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1. Introduction and statement of main results. Let L/K be a
finite Galois extension of number fields of a group G. Fix a finite non-empty
set of places S of K that contains the set S∞ of archimedean places and
also all non-archimedean places which ramify in L/K. Let Ir(G) denote the
set of irreducible complex characters of G. For each ψ in Ir(G) write eψ for
the primitive central idempotent ψ(1)|G|−1

∑
g∈G ψ(g−1)g of the complex

group ring C[G], and LS(ψ, z) for the S-truncated Artin L-series of ψ. Then
one obtains a C[G]-valued meromorphic function of z by setting

(1) θL/K,S(z) :=
∑

ψ∈Ir(G)

LS(ψ̌, z)eψ,

where ψ̌ denotes the contragredient of ψ. We thereby obtain an invertible
element of the centre of C[G] by setting

θ∗L/K,S(1) :=
∑

ψ∈Ir(G)

L∗S(ψ̌, 1)eψ,

where L∗S(ψ̌, 1) denotes the leading term at z = 1 of the series LS(ψ̌, z).
In this article we will always assume that L is a CM-field and write

L+ for its maximal real subfield. We will also assume that K is totally
real (so K ⊆ L+) and write τ for the (unique) generator of the subgroup
Gal(L/L+), which, we note, is central in G. We also fix an odd prime p and
for any Zp[G]-module M we write M− for the maximal Zp[G]-submodule
(1 − τ)M of M upon which τ acts as multiplication by −1. Finally, we fix
an isomorphism of fields j : C ∼= Cp.

For the moment we also assume that G is abelian. Then, motivated by
the explicit integral refinement of the abelian Stark Conjecture that was
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formulated by Rubin in [29], in the articles [30, 31, 32] Solomon used the
arithmetic of the various p-adic completions of L to construct a natural
Cp[G]-valued regulator and to then define a Zp[G]-submodule SL/K of Qp[G]
in terms of the product of this regulator and the element θ∗L/K,S(1). Solomon

then conjectured that SL/K is contained in Zp[G] and further asked whether
it annihilates the p-primary part Cl(OL)p := Cl(OL) ⊗Z Zp of the ideal
class group Cl(OL) of L. An affirmative answer to the latter question would
constitute a natural p-adic analogue of a classical theorem of Stickelberger
which asserts that if K = Q and G is abelian, then Cl(OL) is annihilated
by an ideal of Z[G] that is defined using the value of θL/K,S(z) at z = 0.

In the unpublished 2007 PhD thesis [24] of the second-named author it
is shown that (if G is abelian, then) the validity of a particular case of the
Equivariant Tamagawa Number Conjecture of Burns and Flach implies that
Solomon’s ideal SL/K is contained in the Fitting ideal of the Zp[G]-module
Cl(OL)p and hence, in particular, belongs to Zp[G] and annihilates Cl(OL)p,
as had earlier been asked by Solomon.

In this article we shall prove a natural generalisation of the main results
of [24] to the case that G is non-abelian. We therefore no longer assume that
G is abelian.

We write Qc for the algebraic closure of Q in C, and Σ(L) for the set
of embeddings of L into Qc. Then, with dK denoting the degree of K/Q,
we also fix a set {σb : 1 ≤ b ≤ dK} of representatives for the orbits of the
natural action of G on Σ(L). We set

U1
p (L) :=

∏
w|p

U1(Lw),

where w runs over all p-adic places of L, and U1(Lw) denotes the subgroup
of principal units in L×w . For each element u = (ua)1≤a≤dK in the direct sum
U1
p (L)dK of dK-copies of U1

p (L) we then define a matrix in MdK (Cp[G]) by
setting

(2) M j(u) :=

(
1

j(2πi)

∑
g∈G

logp(j ◦ σb(gua))g−1
)

1≤a,b≤dK

where logp denotes Iwasawa’s p-adic logarithm. We also set

UL/K,p := {u ∈ U1
p (L)dK : u1, . . . , udK are linearly independent over Zp[G]},

and

np,S(L/K) :=
∑

χ∈Ir(G)

eχ

( ∏
v∈Sp\S

Nv
)−χ(1)

,

where Sp denotes the union of S and the set of p-adic places of K.
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We write ζ(R) for the centre of a ring R and we define the ‘p-adic reg-

ulator lattice’ RjL/K,S to be the ζ(Zp[G])-submodule of ζ(Cp[G]) that is

generated by the set

{np,S(L/K) ·NrdCp[G](M
j(u)) : u ∈ UL/K}.

It is not difficult to show that the module RjL/K,S is both finitely generated

over Zp and independent of the precise choice of the embeddings σb.

