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1. Introduction. For a rational number h/k with (h, k) = 1, k > 1,
and a complex number a, let

ca

(
h

k

)
:= ka

k−1∑
m=1

cot

(
πhm

k

)
ζ

(
−a, m

k

)
,

where ζ(s,m/k) is the Hurwitz zeta-function. These cotangent sums arise
in analytic number theory in the value at s = 0,

D

(
0, a,

h

k

)
= −1

2
ζ(−a) +

i

2
ca

(
h

k

)
,

of the Estermann function

D

(
s, a,

h

k

)
:=

∞∑
n=1

σa(n) e(nh/k)

ns
,

which is initially defined for <(s) > 1+max(0,<(a)), but can be analytically
continued to C \ {1, 1 + a}. The Estermann function satisfies a functional
equation and it is useful in studying the asymptotic of the mean square of
the Riemann zeta function ζ(s) multiplied by a Dirichlet polynomial (see,
for example, [BCH]). Here and in the following we write, as usual, σa(n) :=∑

d|n d
a and e(x) := e2πix.

The cotangent sum ca(h/k) is most interesting in the cases a = −1 (note
that the poles in the sum defining ca cancel) and a = 0. In the former case,
c−1 is, up to a constant, the Dedekind sum,

2010 Mathematics Subject Classification: Primary 11F20; Secondary 11M41.
Key words and phrases: Vasyunin sum, reciprocity formula, Riemann zeta-function,
Dedekind sum.

DOI: 10.4064/aa159-4-5 [363] c© Instytut Matematyczny PAN, 2013



364 S. Bettin

s

(
h

k

)
:=

1

4k

k−1∑
m=1

cot

(
πhm

k

)
cot

(
πm

k

)
=

k−1∑
m=1

((
mh

k

))((
m

k

))
=

1

2π
c−1

(
h

k

)
,

where ((·)) is the sawtooth function,

((x)) :=

{
{x} − 1/2, x 6∈ Z,

0, x ∈ Z,

and {x} is the fractional part of x.

The Dedekind sum appears in the root number in the functional equation
of the Dedekind eta-function and has been much studied in number theory
and other branches of mathematics. The main property of the Dedekind
sum is that it satisfies a reciprocity formula

s

(
h

k

)
+ s

(
k

h

)
− 1

12hk
=

1

12

(
h

k
+
k

h
− 3

)
(1.1)

for (h, k) = 1, h, k ∈ N>0. This formula, due to Dedekind, has been gener-
alized by Rademacher, who proved that

s

(
ab

c

)
+ s

(
bc

a

)
+ s

(
ca

b

)
=
a2 + b2 + c2

12abc
− 1

4
(1.2)

for (a, b) = (b, c) = (a, c) = 1, a, b, c ∈ N>0, and where b (respectively c, a)
denotes the inverse of b (resp. c, a) modulo c (resp. a, b).

For a = 0, one has the cotangent sum

c0

(
h

k

)
=

k−1∑
m=1

{
m

k

}
cot

(
πmh

k

)
,

which is relevant to the Nyman–Beurling–Báez-Duarte approach to the Rie-
mann hypothesis. This asserts that the Riemann hypothesis is true if and
only if limN→∞ dN = 0, where

d2N = inf
AN

1

2π

∞�

−∞

∣∣∣∣1− ζ(1

2
+ it

)
AN

(
1

2
+ it

)∣∣∣∣2 dt

1/4 + t2

and the inf is over all the Dirichlet polynomials AN (s) =
∑N

n=1 an/n
s of

length N . When computing this integral, one is led to consider integrals of
the form

ν

(
h

k

)
:=

1

2π
√
hk

∞�

−∞

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣2(hk
)it dt

1/4 + t2
,(1.3)
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which can be re-expressed (see [Vas]) as

ν

(
h

k

)
=

log 2π − γ
2

(
1

h
+

1

k

)
+
k − h
2hk

log
h

k
− π

2hk

(
V

(
h

k

)
+ V

(
k

h

))
,

where

V

(
h

k

)
= − c0

(
h

k

)
is the Vasyunin sum and h is the inverse of hmodulo k. It should be remarked
that the convexity bound, ζ(1/2 + it) � |t|1/4+ε, implies that the integral
in (1.3) extends to a continuous function of h/k ∈ R>0, though it follows
from the work of Báez-Duarte, Balazard, Landreau and Saias [BBLS] that
this function is not differentiable at any rational number.

