N be fixed integers satisfying 0 ≤ N ≤
bk/2c, and k ≥ 2. Suppose that for 1 ≤ i ≤ k−N , αi ∈ Z and βi ∈ N, where
βi - αi, βi - 2αi, and that αi/βi ± αj/βj 6∈ Z if 1 ≤ i 6= j ≤ k −N . Let



274 A. Folsom and S. Kimport

αk = αk,N :=

(
α1

β1
,
α1

β1
, . . . ,

αN
βN

,
αN
βN︸ ︷︷ ︸

2N

,
αN+1

βN+1
, , . . . ,

αk−N
βk−N︸ ︷︷ ︸

k−2N

)
∈ Qk,(4.20)

ζk = ζk,N :=
(
ζα1
β1
, ζα1
β1
, . . . , ζαNβN , ζ

αN
βN︸ ︷︷ ︸

2N

, ζ
αN+1

βN+1
, . . . , ζ

αk−N
βk−N︸ ︷︷ ︸

k−2N

)
∈ Ck.(4.21)

Then

(q)∞Rk(ζk; q) =
N∑
i=1

(ζ−αi2βi
F+
i,1(αk; τ)− ζ−3αi2βi

F+
i,3(αk; τ))

+
k−N∑
i=N+1

(ζ−3αi2βi
− ζ−αi2βi

)
A3(αi/βi,−2τ ; τ)

Π†i (αk)
.

Remark 4. If N = 0, as usual we take the empty sum
∑N

i=1 to equal 0.

Ideally, we would like to proceed as in the proof of Theorem 7 in [2],
where Andrews makes use of the partial fraction identity

(4.22)
(1 + w)(1− w)2wn−2

n∏
j=1

(1− xjw)
(
1− w

xj

)
=

n∑
s=1

xs − 1
n∏
j=1
j 6=s

(xs − xj)
(
1− 1

xsxj

)( 1

1− xsw
− x−1s

1− w
xs

)
.

Unfortunately (as remarked in [2]) identity (4.22) is only valid provided
xs 6= x±1t for any 1 ≤ s 6= t ≤ n (and of course also for w 6= x±1s for any
1 ≤ s ≤ n). Here, given the definition of Rk(x1, . . . , xk; q), the vector ζk, and
the hypotheses given in Proposition 4.2, we wish to take the xs among the
ζαiβi , in particular, x1 = x2 = ζα1

β1
, x3 = x4 = ζα2

β2
, . . . , x2N−1 = x2N = ζαNβN ,

which means we are not in a position to make use of (4.22). Instead, we
establish the following generalization of (4.22) which allows for some of the
xs = xt by way of the introduction of an extra parameter u that tends to 1.

Proposition 4.3. Let k and N be fixed integers satisfying 0 ≤ N ≤
bk/2c, and k ≥ 2. Suppose for 1 ≤ i ≤ k −N , xi 6= ±1, and that xi 6= x±1j
if 1 ≤ i 6= j ≤ k − N . Suppose also that w 6= x±1j for any 1 ≤ j ≤ k − N .
Then

(1 + w)(1− w)2wk−2

N∏
j=1

(1− xjw)2
(
1− w

xj

)2 k−N∏
`=N+1

(1− x`w)
(
1− w

x`

)(4.23)
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=

k−N∑
s=N+1

(xs − 1)
(

1
1−xsw −

1
xs−w

)
N∏
j=1

(xs − xj)2
(
1− 1

xsxj

)2 k−N∏
`=N+1
`6=s

(xs − x`)
(
1− 1

xsx`

)
+

N∑
s=1

lim
u→1

(
gs(u) + gs

(
1

u

))
,

where for 1 ≤ m ≤ N ,

gm(u) = gm,k,N (u,w, x1, . . . , xk−N )

:=
(uxm − 1)

(
1

1−uxmw −
1

uxm−w
)(
uxm − xm

u

)−1(
1− 1

x2m

)−1
N∏
j=1
j 6=m

(uxm − xj)2
(
1− 1

uxmxj

)2 k−N∏
`=N+1

(uxm − x`)
(
1− 1

uxmx`

) .

Remark 5. If N = 0 then we recover (4.22) from (4.23).

Proof of Proposition 4.3. For brevity we provide a detailed sketch. First
we replace the product

∏n
j=1(1 − xjw)2(1 − w/xj)2 appearing on the left

hand side of (4.23) by

N∏
j=1

(1− xjuw)

(
1− w

xju

)
(1− xjw/u)

(
1− wu

xj

)
,

where u is a parameter that we will later let tend to 1. That is, for each j,
1 ≤ j ≤ N , we first rewrite (1−xjw)2(1−w/xj)2 = p1(xj , w)p2(xj , w) where
p1(xj , w) = p2(xj , w) = (1− xjw)(1−w/xj). Then, we replace p1(xj , w) by
p1(xju,w), and p2(xj , w) by p2(xj/u,w), making the change of variable xj 7→
xju in p1, and the change of variable xj 7→ xj/u in p2. With these changes of
variables, assuming u 6= ±1, we find that all k variables, {xju, xj/u}1≤j≤N ∪
{xj}N+1≤j≤k−N are now distinct. After an application of (4.22) and some
simplification, we arrive at (4.23).

Proof of Proposition 4.2. We begin with a result of Andrews, which gives
the following series expansions for the generating function Rk(x; q).

Theorem ([2, Theorem 3 and Corollary 6]). For k ≥ 2,

Rk(x; q) =
1

(q)∞

∑
n≥1

(−1)n−1(1 + qn)(1− qn)2q3n(n−1)/2+kn

k∏
j=1

(1− xjqn)(1− x−1j qn)

(4.24)

=
1

2(q)∞

∑
n6=0

(−1)n−1(1 + qn)(1− qn)2q3n(n−1)/2+kn

k∏
j=1

(1− xjqn)(1− x−1j qn)

.
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With x = ζk, we use (4.24) followed by Proposition 4.3, and find after a
short calculation

Rk(ζk; q) = lim
w→0

1

e(w)− e(−w)

N∑
i=1

(
R1(ζ

αi
βi
e(w))

ζαiβiΠi(w)
−
R1(ζ

αi
βi
e(−w))

ζαiβiΠi(−w)

)

+
k−N∑
i=N+1

R1(ζ
αi
βi

; q)

Π†i (αk)

=
1

(q)∞

N∑
i=1

(ζ−αi2βi
F+
i,1(αk, w; τ)− ζ−3αi2βi

F+
i,3(αk, w; τ))

+
1

(q)∞

k−N∑
i=N+1

(ζ−3αi2βi
− ζ−αi2βi

)
A3(αi/βi,−2τ ; τ)

Π†i (αk)
,

where

R1(x; q) :=
1− x
(q)∞

∑
n

(−1)nqn(3n+1)/2

1− xqn
.