We also write

(3) j∗ : C[G]→ Cp[G]

for the ring homomorphism that sends each element
∑

g∈G zgg, with zg in C,
to
∑

g∈G j(zg)g, and
# : Cp[G]→ Cp[G]

for the Cp-linear anti-involution which inverts elements of G.

We then define an element of ζ(Cp[G])− by setting

(4) LjL/K,S = j∗((1− τ) · θ∗L/K,S(1)#).

Finally, for each finitely generated G-module M we write FittZ[G](M) for
its generalised Fitting invariant, as introduced by Nickel in [26]. We recall, in
particular, that FittZ[G](M) is a certain equivalence class of ζ(Z[G])-lattices
(see §3.1 for more details) and we shall write (FittZ[G](M)⊗Z Zp)− for the
corresponding equivalence class of ζ(Zp[G])-lattices that contains (X⊗ZZp)−
for any, and therefore every, lattice X in FittZ[G](M).

We can now state our main results. They will be derived in §4 as a
consequence of a result (Theorem 4.1) in which the role of the class group
Cl(OL) is replaced by the Galois group over L of the maximal abelian tamely
ramified pro-p extension of L that is unramified outside S. We note, in
particular, that there are many cases in which the latter ray class group is
strictly larger than Cl(OL) and so the result of Theorem 4.1 is in general
much finer than the following consequence.

Theorem 1.1. If the Equivariant Tamagawa Number Conjecture of
[12, Conjecture 4] is valid for the pair

(
h0(Spec(L))(1),Zp[G]−

)
, then for

each isomorphism of fields j : C ∼= Cp one has an inclusion

RjL/K,S · L
j
L/K,S ⊆

(
FittZ[G](Cl(OL))⊗Z Zp

)−
.

In the next result we write H(Zp[G]) for the ‘denominator ideal’ in
ζ(Zp[G]) that is introduced by Nickel in [26]. We recall that this ideal has
an elementary description that depends only upon G as an abstract group
and can in many cases be computed explicitly: for example, it has recently
been shown by Johnston and Nickel in [23] that H(Zp[G]) = ζ(Zp[G]) if and
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only if p does not divide the order of the commutator subgroup of G. (For
further details about H(Zp[G]) see the discussion in §3.1.)

Corollary 1.2. If the Equivariant Tamagawa Number Conjecture is
valid for the pair

(
h0(Spec(L))(1),Zp[G]−

)
, then one has an inclusion

H(Zp[G]) · RjL/K,S · L
j
L/K,S ⊆ AnnZ[G](Cl(OL))⊗Z Zp.

If G is abelian, then H(Zp[G]) = Zp[G] and the methods of [24] can
be used to show that, when K 6= Q, the Zp[G]-module that is generated

by RjL/K,S · L
j
L/K,S (when j runs through all the possible isomorphisms

C ∼= Cp) coincides with the Solomon ideal SL/K . Theorem 1.1 is therefore
a natural generalisation (to non-abelian Galois extensions) of the result of
[24, Theorem 4.1.1].

For the same reason, the following result extends [24, Corollary 4.1.7]. In
this result we write Lcl for the Galois closure of L over Q (which, we note,
is again a CM-field) and ζp for a choice of primitive pth root of unity in Qc.

We shall say that the ‘Gross–Stark Conjecture is valid for L/K at p’
if the conjectures that are formulated by Gross in [21, Conjectures 1.15
and 2.12] are valid for all irreducible Cp-valued characters of G. In this
regard, we also recall that important progress on these conjectures of Gross
has recently been obtained by Darmon, Dasgupta and Pollack in [17].

Corollary 1.3. Let L be a finite Galois CM-extension of a totally real
number field K. Then the inclusions in Theorem 1.1 and Corollary 1.2 are
valid unconditionally whenever all of the following conditions are satisfied:

(i) If either Lcl is contained in (Lcl)+(ζp) or there exists a p-adic place
w of L which is both wildly ramified in L/K and split in L/L+, then
the Gross–Stark Conjecture is valid for L/K at p.

(ii) If p divides the order of G, then the µ-invariant of the cyclotomic
Zp-extension of L vanishes.

(iii) For any p-adic place w of L which is wildly ramified in L/K the
extension Lw/Qp is abelian.

Proof. We must first discuss what is known concerning the validity of
[12, Conjecture 4] for the pair

(
h0(Spec(L))(0),Zp[G]−

)
.

In [27, Theorem 5.6] Nickel has shown that this conjecture is valid pro-
vided that all of the following conditions are satisfied: any p-adic place w of
L which is wildly ramified in L/K does not split in L/L+; the µ-invariant
of the cyclotomic Zp-extension of L vanishes; one has Lcl * (Lcl)+(ζp). Fur-
ther, the assumption on µ-invariants is needed to deduce the validity of
a suitable main conjecture of non-commutative Iwasawa theory from the
results of Ritter and Weiss in [28] and one knows that this condition is un-
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necessary if p does not divide the order of G (see, for example, the proof of
[10, Corollary 2.8]).