In [?], Conrey and the author showed that a natural generalization of
the Dedekind reciprocity formula to c0 is

c0

(
h

k

)
+
k

h
c0

(
k

h

)
− 1

πh
= ω

(
h

k

)
,(1.4)

where ω(x) is an explicit holomorphic function on C′ := C \ R≤0. (A gen-
eralization to all a was given by the same authors in [BC2]). This formula
shows that c0 can be interpreted as an “imperfect” quantum modular form
of weight 1, in the sense of Zagier [Zag].

It is the purpose of the present paper to provide the analogue of (a
generalization of) Rademacher’s formula (1.2) for ca for all a ∈ C.

Theorem 1.1. Let a ∈ C and let M be any integer greater than or equal
to −1

2 min(0,<(a)). Let h, k, p, q ∈ N>0, with (h, k) = (p, q) = 1, and let
d = (pk + h, q). Then

(1.5)

ca

(
pk + h

qk

)
−
(
k

h

)1+a

ca

(
−ph− k
qh

)
− ca

(
p

q

)
+ aζ(1− a)

(kq)ad1−a

πh

= −2i

2M∑
m=1

D

(
−m, a, p

q

)
(2πi hkq )m

m!
+ ga,M

(
h

k
,
p

q

)

+ 2

(
2π
h

k

)−1
qaζ(1− a)− cot

πa

2
ζ(−a)

(
k

h

)1+a

,

where p is the inverse of p modulo q and

(1.6) ga,M

(
z,
h

k

)
:=

1

πi

�

(−1/2−2M)

Γ (s)
cos πa2

sinπ(s− a)

×
(
e−πi(s−a)/2D

(
s, a,

h

k

)
+D

(
s, a,−h

k

)
eπi(s−a)/2

)(
2πz

k

)−s
ds.
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In particular, for all (p, q) = 1, the left hand side of (1.5) can be continued
to a function of h/k which is holomorphic on C′ := C \ R≤0.

Corollary 1.2. Let h, k, p, q ∈ N>0, with (h, k) = (p, q) = 1, and let
d = (pk + h, q). Let p be the inverse of p modulo q. Then

c0

(
pk + h

qk

)
+
k

h
c0

(
ph+ k

qh

)
− c0

(
p

q

)
− d

πh
= f

(
h

k
,
p

q

)
,

where

f

(
z,
p

q

)
:= − log(2πqz)− γ

πz

+
1

πi

�

(−1/2)

Γ (s)

sinπs

(
e−πis/2D

(
s, 0,

p

q

)
+ eπis/2D

(
s, 0,−p

q

))(
2π
z

q

)−s
ds

is a holomorphic function of z on C′.

In the case of a = −1 Theorem 1.1 yields the following corollary.

Corollary 1.3. Let h, k, p, q ∈ N>0, with (h, k) = (p, q) = 1, and
d = (pk + h, q). Then

s

(
pk + h

qk

)
+ s

(
ph+ k

qh

)
− s
(
p

q

)
=
k2 + d2 + h2

12hkq
− 1

4
.(1.7)

This is an extension of Rademacher’s formula and is equivalent to Lem-
ma 7 of [CFKS] (which is itself equivalent to an analogous formula of Die-
ter [Die]), as we shall show at the end of Section 3. Finally, it should be
noticed that for negative odd integer a, the identities we obtain involve, as
in the case when a = −1, only cotangent sums and a rational function and
are particular cases of the formulae obtained by Beck [Beck].

One of the main ingredients in the proof of Theorem 1.1 comes from
providing the analytic continuation for the “period function” (in the sense
of [LZ])

ψ

(
z, a,

h

k

)
:= S

(
z

k
, a,

h

k

)
− 1

z1+a
S
(
− 1

kz
, a,
−h
k

)
of

S
(
z, a,

h

k

)
:=

∞∑
n=1

σa(n) e

(
n
h

k

)
e(nz).