4.3. Proof of Theorem 1.1. We begin by defining

Ĥ(ζk; q) = Ĥk,N (ζk; q)(4.25)

:=
1

η(τ)

N∑
i=1

(ζ−αi2βi
Ĥi,1(αk; τ)− ζ−3αi2βi

Ĥi,3(αk; τ)),

Â(ζk; q) = Âk,N (ζk; q)(4.26)

:=
1

η(τ)

k−N∑
i=N+1

(ζ−3αi2βi
− ζ−αi2βi

)
Â3(αi/βi,−2τ ; τ)

Π†i (αk)
.

From the definition of B̂k(ζk; q) given in (1.7), definition (4.3), definition
(4.4), and Proposition 4.2, we find that

B̂k(ζk; q) = Ĥ(ζk; q) + Â(ζk; q).(4.27)

Theorem 1.1 now follows after a short calculation using (4.27), Proposi-
tio 4.1, and transformation laws (3.3) and (3.4), using the fact that

(4.28) Γk,N :=

k−N⋂
i=1

Γ0(2β
2
i ) ∩ Γ1(2βi).

5. Proof of Theorem 1.2. The proof of Theorem 1.2 is similar, yet not
identical, to that of Theorem 1.1 given the different natures of the associated
combinatorial generating functions. In §5.1 we define auxiliary functions
F̂r(τ), Ĝr(τ), and Ĥr(τ), and give their modular transformation properties.
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In §5.2 we relate the singular combinatorial series R2r+1(ζ
′
2r ; q) to these

auxiliary functions. In §5.3 we prove Theorem 1.2.

5.1. Auxiliary functions II. Here we prove Theorem 1.2, which holds
for

ζ′2r := (1, ζ02r , ζ
1
2r , . . . , ζ

2r−1
2r ).(5.1)

We define

F+
r (τ) := lim

w→0

4−r

e(w)− e(−w)

2r−1∑
j=1

e−3πij/2
r

(
A3

(
j

2r
− w,−2τ ; τ

)
e3πiw

−A3

(
j

2r
+ w,−2τ ; τ

)
e−3πiw

)
,

F−r (τ) := lim
w→0

4−r

e(w)− e(−w)

2r−1∑
j=1

e−3πij/2
r

(
R3

(
j

2r
− w,−2τ ; τ

)
e3πiw

− R3

(
j

2r
+ w,−2τ ; τ

)
e−3πiw

)
,

and

(5.2) F̂r(τ) := F+
r (τ) + F−r (τ).

To prove Theorem 1.2, we also define

G+
r (τ) := 4−r

2r−1∑
j=1

A3

(
j

2r
,−2τ ; τ

)
e

(
− 3j

2r+1

)
,

G−r (τ) := 4−r
2r−1∑
j=1

R3

(
j

2r
,−2τ ; τ

)
e

(
− 3j

2r+1

)
,

and Ĝr(τ) := G+
r (τ) +G−r (τ). Using F̂r(τ) and Ĝr(τ) we define

Ĥr(τ) := F̂r(τ) + 1
2Ĝr(τ),

and

c2r+1(ζ
′
2r ; q

24) :=
1

(q24; q24)∞

(
G+(24τ)

2
+
E2(24τ)− 1

8 · 4r
+

1

12

)
,(5.3)

C−2r+1(ζ
′
2r ; q

24) :=
1
2G
−
r (24τ) + F−r (24τ)

η(24τ)
(5.4)

− i

4r+1π
√

2

i∞�

−τ

η(24z)

(−i(z + τ))3/2
dz,

where the quasimodular Eisenstein series E2(τ) is defined in (3.1). We will
show in §5.2 and §5.3 the roles played by the functions c2r+1 and C−2r+1.
Before doing so, we first establish the following proposition.
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Proposition 5.1. Let γ :=
(
a b
c d

)
∈ Γ0(22r+1) ∩ Γ1(2r+1). Then

F̂r(γτ) = (cτ + d)2F̂r(τ) + 1
2((cτ + d)2 − (cτ + d))Ĝr(τ),(5.5)

Ĝr(γτ) = (cτ + d)Ĝr(τ),(5.6)

Ĥr(γτ) = (cτ + d)2Ĥr(τ).(5.7)

Proof. We first prove (5.5). Using the transformations (3.3) and (3.4),
we find that

(5.8) Â3(j/2
r ± w,−2γτ ; γτ)

= (cτ + d)ε±j/2r(w)ξ±j/2r(w)ψ±j/2r(w)Â3(j/2
r ± w(cτ + d),−2τ ; τ),

where we have imposed the stated hypotheses on γ. Using (5.2) and (5.8),
we can thus rewrite

F̂r(γτ) = (cτ + d)(f+r (γ; τ) + f−r (γ; τ)),(5.9)

where

f+r (γ; τ) := lim
w→0

4−r

e(w)− e(−w)

2r−1∑
j=1

e−3πij/2
r

×
(
A3(j/2

r − w(cτ + d),−2τ ; τ)e3πiwε−j/2r(w)ξ−j/2r(w)ψ−j/2r(w)

−A3(j/2
r+w(cτ+d),−2τ ; τ)e−3πiwε+j/2r(w)ξ+j/2r(w)ψ+

j/2r(w)
)
,

f−r (γ; τ) := lim
w→0

4−r

e(w)− e(−w)

2r−1∑
j=1

e−3πij/2
r

×
(
R3(j/2

r − w(cτ + d),−2τ ; τ)e3πiwε−j/2r(w)ξ−j/2r(w)ψ−j/2r(w)

− R3(j/2
r+w(cτ+d),−2τ ; τ)e−3πiwε+j/2r(w)ξ+j/2r(w)ψ+

j/2r(w)
)
.

We first consider f+r (γ; τ). We compute that

lim
w→0

1

e(w)− e(−w)

(e3πiw(1−(cτ+d))ε−j/2r(w)ξ−j/2r(w)ψ−j/2r(w)

1− ζj2re(−w(cτ + d))qn

−
e−3πiw(1−(cτ+d))ε+j/2r(w)ξ+j/2r(w)ψ+

j/2r(w)

1− ζj2re(w(cτ + d))qn

)
=

1

2

(
cτ + d− 1

1− ζj2rqn
− 2(cτ + d)ζj2rq

n

(1− ζj2rqn)2

)
,
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which follows after a lengthy but straightforward calculation using the hy-
potheses on γ and L’Hôpital’s rule. We point out that because 1 ≤ j ≤ 2r−1,
1− ζj2rqn 6= 0 for all n ∈ Z. In a similar manner, we find that

F+
r (τ) = 4−r

2r−1∑
j=1

∑
n

(−1)n−1q(3n
2+n)/2ζj2r

(1− qnζj2r)2
.