In addition, in [11, Corollary 3.9] Burns has recently shown that the
above case of [12, Conjecture 4] is also valid provided that the Gross–Stark
Conjecture is valid for L/K at p and, in addition, if p divides the order of
G then the µ-invariant of the cyclotomic Zp-extension of L vanishes.

At this stage we therefore know that [12, Conjecture 4] is valid for
the pair

(
h0(Spec(L))(0),Zp[G]−

)
provided that the stated conditions (i)

and (ii) are satisfied.

To now deduce the validity, under (i) and (ii), of [12, Conjecture 4] for
the pair

(
h0(Spec(L))(1),Zp[G]−

)
one can argue just as in Nickel’s proof

of [27, Corollary 0.6] (which is given at end of §5 of loc. cit.). In fact, we
can make a slight improvement of Nickel’s argument. Indeed, aside from the
observation that we make in Remark 1.4 below, the key point in Nickel’s
proof is that one knows the validity for L/K of the p-primary part of the
central conjecture that is formulated by Bley and Burns in [3], and we recall
that in [5, Proposition 4.6] Breuning has shown that this conjecture is valid
whenever our stated condition (iii) holds (rather than requiring L/K to be
tamely ramified at all p-adic places as is done in [27]).

Thus [12, Conjecture 4] is valid for
(
h0(Spec(L))(1),Zp[G]−

)
provided

that (i)–(iii) hold and, given this fact, Corollary 1.3 follows directly from
Theorem 1.1 and Corollary 1.2.

Remark 1.4. In the proof of [27, Corollary 0.6] Nickel also assumes
that Leopoldt’s Conjecture is valid at p for the field Lcl that occurs in
condition (i) of the statement of Corollary 1.3. This assumption is required
because he uses the main result of Breuning and Burns in [7] which gives an
explicit interpretation of [12, Conjecture 4] for the pair

(
h0(Spec(Lcl))(1),

Zp[Gal(Lcl/Q)]
)

under the hypothesis that Leopoldt’s Conjecture is valid at

p for Lcl. However, the argument given in [7] shows that if one restricts to
consider [12, Conjecture 4] for the pair

(
h0(Spec(Lcl))(1),Zp[Gal(Lcl/Q)]−

)
,

then one can omit any assumption about Leopoldt’s Conjecture. To explain
this, note that for any number field F and each finite set of places Σ of
F that contains all archimedean places, Leopoldt’s Conjecture for F at p
asserts the injectivity of the natural diagonal homomorphism

(5) ∆F,Σ : O×F,Σ ⊗Z Zp →
∏
w∈Σp

F×w ⊗̂Zp,

where each F×w ⊗̂Z Zp denotes the pro-p completion of the multiplicative
group F×w . But if F is CM, with τ the generator of Gal(F/F+), then
the ‘minus part’ (1 − τ)∆F,Σ of this map is injective because the group
(1− τ)(O×F ⊗Z Zp) is finite (as is proved, for example, in [34, Theorem 4.12])
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and it is this fact which is needed if one restricts the computations of [7] to
the setting of

(
h0(Spec(Lcl))(1),Zp[Gal(Lcl/Q)]−

)
.

Corollary 1.5. If L is an abelian extension of Q and K is any real
subfield of L, then the inclusions in Theorem 1.1 and Corollary 1.2 are valid
unconditionally.

Proof. It suffices to show that all of the listed conditions in Corollary 1.3
are valid if L is abelian over Q.

But in this case the validity of the Gross–Stark Conjecture for L/Q at p
is proved by Gross in [21, Proposition 2.13 and §4]. In view of the well-known
functorial properties of p-adic L-functions under addition and induction of
characters, this result then implies the validity for any real subfield K of L
of the Gross–Stark Conjecture for L/K at p so that condition (i) is satisfied.

In addition, the vanishing of the µ-invariant of the cyclotomic Zp-exten-
sion of L is in this case proved by Ferrero and Washington in [19], as required
by condition (ii), and the assertion of condition (iii) is obviously valid.

Remark 1.6. It is also possible to obtain the result of Corollary 1.5 as
a direct consequence of Corollary 1.2 rather than by using Corollary 1.3.
The point here is that if L is abelian over Q, and K is any subfield of L,
then the validity of [12, Conjecture 4] for the pair

(
h0(Spec(L))(1),Z[G]

)
,

and hence also for the associated pair
(
h0(Spec(L))(1),Zp[G]−

)
, is proved

by Burns and Flach in [13, Corollary 1.2].

The above results suggest several directions for further research.

