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1. Introduction. For n ∈ N, L > 0, and p ≥ 1 we define the following
numbers. Let κp(n,L) be the largest possible value of k for which there is a
polynomial P 6= 0 of the form

P (x) =

n∑
j=0

ajx
j , |a0| ≥ L

( n∑
j=1

|aj |p
)1/p

, aj ∈ C,

such that (x− 1)k divides P (x). Let κ∞(n,L) be the largest possible value
of k for which there is a polynomial P 6= 0 of the form

P (x) =

n∑
j=0

ajx
j , |a0| ≥ L max

1≤j≤n
|aj |, aj ∈ C,

such that (x−1)k divides P (x). In [BEK] we proved that there is an absolute
constant c3 > 0 such that

min
{

1
6

√
(n(1− logL)− 1, n

}
≤ κ∞(n,L) ≤ min

{
c3

√
n(1− logL), n

}
for every n ∈ N and L ∈ (0, 1]. However, we were far from being able to
establish the right result in the case of L ≥ 1. It is our goal in the present
paper to prove the right order of magnitude of κ∞(n,L) and κ2(n,L) in
the case of L ≥ 1. Our results in [BEK] have turned out to be related to
a number of recent publications from a rather wide range of research areas
(see [BBBP, BEZ, B, CK, CD, CH, D1, D2, DS, E, FK, G, K, KLS, M, OP,
P, Pr, S], for example).

2. New results. We extend some of our main results in [BEK] to the
case L ≥ 1. Our main result is the following.
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Theorem 2.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1

√
n/L− 1 ≤ κ∞(n,L) ≤ c2

√
n/L

for every n ∈ N and L ≥ 1/2.

To prove the above theorem, its lower bound, in particular, requires some
subtle new ideas. An interesting connection to number theory is explored.
Namely, the fact that the density of square free integers is positive (in fact,
it is π2/6) appears in our proof in an elegant fashion.

While, as we said, we consider Theorem 2.1 to be our main result in this
paper, we also prove the following.

Theorem 2.2. There are absolute constants c1 > 0 and c2 > 0 such that

c1

√
n/L− 1 ≤ κ2(n,L) ≤ c2

√
n/L

for every n ∈ N and L > 2−1/2, and

min
{
c1

√
n(− logL)− 1, n

}
≤ κ2(n,L) ≤ min

{
c2

√
n(− logL), n

}
for every n ∈ N and L ∈ (0, 2−1/2].

We think that the right result on the size of κ2(n,L) offered by Theo-
rem 2.2 is also of some interest.

3. Lemmas. In this section we list our lemmas needed in the proofs of
Theorems 2.1 and 2.2. These lemmas are proved in Section 4.

Lemma 3.1. For any L ≥ 1 and n ∈ N there are polynomials Pn of the
form

Pn(x) =
n∑
j=0

aj,nx
j , aj,n ∈ R, a0,n =

6L

π2
+ o(L), |aj,n| ≤ 2, j = 1, . . . , n,

such that Pn has at least b
√
n/Lc zeros at 1.

Lemma 3.2. For any L > 0 and n ∈ N there are polynomials Pn of the
form

Pn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, a0,n = 1,

n∑
j=1

a2
j,n ≤ L−2,

such that

(a) Pn has at least
⌊

1
4

√
n/L

⌋
zeros at 1 if 2−1/2 ≤ L.

(b) Pn has at least
⌊

1
4

√
n(− logL)

⌋
zeros at 1 if 4−n ≤ L ≤ 2−1/2.

(c) Pn has at least n zeros at 1 if 0 < L ≤ 4−n.

To prove Lemma 3.2 our tool is the next lemma due to Halász [T]. Let
Pm denote the collection of all polynomials of degree at most m with real
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coefficients. Let Pcm denote the collection of all polynomials of degree at
most m with complex coefficients.

Lemma 3.3. For every m ∈ N, there exists a polynomial Qm ∈ Pm such
that

Qm(0) = 1, Qm(1) = 0, |Qm(z)| < e2/m, |z| ≤ 1.

The observation below is well known, easy to prove, and recorded in
several papers (see [BEK], for example).

Lemma 3.4. Let P 6= 0 be a polynomial of the form P (x) =
∑n

j=0 ajx
j.

Then (x− 1)k divides P if and only if
∑n

j=0 ajQ(j) = 0 for all polynomials
Q ∈ P ck−1.

For n ∈ N, 1 < q ≤ ∞, and L > 0 we define the following numbers.
Let µq(n,L) be the smallest value of k for which there is a polynomial of
degree k with complex coefficients such that

|Q(0)| > 1

L

( n∑
j=1

|Q(j)|q
)1/q

.

Let µ∞(n,L) be the smallest value of k for which there is a polynomial of
degree k with complex coefficients such that

|Q(0)| > 1

L
max

1≤j≤n
|Q(j)|.

Our next lemma is a simple consequence of Hölder’s inequality.

Lemma 3.5. Let 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1. Then for every n ∈ N
and L > 0, we have

κp(n,L) ≤ µq(n,L).

The next result is Lemma 3.4 in [KLS].