Thus,

f+r (γ; τ) =
cτ + d

4r

2r−1∑
j=1

∑
n∈Z

(−1)n−1ζj2rq
(3n2+n)/2

(1− ζj2rqn)2
(5.10)

+
cτ + d− 1

2 · 4r
2r−1∑
j=1

∑
n∈Z

(−1)nq(3n
2−n)/2

1− ζj2rqn

= (cτ + d)F+
r (τ) +

cτ + d− 1

2
G+
r (τ).

Next we treat f−r (γ; τ). For ease of notation, we will write R3(u, v; τ) =
R3(u). We compute that

(5.11) lim
w→0

1

e(w)− e(−w)

×
(
R3(j/2

r − w(cτ + d))e3πiwε−j/2r(w)ξ−j/2r(w)ψ−j/2r(w)

− R3(j/2
r + w(cτ + d))e−3πiwε+j/2r(w)ξ+j/2r(w)ψ+

j/2r(w)
)

=
4(cτ + d)− 1

2
R3

(
j

2r

)
− cτ + d

2πi

d

du
R3(u)

∣∣∣∣
u=j/2r

,

where as before, (5.11) follows after a lengthy but straightforward calculation
using the hypotheses on γ and L’Hôpital’s rule. Similarly, we find that

F−r (τ) =
3

2 · 4r
2r−1∑
j=1

e−3πij/2
r
R3

(
j

2r

)
− 1

2πi · 4r
d

du
R3(u)

∣∣∣∣
u=j/2r

.

Thus,

f−r (γ; τ) = (cτ + d)F−r (τ) +
cτ + d− 1

2
G−r (τ).(5.12)

From (5.9), (5.10), and (5.12), equation (5.5) now follows. Identity (5.6)
follows after a short calculation using (3.3) and (3.4), making use of the
hypotheses imposed on the matrix γ. Finally, (5.7) follows immediately from
(5.5) and (5.6).
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5.2. The singular series R2r+1(ζ
′
2r ; q). Here we relate the combina-

torial series R2r+1(ζ
′
2r ; q) to the form F+

r (τ).

Proposition 5.2. For any integer r ≥ 1,

(q)∞R2r+1(ζ
′
2r ; q) = 4−r(q)∞R2(1, 1; q) + F+

r (τ) +
1− 4r

3 · 4r+1
.

Proof. Using the definition of F+
r (τ), we find that

F+
r (τ) = 4−r

2r−1∑
j=1

∑
n∈Z

(−1)n−1q(3n
2+n)/2ζj2r

(1− ζj2rqn)2
,(5.13)

where we have used the easily verifiable fact that for 1 ≤ j ≤ 2r − 1, and
any n ∈ Z,

lim
w→0

(1− qne−2πiwζj2r)−1 − (1− qne2πiwζj2r)−1

e2πiw − e−2πiw
= − ζj2rq

n

(1− ζj2rqn)2
.

We rewrite (5.13) as

− 4−r
2r−1∑
j=1

ζj2r

(1− ζj2r)2
+ 4−r

2r−1∑
j=1

∑
n6=0

(−1)n−1q(3n
2+n)/2ζj2r

(1− ζj2rqn)2

=
4r − 1

3 · 4r+1
+
∑
n6=0

(−1)n−1q(3n
2+n)/2

(
− 1

4r(1− qn)2
+

q(2
r−1)n

(1− q2rn)2

)
,

where we have again used the facts that for integers r ≥ 1 and n ≥ 0,

2r−1∑
j=1

ζj2r

(1− ζj2rqn)2
=

−1

(1− qn)2
+

4nq(2
r−1)n

(1− q2rn)2
,

and for integers r ≥ 1,

2r−1∑
j=1

ζj2r

(1− ζj2r)2
=

1− 4r

12
,

which are not difficult to verify. Proposition 5.2 now follows using the facts
that (see (4.24))

(q)∞R2(1, 1; q) =
∑
n6=0

(−1)n−1q(3n
2+3n)/2

(1− qn)2
=
∑
n6=0

(−1)n−1q(3n
2+n)/2

(1− qn)2
,

R2r+1(ζ
′
2r ; q) =

1

(q)∞

∑
n6=0

(−1)n−1q3n
2/2+(2r+1−1)n/2

(1− q2rn)2
.
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5.3. Proof of Theorem 1.2. Theorem 1.2 now follows in a similar
manner to Theorem 1.1 after a short calculation, making use of Proposition
5.1, Proposition 5.2, and Theorem 1.1 of [4], using the fact that

Γ ′r := Γ1(144 · 4r).(5.14)

6. Proof of Theorem 1.3. Here we look specifically at the function
R3(1, 1,−1; q) =: R3(q) as defined in (1.11). This series is obtained by spe-
cializing r = 1 in our family R2r+1 considered in Theorem 1.2. To obtain
the asymptotic formula for its coefficients a3(n) as given in Theorem 1.3, we
must first consider its transformation under matrices γ =

(
a b
c d

)
∈ SL2(Z).

We note that we rewrite(
a b

c d

)
=

(
h −(hh′ + 1)/k

k −h′

)
for some h, k ∈ Z, where (h, k) = 1, and hh′ ≡ −1 (mod k). (Note. We
abuse notation and reuse the variable k, as is standard in applications of
the Circle Method, which we use in what follows.)

6.1. A transformation law for R3(q)

6.1.1. Definitions. In order to determine the asymptotic expansion given
in (1.13) of Theorem 1.3 for R3(q), we cannot proceed by applying the stan-
dard technique of Poisson summation (see [1], [22]) because the sum defining
R3(q) given in (1.11) is taken over the incomplete lattice Z\{0}. To deal with
the missing lattice point, one might first try to add an additional summand
to R3(q), proceed by Poisson summation, and then later remove the extra
summand. However, adding the missing summand (at n = 0) to R3(q) would
result in the addition of a term with a double pole, so we cannot proceed
in this way. Instead, using a technique of Bringmann [4], we rewrite R3(q)
as the derivative of another (full lattice) sum, defined with an additional
parameter w that we let tend to 0. Namely, we define the series

R̃3(w; q) :=
∑
n∈Z

(−1)n−1qn(3n−1)/2

1− e2πiwq2n
,(6.1)

and the differential operator

L(g(w)) :=
1

2πi

[
d

dw
g

]
w=0

.

It is not difficult to show that

(6.2) R3(q) =
1

(q)∞
L(R̃ ′3(w; q)),

where R̃ ′3(w; q) denotes the function obtained from R̃3(w; q) by summing
only over integers n 6= 0. Bringmann used this technique in [4] (as mentioned
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above) in order to study R2(q) := R2(1, 1; q) by defining

(6.3) R̃2(w; q) :=
∑
n∈Z

(−1)n−1qn(3n+1)/2

1− e2πiwqn
.

Despite the similarities between (6.1) and (6.3), we cannot proceed di-
rectly as in [4] due to the denominators 1−e2πiwq2n appearing in (6.1), which
differ in a subtle, yet bothersome way from the denominators 1 − e2πiwqn
appearing in (6.3). Instead, we rewrite R̃3(w; q) as a sum of universal mock
theta functions and then proceed to study these functions. Gordon and
McIntosh [16] show that all of Ramanujan’s original mock theta functions
can be written in terms of two “universal” mock theta functions g2(x; q) and
g3(x; q) upon suitable specialization of the parameters x and q, one of which
is given by

g3(x; q) :=
∑
n≥0

qn(n+1)

(x; q)n+1(x−1q; q)n+1
.