Firstly, it would be interesting to know if there are any direct links
between the modules RjL/K,S ·j∗(θ

∗
L/K,S(1)#) that occur in Theorem 1.1 and

Corollary 1.2 and the annihilators of ideal class groups that have recently
been constructed from the values of p-adic Artin L-functions by Barrett and
Burns in [2] and by Burns and Macias Castillo in [14] (see, in particular,
Theorem 4.1 and Remark 4.2(iii) in loc. cit.).

It is also natural to ask if there are any direct links between our results
and the important work of Greither in [20] which shows that the Equivari-
ant Tamagawa Number Conjecture for the pair

(
h0(Spec(L))(0),Z[G]

)
has

rather precise consequences for the Fitting invariant over Z[G] of the class
group Cl(OL) in terms of the value of the series θL/K,S(z) at z = 0.

In another direction, it would seem natural to expect analogues of The-
orem 1.1 and Corollary 1.2 concerning the structure of even-dimensional
higher algebraic K-groups that extend the results proved for abelian exten-
sions by Barrett in his PhD thesis [1] and, perhaps more optimistically, to
hope that our approach might also usefully apply in the setting of the el-
liptic curve results that are proved by Burns, Macias Castillo and Wuthrich
in [15].
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The main contents of the present article is as follows. To prove Theo-
rem 1.1 we must first rework the statement of the Equivariant Tamagawa
Number Conjecture for

(
h0(Spec(L))(1),Zp[G]−

)
into a more explicit form

that is better suited to our purposes (this is done in §2). We shall then
prove a purely algebraic result which we feel may well be of some indepen-
dent interest (this is Proposition 3.2) and finally derive Theorem 1.1 and
Corollary 1.2 in §4 by combining this algebraic observation with our earlier
computations.

2. The Equivariant Tamagawa Number Conjecture. In this sec-
tion we quickly review the statement of the Equivariant Tamagawa Number
Conjecture and then reinterpret the relevant special case in a more explicit
and convenient form.

2.1. Relative K-theory. Let R be an integral domain of character-
istic 0 and field of fractions F and let E be an extension field of F . Let
A be an R-order in a finite-dimensional semisimple F -algebra A and set
AE := E ⊗F A.

We denote by K0(A, AE) the algebraic K0-group that is associated to
the ring homomorphism A → AE . The constructions that we use depend
both upon the description of the abelian group K0(A, AE) in terms of ex-
plicit generators and relations that is given by Swan in [33, p. 215] and the
fact, first observed by Burns and Flach [12, §2.8], that there is a canonical
isomorphism of the form

(6) ιA,AE
: π0(V (A, AE)) ∼= K0(A, AE),

where V (A, AE) is a suitable fibre product of categories of virtual objects in
the sense of Deligne. In particular, we shall frequently construct elements of
K0(A, AE) by invoking the theory of ‘refined Euler characteristics’ that was
introduced by Burns in [8, §1] and [9] (by using the description in terms of
generators and relations) and later reworked and extended by Breuning and
Burns in [6] (by invoking the theory of virtual objects).

We recall that K0(A, AE) is functorial in the pair (A, E) and sits inside
a canonical long exact sequence of relative K-theory, and we make frequent
use of the connecting homomorphism ∂A,AE

: K1(AE) → K0(A, AE) from
this sequence. We also use the fact that the reduced norm of AE induces an
injective homomorphism

NrdAE
: K1(AE)→ ζ(AE)×.

Let now G be a finite group. Then for every prime p and isomorphism of
fields j : C ∼= Cp the ring homomorphism j∗ defined in (3) restricts to give
a group homomorphism

j∗ : ζ(R[G])× → ζ(Cp[G])× = im(NrdCp[G])
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and also induces (by the functoriality of relative K-theory) a group homo-
morphism

j∗ : K0(Z[G],R[G])→ K0(Zp[G],Cp[G]).

We recall that the ‘extended boundary homomorphism’

δG : ζ(R[G])× → K0(Z[G],R[G])

defined by Burns and Flach in [12, §2.8] is the unique homomorphism for
which both δG◦NrdR[G] = ∂Z[G],R[G] and, in addition, one has j∗◦δG = δG,p◦j∗
(with the respective j∗), where we set

δG,p := ∂Zp[G],Cp[G] ◦ (NrdCp[G])
−1

(which, we note, makes sense since the map NrdCp[G] is bijective).

For any noetherian ring R we shall write Dperf(R) for the derived cate-
gory of complexes of R-modules.

2.2. Statement of the conjecture. Let L/K be a finite Galois ex-
tension of number fields of a group G. For any motive M defined over K
we regard the motive ML := h0(Spec(L))⊗h0(Spec(K)) M as defined over K
and endowed with a natural left action of the group ring Q[G] (via the first
factor). We write L∗(ML) for the leading term in the Taylor expansion at
z = 0 of the natural ζ(C[G])-valued L-function of ML.