The function S(z, a, h/k) is defined only for =(z) > 0 (notice that =(z) > 0
iff =(−1/z) > 0), however, its period function ψ(z, a, h/k) can be analyti-
cally continued to C′, as shown by the following theorem which extends the
work of Lewis and Zagier [LZ] (see also Theorem 1 in [BC2]).
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Theorem 1.4. Let h/k ∈ Q with (h, k) = 1, k > 0. Let a ∈ C and let M
be any integer greater than or equal to −1

2 min(0,<(a)). Then ψ(z, a, h/k)
extends to an analytic function of z on C′ via the representation

ψ

(
z, a,

h

k

)
= ra,M

(
z,
h

k

)
+
i

2
ga,M

(
z,
h

k

)
,(1.8)

where ga,M (z, h/k) is as in (1.6) and

ra,M

(
z,
h

k

)
:= ika

ζ(1− a)

2πz
+ eπi(1+a)/2Γ (1 + a)

ζ(1 + a)

(2πz)1+a

+
2M∑
m=1

D

(
−m, a, h

k

)
im

m!
(2πz/k)m +D

(
0, a,

h

k

)
.

This result is of independent interest, as the (smoothed) second moment
of ζ(s) times a Dirichlet polynomial can be expressed in terms of S(z, a, h/k).
We remark that the asymptotics for these moments are needed, for example,
for theorems which give a lower bound for the portion of zeros of ζ(s) on
the critical line (see [Iwa] and [Con]).

We conclude the paper by showing that the coefficients of the Taylor
series of ga,M (z, h/k) are exceptionally small when <(z) > 0. In particu-
lar, the Taylor series converges (absolutely) on the boundary of the disk of
convergence. This is particularly relevant, since it can be used to give an
exact formula for the smoothed second moment of ζ(s) times a Dirichlet
polynomial.

Theorem 1.5. Let h, k ∈ N>0 with (h, k) = 1. Let a ∈ C be fixed and
let M be any integer greater than or equal to −1

2 min(0,<(a)). Let τ be a
complex number with positive real part and, for |y| < 1, let

ga,M

(
τ + τy,

h

k

)
=

∞∑
m=0

ρa,m,M

(
τ,
h

k

)
(−y)m

be the Taylor series of ga,M (z, h/k) at z = τ . Then

ρa,m,M

(
τ,
h

k

)
= cos

πa

2
2

7
4
−a

2 π−
3
4
−a

2 τ−
3
4
−a

2 k
1
4
+a

2m−
1
4
+a

2 e−2
√
πm/(τk)

×
(

cos

(
π

4

(
a− 1

2

)
+

π

τk
− 2

√
πm

τk
+ 2π

h

k

)
+O

(√
|τ |k
m

))
uniformly in h, k ≥ 1, m ≥ 2M + 1 and |τ | > K for any fixed K > 0.

2. The period function. The next lemma gives the functional equa-
tion for D(s, a, h/k) and can be proved easily by the following decomposition
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of D in terms of the Hurwitz zeta-function:

D

(
s, a,

h

k

)
=

1

k2s−a

k∑
m,n=1

e

(
mnh

k

)
ζ

(
s− a, m

k

)
ζ

(
s,
n

k

)
.

Lemma 2.1. For (h, k) = 1, k > 0 and a ∈ C,

D

(
s, a,

h

k

)
− k1+a−2sζ(s− a)ζ(s)

is an entire function of s. Moreover, D(s, a, h/k) satisfies the functional
equation

(2.1) D

(
s, a,

h

k

)
= −2

k

(
k

2π

)2−2s+a
Γ (1− s+ a)Γ (1− s)

×
(

cos

(
π

2
(2s− a)

)
D

(
1− s,−a,−h

k

)
− cos

πa

2
D

(
1− s,−a, h

k

))
.