(The universal mock theta function g2(x; q) is defined similarly.)

We first rewrite

(6.4) R̃3(w; q) =
1

2eπiw
(R−3 (w; q)−R+

3 (w; q)),

where

(6.5) R±3 (w; q) :=
∑
n∈Z

(−1)n−1q3n(n−1)/2

1± eπiwqn
= ∓e−πiw(q)∞g3(∓e−πiw; q),

which can be deduced from (3.3) of [16]. The modular transformation prop-
erties of g3(x; q), which are needed for the proof of Theorem 1.3, have been
explored when x is replaced by qt for t ∈ Q (see [8], [9], [15], [16]), a set-
ting which is useful for studying Ramanujan’s original mock theta functions.
Here we wish to study the universal mock theta functions g3(∓eπiw; q) for
w ∈ C. We give a transformation law for these universal mock theta func-
tions in Corollary 6.4 in a form which does not appear to have been pre-
viously recorded in the literature, and readily lends itself to the proof of
Theorem 1.3.

To state the modular transformation laws for R̃3(w; q), we need to define
the following q-series:

be(q) :=
1

(q)∞

∑
n∈Z

(−1)n−1q3n(n+1)/2

(1 + qn)2
, bo(w; q) :=

∑
n≥0

(−1)nq3n(n+1)/2

1− qn+1/2eπw/z
,
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and the integrals, with ν, δ ∈ Z,

I±k (ν, δ;w, z) :=

∞�

−∞

e−(3πz/k)(x
2+x)

1± eπiwe2πiν/k−(2πz/k)(x+(i/6z)(2δ+1))
dx,

J−k (ν, δ; z) :=

∞�

−∞

e−3πzx
2/k+3πzx/k

sinh2
(
πiν
k −

πz
k

(
x+ (2δ+1)i

6z

)) dx,
J+
k (ν, δ; z) :=

∞�

−∞

e−3πzx
2/k+3πzx/k

cosh2
(
πiν
k −

πz
k

(
x+ (2δ+1)i

6z

)) dx.
6.1.2. Transformation law. To determine the modular transformation

laws for R̃3(w; q), we need to consider two cases: when k is even and when
k is odd. We obtain the following results:

Theorem 6.1. Let (h, k) = 1, with k > 0 and k even, and let q :=
e((h+ iz)/k), q1 := e((h′ + iz−1)/k), z ∈ C, Re(z) > 0, where h′ is defined

by hh′ ≡ −1 (mod 2k). Then R̃3(w; q) equals

e(3πw/2)(i+wk/(2z))−πw/(2z)

2izeπiw

(
−R̃2

(
iw

2z
; q1

)
+ie(πih

′/2)(1−k/2)R̃2

(
iw

2z
+

1

2
; q1

))
− (q1)∞

2keπiw

∑
ν (mod k)

(−1)νe−(3πiν/k)(1+h
′ν)e−π/(12kz)

×
0∑

δ=−1
e(πi/k)(2δ+1)(1/2+h′ν)(I−k (ν, δ;w, z)− I+k (ν, δ;w, z)).

Theorem 6.2. Let (h, k) = 1, with k > 0 and k odd, and let q :=
e((h+ iz)/k), q1 := e((h′ + iz−1)/k), z ∈ C, Re(z) > 0, where h′ is defined

to be an even solution to hh′ ≡ −1 (mod k). Then R̃3(w; q) equals

e(3πw/2)(i+wk/(2z))

2izeπiw

(
− e−πw/(2z)R̃2

(
iw

2z
; q1

)
− i(−1)(k+1)/2q

3/8
1 e(πih

′/2)(1−k/2)(bo(−w; q1) + bo(w; q1))

)
− (q1)∞

2keπiw

∑
ν (mod k)

(−1)νe−(3πiν/k)(1+h
′ν)e−π/(12kz)

×
0∑

δ=−1
e(πi/k)(2δ+1)(1/2+h′ν)(I−k (ν, δ;w, z)− I+k (ν, δ;w, z)).

From Theorems 6.1 and 6.2, we obtain the modular transformation laws
for R3(q):
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Corollary 6.3. Assume the hypotheses above.

(1) If k is even, R3(q) equals

ωh,kz
1/2e(π/(12k))(z

−1−z)

(q1)∞

(
1

96z2
− 3k

16πz
− 5

96

)
−
ωh,ke

(π/(12k))(z−1−z)

4z3/2
R2(q1) +

ωh,ke
(πih′/2)(1−k/2)

4z1/2e(π/(12k))(z−z−1)
be(q1)

+
1

4k
ωh,kz

1/2e−πz/(12k)
∑

ν (mod k)

(−1)νe−3πiν/k−3πih
′ν2/k

×
0∑

δ=−1
e(πi/k)(2δ+1)(1/2+h′ν)

×
(
I−k (ν, δ; 0, z)− I+k (ν, δ; 0, z)− 1

4
(J−k (ν, δ; z) + J+

k (ν, δ; z))

)
.

(2) If k is odd, R3(q) equals

ωh,kz
1/2e(π/(12k))(z

−1−z)

(q1)∞

(
1

96z2
− 3k

16πz
− 5

96

)
−
ωh,ke

(π/(12k))(z−1−z)

4z3/2
R2(q1)

−
(−1)(k+1)/2ωh,ke

(πih′/2)(1−k/2)

4z1/2e(π/(12k))(z−z−1)(q1)∞
q
3/8
1 bo(0; q1)

+
1

4k
ωh,kz

1/2e−πz/(12k)
∑

ν (mod k)

(−1)νe−3πiν/k−3πih
′ν2/k

×
0∑

δ=−1
e(πi/k)(2δ+1)(1/2+h′ν)

×
(
I−k (ν, δ; 0, z)− I+k (ν, δ; 0, z)− 1

4
(J−k (ν, δ; z) + J+

k (ν, δ; z))

)
.

Here, ωh,k is as defined in Lemma 3.2.

We now prove Theorem 6.1, in which k is even.

Proof of Theorem 6.1. We first observe that, for w ∈ C with Re(w) 6= 0

sufficiently small, R̃3(w; q) is a holomorphic function of z. Similarly,R±3 (w; q)
are holomorphic functions in z. Recall that we have q = e((h + iz)/k) and
q1 = e((h′+iz−1)/k) with hh′ ≡ −1 (mod 2k). Now, looking at R±3 (w; q), we
write n = ν + km with m ∈ Z and ν taken modulo k, and rewrite R±3 (w; q),
which after Poisson summation (and the change of variable x 7→ ν + kx)
becomes
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(6.6)

− 1

k

∑
ν (mod k)

(−1)νe(3πih/k)(ν
2−ν)

∑
n∈Z

�

R

e(πi/k)(2n+1)(x−ν)e−(3πz/k)(x
2−x)

1± eπiwe2πihν/k−2πzx/k
dx.