Then the ‘Equivariant Tamagawa Number Conjecture’ of [12, Conjec-
ture 4] predicts for the pair (ML,Z[G]) an equality in K0(Z[G],R[G]) of the
form

(7) δG(L∗(ML)) = χ(ML),

where χ(MK) is an Euler characteristic that is defined by using virtual
objects arising from the various motivic cohomology groups, realisations,
comparison isomorphisms and regulators associated to both MK and its
Kummer dual. This equality refines the seminal ‘Tamagawa Number Con-
jecture’ that was originally formulated by Bloch and Kato in [4] and later
extended and refined by Fontaine and Perrin-Riou [18].

The nature of the above conjectural equality (7) is in general rather
involved and so in this section we begin the task of reworking the appropriate
special case into a form that is better suited to our purposes. Our starting
point for this are the explicit computations of Breuning and Burns in [7].

We thus fix a finite set S of places of K which contains all the archi-
medean places and all places which ramify in L/K, and for each prime p we
write Sp for the union of S and the set of p-adic places of K. We also write
OL,Sp for the subring of L comprising elements that are integral at all places
which do not lie above Sp. We write Zp(1) for the inverse limit lim←−n µpn(Qc),

where µpn(Qc) is the subgroup of pnth roots of unity in Qc, and the limit
is taken with respect to the pth power maps. We regard Zp(1) as an étale
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sheaf on Spec(OL,Sp) in the natural way and write RΓc(OL,Sp ,Zp(1)) for the
compactly supported étale cohomology of Zp(1), as defined, for example,
in [12, §3.2].

Then, following the description given in [7, §5.3], one knows that the
conjectural equality (7) is valid for the motive M = h0(Spec(K))(1) if and
only if for each p, and each isomorphism of fields j : C ∼= Cp, one has in
K0(Zp[G],Cp[G]) an equality

(8) δG,p
(
j∗(θ

∗
L/K,Sp

(1)#)
)

= −ιZp[G],Cp[G]

(
[RΓc(OL,Sp ,Zp(1))]Zp[G], ω

j
)
.

Here [RΓc(OL,Sp ,Zp(1))]Zp[G] is the virtual object over Zp[G] associated to

the complex RΓc(OL,Sp ,Zp(1)) in Dperf(Zp[G]), and ωj is a canonical mor-
phism of virtual objects over Cp[G],

[RΓc(OL,Sp ,Zp(1))]Zp[G] ⊗Zp[G] Cp[G]

= [RΓc(OL,Sp ,Zp(1))⊗Zp Cp]Cp[G] → 1Cp[G],

that we shall make more precise in §2.4. (Note that one must use Sp rather
than S on the left hand side of the equality (8) because the explicit com-
putations made in [7, §5] always assume that S contains all p-adic places
of K.)

In the following we shall always assume, as in §1, that L is a CM-field,
K is totally real and p is an odd prime. We define a central idempotent of
Zp[G] by setting

e− := (1− τ)/2 ∈ ζ(Zp[G])

and then for any element x of a Zp[G]-module M we write x− and M− in
place of e−x and e−M respectively. We will also use a similar convention
for morphisms and complexes of Zp[G]-modules.

2.3. Compactly supported étale cohomology. Before proceeding
it is convenient to describe the complex RΓc(OL,Sp ,Zp(1)) more explicitly
and so this is what we do now.

We write MSp(L) for the maximal abelian pro-p extension of L that is
unramified outside all places of L that lie above those in Sp, and note that,
since MSp(L) is Galois over K, the group Gal(MSp(L)/L) has a natural
conjugation action of the algebra Zp[G].

We also consider the direct sum

HB,p :=
⊕
Σ(L)

Zp(1)

as a Zp[G × Gal(C/R)]-module, where G acts via L and Gal(C/R) acts
diagonally. We then let H+

B,p denote the Zp[G]-submodule of HB,p compris-

ing elements that are invariant under the given action of Gal(C/R) and
note that H+

B,p is a free Zp[G]−-module with basis {{exp(2πi/pn)}n≥0 ·
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(σb − c ◦ σb)}1≤b≤dK , where c is the generator of Gal(C/R) and we regard
{exp(2πi/pn)}n≥0 as a generator of the Zp-module Zp(1).

We recall that, for any noetherian ring R, a complex of R-modules is
said to be ‘cohomologically perfect’ if it can be represented by a bounded
complex of finitely generated R-modules and is also such that each of its
cohomology modules has finite projective dimension over R. We further
note that a cohomologically perfect complex of R-modules is automatically
a perfect complex of R-modules.

We write Sp(L) for the set of places of L above those in Sp and use the
diagonal homomorphism ∆L,Sp(L) from (5).