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Firstly observe that we can assume 0 6= |<(a)|<1,
since the lemma will then follow by analytic continuation in a. Now, we
notice that S(z/k, a, h/k) can be written as

S
(
z

k
, a,

h

k

)
=

1

2πi

�

(2+max(0,<(a)))

D

(
s, a,

h

k

)
eπis/2Γ (s)(2πz/k)−s ds

and, by contour integration, this is equal to

S
(
z

k
, a,

h

k

)
=

1

2πi

�

(−1/2−2M)

D

(
s, a,

h

k

)
eπis/2Γ (s)(2πz/k)−s ds(2.2)

+ ra,M

(
z

k
,
h

k

)
.

Consider

1

(zk)1+a
S
(
− 1

zk
, a,−h

k

)
=

1

(zk)1+a
1

2πi

�

(2+max(0,<(a)))

D

(
s, a,−h

k

)
Γ (s)eπis/2

(
2π
−1

zk

)−s
ds

=
1

2πi

�

(2+max(0,<(a)))

D

(
s, a,−h

k

)
Γ (s)e−πis/2(2π)−s(zk)s−1−a ds,

since in this context 0 < arg z < π and 0 < arg(−1/z) < π, so the identity
arg (−1/z) = π − arg z holds. Applying the functional equation (2.1), we
find that this is
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−2

k

1

2πi

�

(2+max(0,<(a)))

(
k

2π

)2−2s+a
Γ (1− s+ a)Γ (1− s)

×
(

cos

(
π

2
(2s− a)

)
D

(
1− s,−a, h

k

)
− cos

πa

2
D

(
1− s,−a,−h

k

))
× Γ (s)e−πis/2(2π)−s(zk)s−1−a ds.

Observing that D(s,−a,−h/k) = D(s+ a, a,−h/k) and using Euler’s re-
flection formula, we see that this is equal to

−2π

k

1

2πi

�

(2+max(0,<(a)))

(
k

2π

)2−2s+a
Γ (1− s+ a)

×
(

cos

(
π

2
(2s− a)

)
D

(
1− s+ a, a,

h

k

)
− cos

πa

2
D

(
1− s+ a, a,−h

k

))
e−πis/2

sinπs
(2π)−s(zk)s−1−a ds.

Now, we make the change of variable s 7→ 1− s + a and then move the
line of integration to −1/2− 2M without crossing any pole. Thus, we get

(2.3)

1

(zk)1+a
S
(
− 1

zk
, a,

h

k

)
= − 1

2πk

�

(−1/2−2M)

k−aΓ (s)
eπi(s−a)/2

sinπ(s− a)

(
2πz

k

)−s
×
(

cos

(
π

2
(2s− a)

)
D

(
s, a,

h

k

)
+ cos

πa

2
D

(
s, a,−h

k

))
ds.

The lemma then follows by taking the difference between (2.2) and (2.3),
thanks to the identity

eπis/2 + i
cos(π2 (2s− a))

sinπ(s− a)
eπi(s−a)/2 = i

e−πi(s−a)/2 cos πa2
sinπ(s− a)

.

3. A generalization of Rademacher’s formula. We can now prove
the extension (1.5) of Rademacher’s reciprocity formula to the sum ca(h/k).
The proof follows the method used to prove Theorem 4 in [BC2].

Proof of Theorem 1.1. Firstly observe that we can assume 0 6= |<(a)|
< 1, since the result will then follow by analytic continuation in a.
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Let z = h
k (1 + iξ) for a small ξ > 0 and let α = pk + h, β = qk. We have

S
(
z

q
, a,

p

q

)
=
∞∑
n=1

σa(n) e

(
n
α

β

)
e

(
in
h

β
ξ

)
=

1

2πi

�

(2+max(<(a)),0)

Γ (s)D

(
s, a,

α

β

)(
2π
h

β
ξ

)−s
ds.