We find that the integrand has at most simple poles at the points

xm = xm,k(w, z) :=
i

z

(
m+

wk

2

)
,

(which in the case of R+
3 (w; q) follows from the fact that k is even) and

m ≡ hν − %(k) (mod k), where %(k) := k/2 in R+
3 (w; q) and %(k) := 0 in

R−3 (w; q). We now replace ν with νm defined by

νm = νm,h,k := −mh′ − %(k)h′.

Using the residue theorem, we shift the path of integration through

wn = wn(z) :=
(2n+ 1)i

6z
.

Assuming w is sufficiently small, for n ≥ 0, the residue sum will involve a
sum over those m such that 0 ≤ 3m ≤ n, and for n < 0, those m such that
n + 1 ≤ 3m < 0, in both R+

3 (w; q) and R−3 (w; q). Denoting the associated
residues of each summand by λn,m (omitting dependence on w, z, h, k for
ease of notation), we have

R±3 (w; q) = 2πi
(∑+

1
+
∑−

1

)
+
∑

2
,

where

(6.7)

∑+

1
:= − 1

k

∑
ν (mod k)

(−1)νe(3πih/k)(ν
2−ν)

∑
n≥0

∑
0≤3m≤n

λn,m,

∑−

1
:=

1

k

∑
ν (mod k)

(−1)νe(3πih/k)(ν
2−ν)

∑
n<0

∑
n+1≤3m<0

λn,m,

∑
2

:= − 1

k

∑
ν (mod k)

(−1)νe(3πih/k)(ν
2−ν)

×
∑
n∈Z

∞+wn�

−∞+wn

e(πi/k)(2n+1)(x−ν)e−(3πz/k)(x
2−x)

1± eπiwe2πihν/k−2πzx/k
dx.

We first consider
∑

1 := 2πi(
∑+

1 +
∑−

1 ). It is not difficult to show that

(6.8) λn,m =
k

2πz
e(πi/k)(2n+1)(xm−νm)e−(3πz/k)(x

2
m−xm),

and thus

(6.9) λn+l,m = e−πlw/zqlm1 αlλn,m,

where α := 1 in the case of R−3 (w; q) and α := −1 in the case of R+
3 (w; q).
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Using (6.9), we see that∑
n≥0

∑
0≤3m≤n

λn,m =
∑
m≥0

∑
n≥3m

λn,m =
∑
m≥0

λ3m,m

1− qm1 e−πw/zα
,

∑
n<0

∑
n+1≤3m<0

λn,m =
∑
m<0

∑
n≤3m−1

λn,m = −
∑
m<0

λ3m,m

1− qm1 e−πw/zα
,

so that, in both cases,∑
1

= −2πi

k

∑
m∈Z

(−1)νme(3πih/k)(ν
2
m−νm)λ3m,m

1− qm1 e−πw/zα
.(6.10)

Using (6.10) one can show that for R+
3 (w; q),

(6.11)
∑

1
= − i

z
e(3πi/2)(w−1)−πw/(2z)+3πw2k/(4z)e(πih

′/2)(1−k/2)

×
∑
m∈Z

(−1)mq
m(3m+1)/2
1

1 + qm1 e
−πw/z ,

and for R−3 (w; q),

(6.12)
∑

1
= − i

z
e3πiw/2−πw/(2z)+3πw2k/(4z)

∑
m∈Z

(−1)mq
m(3m+1)/2
1

1− qm1 e−πw/z
.

We next turn to
∑

2. We make the change of variable x 7→ x+wn + 1/2,
and replace n ∈ Z by 3p+ δ, where p runs over all integers and δ ∈ {0,±1}.
Replacing ν by −h′(ν + p), a lengthy but straightforward calculation gives∑

2
= −1

k
e3πz/(4k)

∑
ν (mod k)

e−πih
′ν−3πiν/k+3πik′(h′ν2+ν)−3πih′ν2/k

×
1∑

δ=−1
eπi(2δ+1)/(2k)e(πih

′ν/k)(2δ+1)e−π(2δ+1)2/(12kz)

×
∞�

−∞

e−3πzx
2/kdx

1± eπiwe2πiν/ke−(2πz/k)(x+(2δ+1)i/(6z)+1/2)

∑
p∈Z

(−1)pq
(p/2)(3p+2δ+1)
1

where hh′ = −1 + kk′ and k′ is even. The innermost sum on p equals 0 if
δ = 1 and equals (q1)∞ if δ = 0 or −1. Thus, after we let x 7→ x−1/2, we find∑

2
= − (q1)∞

1

k

∑
ν (mod k)

(−1)νe−3πiν/k−3πih
′ν2/ke−π/(12kz)(6.13)

×
0∑

δ=−1
eπi(2δ+1)/(2k)e(πih

′ν/k)(2δ+1)I±k (ν, δ;w, z).

Using (6.11)–(6.13), we deduce Theorem 6.1 from (6.4).
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Next, we proceed to the proof of Theorem 6.2, in which k is odd.

Proof of Theorem 6.2. The parity of k does not play a role in the deriva-
tion of (6.12) in the proof of Theorem 6.1 pertaining to R−3 (w; q). Thus, we
turn our attention to R+

3 (w; q).
As in the proof of Theorem 6.1, by taking n = ν + km and applying

Poisson summation, we obtain (6.6) for R+
3 (w; q1). Now, with k odd, we see

that the integrand of (6.6) has at most simple poles at

xm = xm,k(w; z) :=
i

z

(
m+

wk

2
+

1

2

)
,

with m ≡ hν − %(k) (mod k), where %(k) := (k+ 1)/2 and, as before, we let

ν = νm,h,k := −mh′ − %(k)h′.

Again, shifting the path of integration through wn = (2n+ 1)i/(6z), we see
that the residue sum for n ≥ 0 is over those m such that 0 ≤ 3m + 1 ≤ n
and for n < 0, those m such that n ≤ 3m+ 1 < 0. Thus, we have

R+
3 (w; q) = 2πi

(∑+

1
+
∑−

1

)
+
∑

2

where ∑+

1
:= −1

k

∑
ν (mod k)

e(3πih/k)(ν
2−ν)

∑
n≥0

∑
0≤3m+1≤n

λn,m,

∑−

1
:=

1

k

∑
ν (mod k)

e(3πih/k)(ν
2−ν)

∑
n<0

∑
n≤3m+1<0

λn,m,

and
∑

2 is as in (6.7).
We first consider

∑
1 := 2πi(

∑+
1 +

∑−
1 ). The parity of k does not change

the expression of λn,m given in (6.8), and we again have (6.9), with α := q
1/2
1 .

Therefore, ∑+

1
:= −1

k

∑
m≥0

(−1)νme(3πih/k)(ν
2
m−νm)λ3m+1,m

1− qm+1/2
1 e−πw/z

,

∑−

1
:=

1

k

∑
m<0

(−1)νme(3πih/k)(ν
2
m−νm)λ3m+1,m

1− q−m−1/21 eπw/z
.