Proposition 2.1. We fix L/K and S as above and we set C• :=
RΓc(OL,Sp ,Zp(1)). Moreover, we set A := Zp[G]−. Then C•,− is a cohomo-
logically perfect complex of A-modules that is acyclic outside degrees one and
two. In addition, there is a canonical identification of H1(C•,−) with the free
A-module H+

B,p and of H2(C•,−) with the Galois group Gal(MSp(L)/L)−.

Proof. It is well known that the complex C• has all of the following
properties (see, for example, the proof of [7, Lemma 4.1]):

(P1) C• is a perfect complex of Zp[G]-modules that is acyclic outside
degrees one, two and three.

(P2) There are canonical short exact sequences of Zp[G]-modules

0→ H+
B,p → H1(C•)→ ker(∆L,Sp(L))→ 0

and

0→ cok(∆L,Sp(L))→ H2(C•)→ Cl(OL,Sp)⊗Z Zp → 0.

(P3) The Zp[G]-module H3(C•) is canonically isomorphic to Zp (with
trivial G-action).

Clearly, Z−p vanishes and hence (P1) and (P3) combine to imply that
C•,− is a perfect complex of A-modules that is acyclic outside degrees one
and two. A standard construction of homological algebra then shows that
C•,− is quasi-isomorphic to a complex of A-modules Ψ• of the form Ψ1 → Ψ2

where Ψ2 is a finitely generated free A-module and Ψ1 is a finitely generated
A-module that has finite projective dimension (and is placed in degree one).
Using such a quasi-isomorphism we can identify the cohomology groups
H1(Ψ•) and H2(Ψ•) with H1(C•,−) and H1(C•,−) and hence obtain an
exact sequence of A-modules of the form

0→ H1(C•,−)→ Ψ1 → Ψ2 → H2(C•,−)→ 0.

But, as already observed in Remark 1.4, the group ker(∆L,Sp(L))
− van-

ishes and so (P2) induces a canonical identification of H1(C•,−) = H1(C•)−

with (H+
B,p)

− = H+
B,p. In particular, since H1(C•,−) is a free A-module, the
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last displayed exact sequence implies that H2(C•,−) has finite projective
dimension as an A-module and hence that C•,− is a cohomologically perfect
complex of A-modules, as claimed.

At this stage to complete the proof it suffices to note that there are
canonical isomorphisms of Zp[G]-modules of the form

H2(C•) ∼= Homcont(H
1(OL,Sp ,Qp/Zp),Qp/Zp)

∼= Homcont

(
lim−→
n

H1(OL,Sp ,Z/pn),Qp/Zp
)

∼= lim←−
n

Homcont(H
1(OL,Sp ,Z/pn),Qp/Zp)

∼= lim←−
n

Homcont

(
Homcont(Gal(MSp(L)/L),Z/pn),Qp/Zp

)
∼= lim←−

n

Gal(MSp(L)/L)/pn ∼= Gal(MSp(L)/L).

All isomorphisms here are clear except for the first, which is induced by the
Artin–Verdier Duality Theorem, and the fourth, which is induced by the
canonical identification of H1(OL,Sp ,Z/pn) with

Homcont(Gal(NSp(L)/L),Z/pn) ∼= Homcont(Gal(MSp(L)/L),Z/pn).

Here NSp(L) denotes the maximal pro-p extension of L that is unramified
outside of Sp(L) and so the displayed isomorphism follows from the fact that
Gal(MSp(L)/L) identifies with the abelianisation of Gal(NSp(L)/L).

2.4. A useful reinterpretation. In this subsection we shall give a
more explicit description of the ‘minus part’ of the conjectural equality (8)
in terms of the refined Euler characteristics χ(−,−) that are defined in [6].

Below we often use the following convention: if E is an extension field
of Qp, then in each degree i we set

H i
c(E(1)) := E ⊗Zp H

i(RΓc(OL,Sp ,Zp(1))),

which is to be regarded as an E[G]-module in the natural way.

Proposition 2.2. There exists a canonical isomorphism of Cp[G]-mo-
dules (that is described explicitly in the course of the proof below)

ΦjL/K : H2
c (Cp(1))− → H1

c (Cp(1))−

for which one has

ιZp[G],Cp[G]

(
[RΓc(OL,Sp ,Zp(1))]Zp[G], ω

j
)−

= χ
(
RΓc(OL,Sp ,Zp(1))−, ΦjL/K

)
in K0(Zp[G]−,Cp[G]−).

Proof. Recalling that Σ(L) denotes the set of all complex embeddings
L → C we consider the direct sum

⊕
Σ(L)C as a G × Gal(C/R)-module,

where G acts via L and Gal(C/R) acts diagonally. We write HB for the G×
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Gal(C/R)-submodule
⊕

Σ(L) 2πi·Z of
⊕

Σ(L)C and let H+
B and (

⊕
Σ(L)C)+

denote the G-submodules comprising elements invariant under the action of
Gal(C/R).