Lemma 3.6. For arbitrary real numbers A,M > 0, there exists a poly-
nomial g such that f = g2 is a polynomial of degree

m <
√
π
√
A

4
√
M + 2

with real coefficients such that f(0) = M and

|f(x)| ≤ min

{
M,

1

x2

}
, x ∈ (0, A].

We also need Lemma 5.7 from [BEK], which may be stated as follows.

Lemma 3.7. Let n and R be a positive integers with 1 ≤ R ≤
√
n. Then

there exists a polynomial f ∈ Pm with

m ≤ 4
√
n+ 9

7R
√
n+R+ 4 ≤ 44

7 R
√
n+ 4

such that
f(1) = f(2) = · · · = f(R2) = 0
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and

f(0)| > exp(R2)(|f(R2 + 1)|+ |f(R2 + 2)|+ · · ·+ |f(n)|)(3.1)

≥ exp(R2)
( n∑
j=1

|f(j)|2
)1/2

.

Lemmas 3.6 and 3.7 imply the following results needed in the proof of
Theorems 2.1 and 2.2.

Lemma 3.8. For every n ∈ N and 0 < K ≤ exp(n − 2
√
n), there exists

a polynomial h of degree m with real coefficients satisfying

|h(0)| > K
n∑
j=1

|h(j)| and m ≤
{
c4

√
nK, K < 2,

c4
√
n logK, K ≥ 2,

with an absolute constant c4 > 0.

Lemma 3.9. For every n ∈ N and 0 < K ≤ exp(n − 2
√
n), there exists

a polynomial H of degree m with real coefficients satisfying

|H(0)| >
√
K
( n∑
j=1

|H(j)|2
)1/2

and m ≤
{
c5

√
nK, K < 2,

c5
√
n logK, K ≥ 2,

with an absolute constant c5 > 0.

4. Proofs

Proof of Lemma 3.1. Following page 138 of [BE] we define

Hm(x) :=
(m!)2

2πi

�

Γ

xt dt∏m
k=0 (t− k2)

, m = 0, 1, . . . , x ∈ (0,∞),

where the simple closed contour Γ surrounds the zeros of the denominator of
the integrand. Then Hm is a polynomial of degree m2 with a zero at 1 with
multiplicity at least m. (This can be seen easily by repeated differentiation
and then evaluation of the above contour integral by expanding the contour
to infinity.) Also, by the residue theorem,

Hm(x) = 1 +

m∑
k=1

ck,mx
k2 ,

where

ck,m =
(−1)m(m!)2∏m
j=0,j 6=k (k2 − j2)

=
(−1)k2(m!)2

(m− k)!(m+ k)!
.

It follows that each ck,m is real and

|ck,m| ≤ 2, k = 1, . . . ,m.
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Let SL be the collection of all square free integers in [1, L]. Let
m := b

√
n/Lc. We define

Pn(x) :=
∑
j∈SL

Hm(xj).

Then Pn is of the form

Pn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, j = 0, 1, . . . , n.

Since ju2 6= lv2 whenever j, l ∈ SL, j 6= l, and u, v ∈ {1, . . . ,m}, we have

|aj,n| ≤ 2, j = 1, . . . , n.

Also, a0,n = |SL|, where |SL| denotes the number of elements in SL, and it
is well known that

|SL| =
6L

π2
+ o(L)

(see [HW, pp. 267–268], for example). Finally, observe that each term in
Pn has a zero at 1 with multiplicity at least m = b

√
n/Lc, and hence so

does Pn.

Proof of Lemma 3.2. (a) Let 2−1/2 ≤ L. We define k :=
⌊

1
4

√
n/L

⌋
and

m := b4
√
nLc. Observe that m ≥ 1. Let Pn := Qkm ∈ Pn, where Qm ∈ Pm

is a polynomial with the properties of Lemma 3.3. Then

Pn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, j = 0, 1, . . . , n,

has at least k =
⌊

1
4

√
n/L

⌋
zeros at 1. Clearly, a0,n = Pn(0) = 1, and since

k ≤ 1
4

√
n/L and m ≥ 2

√
nL, we have

|Pn(z)| < exp(2k/m) ≤ exp

(
1

4L2

)
, |z| ≤ 1.

Hence, it follows from the Parseval formula that

n∑
j=1

a2
j,n =

(
1

2π

2π�

0

|Pn(eit)|2 dt
)
− 1 ≤ exp

(
1

2L2

)
− 1 ≤ 1

L2
.

In the last step we used the inequality ex ≤ 1 + 2x valid for x ∈ [0, 1] with
x = 1/(2L2).

(b) Let 4−n ≤ L ≤ 2−1/2. Let further k :=
⌊

1
2

√
n(− logL)

⌋
and m :=⌊

2
√
n/(− logL)

⌋
. Again observe that m ≥ 1. Let Pn := Qkm ∈ Pn, where

Qm ∈ Pm is a polynomial with the properties of Lemma 3.3. Then

Pn(x) =
n∑
j=0

aj,nx
j , aj,n ∈ R, j = 0, 1, . . . , n,
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has at least k =
⌊

1
2

√
n(− logL)

⌋
zeros at 1. Clearly, a0,n = Pn(0) = 1, and

since k ≤ 1
2

√
n/(− logL) and m ≥

√
n/(− logL), we have

|Pn(z)| < exp(2k/m) ≤ exp(− logL) =
1

L
, |z| ≤ 1.