By a simple calculation, and letting m 7→ −m− 1 in
∑−

1 , we obtain, for
R+

3 (w; q) with k odd,∑
1

=
(−1)(k+1)/2

z
e3πiw/2+3πkw2/(4z)q

3/8
1 e(πih

′/2)(1−k/2)

× (bo(−w; q1) + bo(w; q1)).

Next we turn to
∑

2. The parity of k only plays a role in that we take
h′ to be an even solution of hh′ ≡ −1 (mod k), meaning k′ must be odd, so
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we obtain (6.13) for both R+
3 (w; q) and R−3 (w; q) exactly as in the proof of

Theorem 6.1.

From the proofs of Theorems 6.1 and 6.2 along with equations (6.5) and
(6.14), we obtain the following transformation laws for the universal mock
theta function g3(±e−πiw; q), a result which is of independent interest.

Corollary 6.4. Assume the hypotheses above.

(1) We have that g3(e
−πiw; q) equals

−
iωh,ke

(π/(12k))(z−1−z)

z1/2(q1)∞
e3πiw/2+πiw−πw/(2z)+3πw2k/(4z)

∑
m∈Z

(−1)mq
m(3m+1)/2
1

1− qm1 e−πw/z

+
ωh,kz

1/2e(π/(12k))(z
−1−z)

(q1)∞
eπiw

∑
2

where
∑

2 is as in (6.13), with the choice of integral I−k (ν, δ;w, z).

(2) For k even, g3(−e−πiw; q) equals

iωh,ke
(π/(12k))(z−1−z)

z1/2(q1)∞
e(3πi/2)(w−1)+πiw−πw/(2z)+3πw2k/(4z)

× e(πih′/2)(1−k/2)
∑
m∈Z

(−1)mq
m(3m+1)/2
1

1 + qm1 e
−(πw/z) −

ωh,kz
1/2e(π/(12k))(z

−1−z)

(q1)∞
eπiw

∑
2

where
∑

2 is as in (6.13), with the choice of integral I+k (ν, δ;w, z).

(3) For k odd, g3(−e−πiw; q) equals

−
(−1)(k+1)/2ωh,ke

(π/(12k))(z−1−z)

z1/2(q1)∞
e3πiw/2+πiw+3πkw2/(4z)q

3/8
1

× e(πih′/2)(1−k/2)(bo(−w; q1) + bo(w; q1))−
ωh,kz

1/2e(π/(12k))(z
−1−z)

(q1)∞
eπiw

∑
2

where
∑

2 is as in (6.13), with the choice of integral I+k (ν, δ;w, z).

Returning to R3(q), from Theorems 6.1 and 6.2, we now conclude the
modular transformation properties of R3(q).

Proof of Corollary 6.3. We wish to compute L(R̃
′
3(w; q)). Since R̃

′
3(w; q)

is a sum over only those terms in R̃3(w; q) with n 6= 0, we have to subtract
the term for n = 0, which is taken into account in the first line of the
following set of equations. It is not difficult to show that

L

(
1

1− e2πiw
+
e3πiw/2+3πw2k/(4z)−πw/(2z)

2izeπiw(1− e−πw/z)

)
=
π − 18kz − 5πz2

96πz2
,
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L

(
−e

3πiw/2+3πw2k/(4z)−πw/(2z)

2izeπiw
R̃ ′2

(
iw

2z
; q

))
=
−1

4z2
(q1)∞R2(q1),

L

(
e3πiw/2+3πw2k/(4z)−πw/(2z)+(πih′/2)(1−k/2)

2zeπiw
R̃2

(
iw

2z
+

1

2
; q1

))
=
e(πih

′/2)(1−k/2)

4z
(q1)∞b

e(q1),

L

(
−(−1)(k+1)/2e(3πw/2)(i+wk/(2z))e(πih

′/2)(1−k/2)

2zeπiw
q
3/8
1 (bo(−w; q1)+bo(w; q1))

)
= −(−1)(k+1)/2e(πih

′/2)(1−k/2)

4z
q
3/8
1 bo(0; q1),

and, using the notation as in the proofs of Theorems 6.1 and 6.2,

L
(∑

2

)
=

(q1)∞
4k

e−π/(12kz)
∑

ν (mod k)

(−1)νe−3πiν/k−3πih
′ν2/k

×
0∑

δ=−1
e(πi/k)(2δ+1)(1/2+h′ν)

×
(
I−k (ν, δ; 0, z)− I+k (ν, δ; 0, z)− 1

4
(J−k (ν, δ; z) + J+

k (ν, δ; z))

)
.

Corollary 6.3 now follows from (6.2) by using the fact that

(6.14) (q1)∞ = ωh,kz
1/2e(π/(12k))(z

−1−z)(q)∞,

which may be deduced from the transformation of η given in Lemma 3.2.

6.2. Proof of Theorem 1.3. Here, we use the Circle Method to prove
Theorem 1.3. First, we estimate the integrals I±k (ν, δ; 0, z) and J±k (ν, δ; z),
as well as certain Kloosterman sums. This well known technique has been
used to provide asymptotic results in a number of works, including [1], [4],
and [12].

Lemma 6.5. Let n ∈ N and ν ∈ Z with −1
2(k+ 1) ≤ ν ≤ 1

2(k+ 1) if k is

odd, and −1
2k ≤ ν ≤

1
2k if k is even. Let z := k/n− ikϕ, −1/(k(k + k1)) ≤

ϕ ≤ 1/(k(k+ k2)), where h1/k2 < h/k < h2/k2 are adjacent Farey fractions
in the Farey sequence of order N with N := bn1/2c. Then

z1/2I−k (ν, δ; 0, z)� kn1/4

|ν − (2δ + 1)/6|
,

z1/2J−k (ν, δ; 0, z)� k2n1/4

|ν − (2δ + 1)/6|2
.
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Lemma 6.6. Let n ∈ N and ν ∈ Z with 0 ≤ ν < k. Let z := k/n− ikϕ,
−1/(k(k + k1)) ≤ ϕ ≤ 1/(k(k + k2)), where h1/k2 < h/k < h2/k2 are
adjacent Farey fractions in the Farey sequence of order N with N := bn1/2c.
Then

z1/2I+k (ν, δ; 0, z)� kn1/4

|k − 2(ν − (2δ + 1)/6)|
,

z1/2J+
k (ν, δ; 0, z)� k2n1/4

|k − 2(ν − (2δ + 1)/6)|2
.

Proof of Lemma 6.5. For brevity, we only consider I−k (ν, δ; 0, z); the proof
of the estimate for J−k (ν, δ; 0, z) follows similarly.

We first note that with τ := πzx/k, the function z1/2I−k (ν, δ; 0, z) equals

(6.15)
k

2πz1/2
e(2δ+1)πi/(6k)−πiν/k

�

S

e−3kτ
2/(πz)+4τ

sinh(−πiν/k+τ+(2δ+1)πi/(6k))
dτ,

where S is the line through 0 and CeiA := πz/k.