Then, by taking the ‘minus part’ of (that is, by applying the exact functor
Cp[G]− ⊗Cp[G] − to) the explicit description of the morphism ωj that is

given by Breuning and Burns in [7, (26)] one finds that ωj,− is equal to the
following composite morphism:

(9) [(RΓc(OL,Sp ,Zp(1))⊗Zp Cp)−]Cp[G]−

∼= [H1
c (Cp(1))−]−1Cp[G]− ⊗ [H2

c (Cp(1))−]Cp[G]−

∼= [H+
B ⊗Z Cp]−1Cp[G]− ⊗ [H+

B ⊗Z Cp]Cp[G]−
∼= 1V(Cp[G]−).

The first morphism here is the canonical ‘passage to cohomology’ morphism,
the third is induced by the very definition of inverse virtual object, and
the second is equal to [ψ1]

−1
Cp[G]− ⊗ [ψ2]Cp[G]− , where we use the composite

isomorphisms of Cp[G]−-modules

(10) ψ1 : H1
c (Cp(1))− ∼= H+

B,p ⊗Zp Cp ∼= H+
B ⊗Z Cp

and

ψ2 : H2
c (Cp(1))− ∼= U1

p (L)− ⊗Zp Cp(11)

∼=
(∏
w|p

Lw

)−
⊗Qp Cp ∼= (L⊗Q Cp)− ∼= H+

B ⊗Z Cp.

Here the first isomorphism in (10) comes from Proposition 2.1 and the second
is the scalar extension of the isomorphism of Zp[G]−-modules

(12) H+
B,p → H+

B ⊗Z Zp
that is the restriction of the map HB,p → HB ⊗Z Zp which sends each ele-
ment (nσ{exp(2πi/pn)}n≥0)σ∈Σ(L) to (nσ(2πi))σ∈Σ(L); the first isomorphism

in (11) is induced by the isomorphism H2
c (Cp(1))− ∼= cok(∆L,Sp)− ⊗Zp Cp

coming from Proposition 2.1 together with the obvious equalities

cok(∆L,Sp)− ⊗Zp Cp = cok(∆L,S′)
− ⊗Zp Cp = U1

p (L)− ⊗Zp Cp,
where S′ denotes the set of places of K which are either p-adic or archime-
dean; the second isomorphism in (11) is induced by the canonical isomor-
phism

(13) U1
p (L)→

∏
w|p

Lw, (uw)w 7→ (logp uw)w;

the third isomorphism in (11) is induced by the isomorphism

(14) L⊗Q Qp →
∏
w|p

Lw
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coming from the natural diagonal map L→
∏
w|p Lw; the last isomorphism

in (11) is induced by the image under − ⊗R,j Cp of the isomorphism of
R[G]-modules

(15) L− ⊗Q R ∼= H+
B ⊗Z R

that is obtained by restricting the isomorphism L⊗QR ∼= (
⊕

Σ(L)C)+ which

sends each element a⊗ z to (σ(a)z)σ∈Σ(L).

We now define an isomorphism of Cp[G]−-modules by setting

ΦjL/K := ψ−11 ◦ ψ2 : H2
c (Cp(1))− → H1

c (Cp(1))−.

We recall that an explicit description of the isomorphism ιZp[G]−,Cp[G]−

that occurs in (6) is given in the proof of [12, Proposition 2.5] (and is also
derived, with more details, in [7, Lemma 5.1, Theorem 6.2 and Lemma 6.3]).
By combining this description with the explicit description of the morphism
ωj,− given in (9) and the very definition of the isomorphism ΦjL/K it is clear

that

ιZp[G],Cp[G]([RΓc(OL,Sp ,Zp(1))]Zp[G], ω
j)−

= ιZp[G]−,Cp[G]−
(
[RΓc(OL,Sp ,Zp(1))−]Zp[G]− , ω

j,−)
= χ

(
RΓc(OL,Sp ,Zp(1))−, ΦjL/K

)
in K0(Zp[G]−,Cp[G]−), as we wanted to prove.

2.5. A comparison of p-adic regulators. In this section we prove
the following useful comparison result.

Proposition 2.3. For each element u of U1
p (L)dK there exists a homo-

morphism of Zp[G]−-modules

φu : H1
c (OL,Sp ,Zp(1))− → H2

c (OL,Sp ,Zp(1))−

for which one has

NrdCp[G](Φ
j
L/K ◦ (Cp ⊗Zp φu)) = NrdCp[G](M

j(u))

where M j(u) is the matrix in MdK (Cp[G]) that is defined in (2). Further-
more, the homomorphism φu is injective whenever u belongs to the set
UL/K,p.