Moving the line of integration to <(s) = −1/2 and picking up the residue
encountered, by Lemma 2.1 we deduce that this is equal to

(3.1) S
(
z

q
, a,

p

q

)
= (β/d)a−1ζ(1− a)

(
2π
h

β
ξ

)−1
+
i

2
ca

(
α

β

)
− 1

2
ζ(−a)

+ Γ (1 + a)(β/d)−1−aζ(1 + a)

(
2π
h

β
ξ

)−1−a
+O(ξ1/2).

In the same way, writing

−1

z
= −k

h
(1− iξ′), ξ′ =

ξ

1 + iξ
= ξ − iξ2 +O(ξ3)

and α′ = −ph − k, β′ = qh (note that (p, q) = (h, k) = (α, q) = 1 implies
(α′, q) = 1), we have

S
(
− 1

qz
, a,−p

q

)
=

∞∑
n=1

σa(n) e

(
n
α′

β′

)
e

(
in
k

β′
ξ′
)

= (β′/d)a−1ζ(1− a)

(
2π

k

β′
ξ′
)−1

+
i

2
ca

(
α′

β′

)
− 1

2
ζ(−a)

+ Γ (1+a)(β′/d)−1−aζ(1+a)

(
2π

k

β′
ξ′
)−1−a

+O((ξ′)
1/2

)

and thus

(3.2)

S
(
−1

qz
, a,−p

q

)
=

(
β′

d

)a−1
ζ(1−a)

(
2π

k

β′
ξ

)−1
(1+iξ)+

i

2
ca

(
α′

β′

)
− ζ(−a)

2

+ Γ (1 + a)(β′/d)−1−aζ(1 + a)

(
2π

k

β′
ξ

)−1−a
(1 + iξ)1+a +O(ξ1/2).

Therefore, from (3.1) and (3.2) it follows that

S
(
z

q
, a,

p

q

)
− 1

z1+a
S
(
− 1

qz
, a,−p

q

)
=
i

2
ca

(
α

β

)
− 1

z1+a
i

2
ca

(
α′

β′

)
− 1

2
ζ(−a) + iaζ(1− a)

(kq)ad1−a

2πh
+

1

z1+a
1

2
ζ(−a) +O(ξ1/2)
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and thus

lim
ξ→0+

S
(
z

q
, a,

p

q

)
− 1

z1+a
S
(
− 1

qz
, a,−p

q

)
=
i

2
ca

(
α

β

)
−
(
k

h

)1+a i

2
ca

(
α′

β′

)
− 1

2
ζ(−a) + iaζ(1− a)

(kq)ad1−a

2πh
+

(
k

h

)1+a 1

2
ζ(−a).

By Theorem 1.4, this is also equal to ra,M (h/k, p/q) + (i/2)ga,M (h/k, p/q)
and thus Theorem 1.1 follows after using the functional equation for the
Riemann zeta-function.

Corollary 1.2 follows immediately by applying Theorem 1.1 to the case
a = 0. We remark that replacing k with qk in Corollary 1.2, we obtain, for
all M ∈ Z≥0,

(3.3) c0

(
pqk + h

q2k

)
+
qk

h
c0

(
ph+ kq

qh

)
− c0

(
p

q

)
− 1

πh

=
q

π2

M∑
m=1

(−1)m(2m)!Dsin

(
1 + 2m,

p

q

)(
h

2πk

)2m

+ qµM

(
h

k
,
p

q

)
,

where µM (x, y) is holomorphic in x for x ∈ C′ and C2M+1(R) in y, and
where

Dsin(s, x) :=
D(s, 0, x)−D(s, 0,−x)

2i

for <(s) > 1 + max(0,<(a)).

Applying Theorem 1.1 to a = −1, one obtains immediately the general-
ization (1.7) of Rademacher’s reciprocity formula, since for a = −1 one sees
that g1,M is identically zero.

We conclude the section by showing how to obtain Lemma 7 of [CFKS]
from (1.7). This lemma states that, if a, c, `,m∈N>0 with (a, c) = (`,m)=1,
and b, d are such ad− bc = 1, then

s

(
a

c

)
+ s

(
`

m

)
− s
(
x

y

)
=
c2 +m2 + y2

12cmy
− 1

4
,(3.4)

where x = a`+ bm and y = c`+ dm.