Hence, it follows from the Parseval formula that

n∑
j=1

a2
j,n =

(
1

2π

2π�

0

|Pn(eit)|2 dt
)
− 1 ≤ 1

L2
.

(c) Observe that the polynomial Pn defined by Pn(z) = (z − 1)n has at
least n zeros at 1, P (0) = 1, and

n∑
j=1

a2
j,n =

n∑
j=0

(
n

j

)2

≤ 4n.

Proof of Lemma 3.5. Let m := µq(n,L). Let Q be a polynomial of degree
m with complex coefficients such that

|Q(0)| > 1

L

( n∑
j=1

|Q(j)|q
)1/q

.

Now let P be a polynomial of the form

P (x) =

n∑
j=0

ajx
j , |a0| ≥ L

( n∑
j=1

|aj |p
)1/p

, aj ∈ C.

It follows from Hölder’s inequality that∣∣∣ n∑
j=1

ajQ(j)
∣∣∣ ≤ ( n∑

j=1

|aj |p
)1/p( n∑

j=1

|Q(j)|q
)1/q

<
|a0|
L
L|Q(0)| = |a0Q(0)|.

Then
∑n

j=0 ajQ(j) 6= 0, and hence Lemma 3.4 implies that (x− 1)m+1 does
not divide P . We conclude that κp(n,L) ≤ m = µq(n,L).

Proof of Lemma 3.8. Note that h ≡ 1 is a trivial choice in the case
of K < 1/n. First we consider the case of 2 ≤ K ≤ exp(n − 2

√
n). Let

R := b
√

logKc + 1, and let h := f , where f is the polynomial given in
Lemma 3.7 with this R. Then

|h(0)| > K
n∑
j=1

|h(j)|,

and the degree m of h satisfies

m ≤ 44
7 R
√
n+ 4 ≤ c6

√
n logK

with an absolute constant c6 > 0.
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Now let 1/n ≤ K < 2. Let f be the polynomial given in Lemma 3.6 with
A := n and M := 9K2. Let h := f . Then

n∑
j=1

|h(j)| =
n∑
j=1

|f(j)| ≤
∑

j≤(3K)−1

M +
∑

j>(3K)−1

1

j2

<
1

3K
9K2 + 2(3K) = 9K,

with |h(0)| = |f(0)| = M = 9K2, and the degree m of h satisfies

m < π
√
n

4
√
M + 2 < c7

√
nK

with an absolute constant c7 > 0.

Proof of Lemma 3.9. Note that H ≡ 1 is a trivial choice again in the
case of K < 1/n. In the case of 2 ≤ K ≤ exp(n − 2

√
n) let H := h, where

the polynomial h is the same as in Lemma 3.8. Then

|H(0)| > K
( n∑
j=1

|H(j)|
)
≥ K

( n∑
j=1

|H(j)|2
)1/2

≥
√
K
( n∑
j=1

|H(j)|2
)1/2

,

and the degree m of H satisfies

m ≤ c6

√
n logK,

where c6 > 0 is the same absolute constant as in the proof of Lemma 3.8.

Now let 1/n ≤ K < 2. Let g be the polynomial such that f = g2 is the
polynomial given in Lemma 3.6 with A := n and M := 9K2. Let H := g.
Then h = H2, where the polynomial h is the same as in Lemma 3.8. Then( n∑

j=1

|H(j)|2
)1/2

=
( n∑
j=1

|h(j)|
)1/2

< 3
√
K, |H(0)| =

√
h(0) = 3K,

and the degree m of H satisfies m < 1
2c7

√
nK, where c7 > 0 is the same

absolute constant as in the proof of Lemma 3.8.

Proof of Theorem 2.1. The upper bound follows from Lemmas 3.5
and 3.8. Indeed, Lemma 3.5 implies κ∞(n,L) ≤ µ1(n,L), and it follows
from Lemma 3.8 with K = L−1 that µ1(n,L) ≤ c4

√
n/L. The lower bound

of the theorem follows directly from Lemma 3.1.

Proof of Theorem 2.2. The upper bound follows from Lemmas 3.5
and 3.9. Indeed, Lemma 3.5 implies κ2(n,L) ≤ µ2(n,L) and it follows from
Lemma 3.9 with K = L−2 that

µ2(n,L) ≤

{
c5
√
n/L, L > 2−1/2,

c5

√
n(−2 logL), exp(−n/2 +

√
n) ≤ L ≤ 2−1/2.
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Combining this with κ2(n,L) ≤ µ2(n,L) and the trivial estimate κ2(n,L)
≤ n yields the upper bound of the theorem. The lower bound of the theorem
is a direct consequence of Lemma 3.2.
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Methods Appl. Anal. 7 (2000), 605–614.
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