We want to consider integration along the contour consisting of this line,
the real line, and the arcs ±Reit where 0 ≤ t ≤ A. For τ = Reit on these
arcs, the integrand (6.15) goes to 0 as R →∞. The poles of this integrand
occur only when τ is a non-zero, purely imaginary number. Thus, none of
the poles are contained within our contour, so by the residue theorem, the
function z1/2I−k (ν, δ; 0, z) equals

k

2πz1/2
e(2δ+1)πi/(6k)−πiν/k

�

R

e−3kt
2/(πz)+4t

sinh(−πiν/k + t+ (2δ + 1)πi/(6k))
dt.

Now, for −π/2 ≤ y ≤ π/2,

(6.16) |sinh(x+ iy)| ≥ |sin y| ≥ |2y/π|.

Using this fact, we have

z1/2I−k (ν, δ; 0, z)

� k2

|z|1/2
| − v + (2δ + 1)/6|−1

�

R

e−3kt
2 Re(z−1)/π+4t dt

� k2

|z|1/2
|v − (2δ + 1)/6|−1|e4π/(3kRe(z−1))|

�

R

e−3kt
2 Re(z−1)/π dt.

Since z=k/n− kϕi, −1/(k(k + k1)) ≤ ϕ ≤ 1/(k(k + k2)), and 1/(k + kj) ≤
1/(N + 1) for j = 1, 2, we have kRe(z−1)≥1/2. We let u= t

√
3kRe(z−1)/π,
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and find

(6.17) z1/2I−k (ν, δ; 0, z)

� k2

|z|1/2
|v − (2δ + 1)/6|−1(3kRe(z−1))−1/2

�

R

e−u
2
du.

Because the integral in (6.17) converges, and

|z|−1/2 Re(z−1)−1/2 � n1/4k−1/2,

we obtain the desired result.

Proof of Lemma 6.6. Lemma 6.6 is proven in a manner nearly identical
to Lemma 6.5, so for brevity we omit details. One must only replace the
estimate (6.16) by the estimate 0 ≤ y ≤ π, |cosh(x + iy)| ≥ |cos y| ≥
|(π − 2y)/π|.

We next estimate certain Kloosterman sums.

Lemma 6.7. Let n,m ∈ Z, 0 ≤ σ1 < σ2 ≤ k and D ∈ Z with (D, k) = 1.
Then:

(1) For all k,∑
h (mod k)?

σ1≤Dh′≤σ2

ωh,ke
(2πi/k)(hn+h′m) � (24n+ 1, k)1/2k1/2+ε.

(2) If k is even, then∑
h (mod k)?

σ1≤Dh′≤σ2

ωh,ke
(2πi/k)(hn+h′m)+(πih′/2)(1−k/2) � (24n+ 1, k)1/2k1/2+ε.

(3) If k is odd and h′ ≡ 0 (mod 2), then∑
h (mod k)?

σ1≤Dh′≤σ2

ωh,ke
(2πi/k)(hn+h′m)+(πih′/2)(1−k/2)+3πih′/(4k)

� (24n+ 1, k)1/2k1/2+ε.

Proof. (1) is proved in [1]; (2) follows from (1) using

(πih′/2)(1− k/2) = 2πih′l/k

for some l ∈ Z; and (3) follows in the same way, given the assumption that
h′ ≡ 0 (mod 2).

Proof of Theorem 1.3. By Cauchy’s theorem, for n > 0, we have

a3(n) =
1

2πi

�

C

R3(q)

qn+1
dq,
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where C is any path in the unit circle surrounding zero, traversed coun-
terclockwise. Taking C to be the circle of radius e−2π/n and letting q :=
e−2π/n+2πit with 0 ≤ t ≤ 1, we have

a3(n) =

1�

0

R3(e
−2π/n+2πit)e2π−2πint dt.

Define

ϑ′h,k :=
1

k(k + k1)
, ϑ′′h,k :=

1

k(k + k2)
,

where h1/k1 < h/k < h2/k2 are adjacent Farey fractions in the Farey se-
quence of order N = bn1/2c. We decompose the path of integration in the
paths along the Farey arcs −ϑ′h,k ≤ ϕ ≤ ϑ′′h,k, where ϕ := t−h/k. This gives

(6.18) a3(n) =
∑
h,k

e−2πihn/k
ϑ′′h,k�

−ϑ′h,k

R3(e
(2πi/k)(h+iz))e2πinz/k dϕ,

where z := k/n − ikϕ and the sum in (6.18) is taken over k from 1 to N ,
and then over h (mod k) with (h, k) = 1. Corollary 6.3 gives

a3(n) =
∑
h,k

e−2πihn/kωh,k

ϑ′′h,k�

−ϑ′h,k

e2πnz/ke(π/(12k))(z
−1−z)z1/2(6.19)

×
(

1

(q1)∞

(
1

96z2
− 3k

16πz
− 5

96

)
− 1

4z2
R2(q1)

)
dϕ

+
∑
h

k even

e−2πihn/ke(πih
′/2)(1−k/2)ωh,k

×
ϑ′′h,k�

−ϑ′h,k

e2πnz/ke(π/(12k))(z
−1−z)z1/2

(
1

4z
be(q1)

)
dϕ

+
∑
h

k odd

e−2πihn/ke(πih
′/2)(1−k/2)ωh,k

×
ϑ′′h,k�

−ϑ′h,k

e2πnz/ke(π/(12k))(z
−1−z)z1/2

(
−(−1)(k+1)/2q

3/8
1

4z(q1)∞
bo(0; q1)

)
dϕ

+
∑
h,k

1

4k
e−2πihn/kωh,k

∑
ν

(−1)νe−3πiν/k−3πih
′ν2/k
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×
0∑

δ=−1
e(πi/k)(2δ+1)(1/2+h′ν)

ϑ′′h,k�

−ϑ′h,k

z1/2e(2πz/k)(n−1/24)

×
(
I−k (ν, δ; 0, z)− I+k (ν, δ; 0, z)− 1

4
(J−k (ν, δ; z) + J+

k (ν, δ; z))

)
dϕ.

We denote the first three summands in (6.19) by
∑

11,
∑

12 and
∑

13 respec-
tively, and the last summand by

∑
2. We will examine

∑
11 first and start

with the contribution coming from

1

96z2(q1)∞
=:

1

z2

(
1

96
+
∑
r>0

a(r)qr1

)
.

We consider the constant term and the term arising from r ≥ 1 separately
because they contribute to the main term and the error term, respectively,
and denote them as S1 and S2. We first estimate S2. We will use the facts
that Re(z) = k/n, Re(z−1) > k/2, |z|1/2 ≥ k/n, and that

ϑ′h,k + ϑ′′h,k ≤ 2/(k(N + 1)).

Since k1, k2 ≤ N , we can split the integral in S2 as

ϑ′′h,k�

−ϑ′h,k

=

1/(k(N+k))�

−1/(k(N+k))

+

−1/(k(N+k))�

−1/(k(k+k1))

+

1/(k(k+k2))�

1/(k(N+k))

=: S21 + S22 + S23.