To prove this result we apply Corollary 1.3 to p = x, q = y, k = c/u and
h = m/u, where u = (c,m). We have

u(pk + h) = xc+m = ac`+m(bc+ 1) = ac`+ ad = ay = aq(3.5)

and

`(ph+ k)u = `(pm+ c) = `pm+ `c = `pm+ q − dm = (`p− d)m+ q

= ((pp− 1)d− pbq)m+ q,
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where we used ` = dp− bq, which can be obtained from the definition of x
and y and the condition ad− bc = 1. Therefore

`(ph+ k)u/q ≡ 1 (mod m).(3.6)

Thus (3.4) follows from (3.5) and (3.6) by observing that

s

(
`

m

)
= s

(
`

m

)
.

4. The Taylor coefficients. First, we need the following lemma from
[BC2].

Lemma 4.1. Let a ∈ C be fixed and let M be any integer greater than or
equal to −1

2 min(0,<(a)). Let z be a complex number with positive real part
and let

I±m,a(z) := − 1

4π

�

(−1/2−2M)

Γ (1− s)Γ (1− s+ a)Γ (s+m)(±2πiz)s ds.

Then, for m ≥ 2M + 1 and |z| ≥ K for some fixed K > 0, we have

I±m,a(z) = ± 2
1
4
+a

2 π
7
4
+a

2 e
±πi(a−1/2)

4 z
3
4
+a

2 e±iπze−2(1±i)
√
πmze−mmm+ 1

4
+a

2

×
(

1 +O

(
1√
m|z|

))
uniformly in m and z.

Proof. This formula appears in the proof of Theorem 2 in [BC2].

We can now prove Theorem 1.5.

Proof of Theorem 1.5. Let (h, k) = 1, k > 0 and a ∈ C. From Lemma 2.1
a simple computation shows that

C

(
s, a,

h

k

)
:= Γ (s)

(
k

2π

)s(
e−πi(s−a)/2D

(
s, a,

h

k

)
+ eπi(s−a)/2D

(
s, a,−h

k

))
is a meromorphic function of s (with a simple pole at s = 1 only) and
satisfies the functional equation

sin(πs)C

(
s, a,

h

k

)
= sin(π(1− s+ a))C

(
1− s+ a, a,

h

k

)
.
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Thus, we have

ga,M

(
z,
h

k

)
=

1

πi

�

(−1/2−2M)

C

(
s, a,

h

k

)
cos πa2

sin(π(s− a))
z−s ds

=
1

πi

�

(−1/2−2M)

C

(
1− s+ a, a,

h

k

)
cos πa2
sin(πs)

z−s ds.

Now,

dm

dzm
z−s = (−1)m

Γ (s+m)

Γ (s)
z−s−m,

therefore, by the reflection formula for the Gamma function, one has

g
(m)
a,M

(
τ,
h

k

)
=

(−1)m

πi

�

(−1/2−2M)

C

(
1− s+ a, a,

h

k

)
cos πa2 Γ (s+m)

sin(πs)Γ (s)
τ−s−m ds

=
(−1)m

π2i

�

(−1/2−2M)

Γ (1− s)Γ (1− s+ a)Γ (s+m)

× C
(

1− s+ a, a,
h

k

)
cos

πa

2
τ−s−m ds

=
(−1)m

(πi)2τm

(
k

2π

)1+a �

(−1/2−2M)

Γ (1− s)Γ (1− s+ a)Γ (s+m)

×
(
isD

(
s, a,

h

k

)
− (−i)sD

(
s, a,−h

k

))
cos

πa

2

(
2π

kτ

)s
ds.

Expanding the D functions into their Dirichlet series, one gets

g
(m)
a,M

(
τ,
h

k

)
= 4

(−1)m

πτm

(
k

2π

)1+a

cos
πa

2

∑
`≥1

σa(`)

`1+a

×
(
I+m,a

(
`

τk

)
e

(
h`

k

)
− I−m,a

(
`

τk

)
e

(
−h`
k

))
and Theorem 1.5 follows by Lemma 4.1 and Stirling’s formula.
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