We first consider S21. Using Lemma 6.7, and that r ≥ 1, we find that

S21 �
∣∣∣∑
r≥1

a(r)
∑
k

∑
h

ωh,ke
−2πihn/k+2πirh′/k

×
1/(k(N+k))�

−1/(k(N+k))

z−3/2e(2πz/k)(n−1/24)−(2π/(kz))(r−1/24) dϕ
∣∣∣

�
∑
r≥1
|a(r)|e−πrn

∑
k

(24n− 1, k)1/2k−2+ε � n1+ε.

Since S22 and S23 are estimated similarly, for brevity, we consider only S22.
Writing

−1/(k(N+k))�

−1/(k(k+k1))

=
N+k−1∑
l=k1+k

−1/(k(l+1))�

−1/(kl)

,

we have
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(6.20)

S22 �
∣∣∣∑
r≥1

a(r)
∑
k

N+k−1∑
l=k1+k

−1/(k(l+1))�

−1/(kl)

z−3/2e(2πz/k)(n−1/24)−(2π/(kz))(r−1/24) dϕ

×
∑
h

N<k+k1≤l

ωh,ke
−2πihn/k+2πirh′/k

∣∣∣.
From the theory of Farey fractions, we conclude that k1 ≡ −h′ (mod k),

N − k < k1 ≤ N , and k2 ≡ h′ (mod k), N − k < k2 ≤ N . Thus, (6.20) can
be estimated in a manner similar to S21, using Lemma 6.7.

By the same argument as above, we can show that the terms with positive
exponents in the Fourier expansions of

∑
11 and

∑
12, as well as all of

∑
13

introduce an error of O(n1+ε). Thus, after some simplification, we find∑
1

:=
∑

11
+
∑

12
+
∑

13

=
∑
h,k

e−2πihn/kωh,k

×
ϑ′′h,k�

−ϑ′h,k

e2πnz/ke(π/(12k))(z
−1−z)

(
1

96z3/2
− 3k

16πz1/2
− 5z1/2

96

)
dϕ

+
∑
h

k even

e−2πihn/ke(πih
′/2)(1−k/2)ωh,k

×
ϑ′′h,k�

−ϑ′h,k

e2πnz/ke(π/(12k))(z
−1−z)

(
− 1

16z1/2

)
dϕ+O(n1+ε).

We symmetrize the path of integration by writing

ϑ′′h,k�

−ϑ′h,k

=

1/(kN)�

−1/(kN)

−
−1/(k(k+k1))�

−1/(kN)

−
1/(kN)�

1/(k(k+k2))

,

and we denote the associated sums by S11, S12 and S13, respectively. We
will show that the sums S12 and S13 contribute to the error term. We will
consider S12 only, noting that S13 can be estimated similarly. Again, we
consider only the first summand since the other pieces can be shown to have
error of at most O(n1+ε). Writing

−1/(k(k+k1))�

−1/(kN)

=

k+k1−1∑
l=N

−1/(k(l+1))�

−1/(kl)

,

and using the facts that Re(z) = k/n, Re(z−1) < 4k (for −1/(kN) ≤ ϕ ≤
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−1/(k(k + k1))), and |z|2 ≥ k2/n2, we can estimate the previous integral as
we estimated S2 (using Lemma 6.7) as O(n1+ε). Thus

(6.21)
∑

1
=
∑
h,k

e−2πihn/kωh,k

×
1/(kN)�

−1/(kN)

e2πnz/ke(π/(12k))(z
−1−z)

(
1

96z3/2
− 3k

16πz1/2
− 5z1/2

96

)
dϕ

+
∑
h

k even

e−2πihn/ke(πih
′/2)(1−k/2)ωh,k

×
1/(kN)�

−1/(kN)

e2πnz/ke(π/(12k))(z
−1−z)

(
− 1

16z1/2

)
dϕ+O(n1+ε).

To finish our estimate of
∑

1, we consider integrals of the form

Ik,r :=

1/(kN)�

−1/(kN)

zr · e2πnz/k+π/(12k)(z−1−z) dϕ,

where r ∈ {−3/2,−1/2, 1/2}. As shown in [4],

(6.22) Ik,r =
2π

k
(24n− 1)−(r+1)/2Ir+1

(
π
√

24n− 1

6k

)
+O(n1+ε).

Using (6.22), (6.21) becomes

(6.23)∑
1

=

bn1/2c∑
k=1

Ak(n)

[
π(24n− 1)1/4

48k
I−1/2

(
π

6k

√
24n− 1

)
− 3

8(24n− 1)1/4

× I1/2
(
π

6k

√
24n− 1

)
− 5π

48k(24n− 1)3/4
I3/2

(
π

6k

√
24n− 1

)]

−
bn1/2c∑
k=1
k even

Aek(n)
π

8k(24n− 1)1/4
I1/2

(
π

6k

√
24n− 1

)
+O(n1+ε),

where Ak(n) and Aek(n) are defined by

Ak(n) :=
∑

h (mod k)?

ωh,ke
−2πihn/k,(6.24)

Aek(n) :=
∑

h (mod k)?

ωh,ke
−2πihn/k+πih′(1−k/2)/2.(6.25)
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We next consider
∑

2 of (6.19). We first note that∑
ν

0∑
δ=−1

kn−1/4

|ν − (2δ + 1)/6|
� k2n−1/4,

∑
ν

0∑
δ=−1

kn1/4

|k − 2(ν − (2δ + 1)/6)|
� k2n−1/4,

and similarly that ∑
ν

0∑
δ=−1

k2n−1/4

|ν − (2δ + 1)/6|2
� k2n−1/4,

∑
ν

0∑
δ=−1

k2n1/4

|k − 2(ν − (2δ + 1)/6)|2
� k2n−1/4.

Thus, using Lemmas 6.5 and 6.6, we have

(6.26)
∑

2
� n−1/4

∑
k

(24n− 1, k)1/2k3/2+ε � n3/4+ε.

Combining the estimates for
∑

1 and
∑

2 given in (6.23) and (6.26)
respectively, and replacing k by `, gives Theorem 1.3.

Proof of Corollary 1.4. The corollary follows from Theorem 1.3 and the
fact that for x→∞,

Ia(x) ∼ 1√
2πx

ex.
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Boston, Boston, MA, 1985.

[14] J. Funke and J. Millson, The geometric theta correspondence for Hilbert modular
surfaces, preprint.

[15] B. Gordon and R. McIntosh, Modular transformations of Ramanujan’s fifth and
seventh order mock theta functions, Ramanujan J. 7 (2003), 193–222.

[16] B. Gordon and R. McIntosh, A survey of classical mock theta functions, in: Par-
titions, q-series and Modular Forms, Dev. Math. 23, Springer, New York, 2012,
95–144.

[17] F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular
surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113.

[18] M. Kaneko and D. Zaiger, A generalized Jacobi theta function and quasimodular
forms, in: The Moduli Space of Curves (Texel Island, 1994), Progr. Math. 129,
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