Proof. First we fix, just as in §1, a set

Z := {σb : 1 ≤ b ≤ dK}

of representatives for the orbits of the natural action of G on Σ(L).

Then, since each element of Σ(L) can be written uniquely in the form
σb ◦ g for some index b and element g of G, this choice gives rise to an
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isomorphism of Zp[G]-modules

h′Z : HB ⊗Z Zp →
dK⊕
b=1

Zp[G]

which sends each element (2πi · nρ)ρ∈Σ(L) ⊗Z 1 of HB ⊗Z Zp to the element

(
∑

g∈G nσbgg
−1)1≤b≤dK of

⊕dK
b=1 Zp[G]. In the following we write

hZ : H+
B ⊗Z Zp →

dK⊕
b=1

Zp[G]−

for the isomorphism of Zp[G]−-modules that is obtained by restricting h′Z .

We then consider the composite isomorphism of Zp[G]−-modules

ψZ : H1
c (Zp(1))− ∼= H+

B,p
∼= H+

B ⊗Z Zp ∼=
dK⊕
b=1

Zp[G]−,

where the first isomorphism comes from Proposition 2.2, the second one is
(12) and the last one is hZ .

Recalling that u = (ub)1≤b≤dK , we next write

(16) Φu :

dK⊕
b=1

Zp[G]− → U1
p (L)−

for the natural homomorphism of Zp[G]−-modules which sends each element

(zb)1≤b≤dK to
∏dK
b=1 u

zb
b (where we write the natural action of Zp[G] on unit

groups exponentially) and also

(17) aL,S,p : U1
p (L) =

∏
w|p

U1(Lw) ⊂
∏
w|p

L×w ⊗̂Z Zp
AL,S,p−−−−→ Gal(MSp(L)/L)

for the composite homomorphism of Zp[G]-modules in which AL,S,p denotes
the homomorphism that is induced by (restriction of) the global Artin reci-
procity map.

We then define

φu,Z : H1
c (OL,Sp ,Zp(1))− → H2

c (OL,Sp ,Zp(1))− ∼= Gal(MSp(L)/L)−

to be the unique homomorphism of Zp[G]−-modules which makes the fol-
lowing diagram commute:

(18)

H1
c (OL,Sp ,Zp(1))−

φu,Z //

ψZ

��

H2
c (OL,Sp ,Zp(1))−

⊕dK
b=1 Zp[G]−

Φu // U1
p (L)−

a−L,S,p

OO
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Now for each homomorphism of Zp[G]−-modules θ : M → N we write θCp

for the induced homomorphism of Cp[G]−-modules Cp ⊗Zp M → Cp ⊗Zp N .

We then define Ξj
Z to be the unique isomorphism of Cp[G]−-modules

which makes the (second square of the) following diagram commute:

(19)

H1
c (Cp(1))−

(φu,Z)Cp //

(ψZ)Cp
��

H2
c (Cp(1))−

Φj
L/K // H1

c (Cp(1))−

(ψZ)Cp
��⊕dK

b=1Cp[G]−
(Φu)Cp // Cp ⊗Zp U

1
p (L)−

(a−L,S,p)Cp

OO

Ξj
Z //
⊕dK

b=1Cp[G]−

In particular, since the vertical maps in this diagram are bijective we
find that

NrdCp[G](Φ
j
L/K ◦ (φu,Z)Cp) = NrdCp[G](Ξ

j
Z ◦ (Φu)Cp).

This equality shows that the claimed result will follow (with φu = φu,Z)
if we can show that M j(u) is equal to the matrix of the composite map

Ξj
Z ◦ (Φu)Cp with respect to the obvious Cp[G]−-basis of the (free) module⊕dK
b=1Cp[G]−.

To check this we recall that ΦjL/K is defined to be the composite ψ−11 ◦ψ2

whilst the explicit definitions of the homomorphisms ψZ , hZ and ψ1 ensures
that (ψZ)Cp is equal to (hZ)Cp ◦ ψ1. From the commutativity of the second
square in (19) we therefore find that

(20) Ξj
Z = (ψZ)Cp ◦ Φ

j
L/K ◦ (a−L,S,p)Cp = (hZ)Cp ◦ ψ2 ◦ (a−L,S,p)Cp .

Now (a−L,S,p)Cp is the inverse of the first map that occurs in the def-

inition (11) of the isomorphism ψ2 and so ψ2 ◦ (a−L,S,p)Cp is equal to the
composite homomorphism

U1
p (L)− ⊗Zp Cp ∼=

(∏
w|p

Lw

)−
⊗Qp Cp ∼= (L⊗Q Cp)− ∼= H+

B ⊗Z Cp ⊂
∏
Σ(L)

Cp

which sends each element u⊗Zp 1 to
(
logp

(
j(ρ(u))⊗Zp 1

))
ρ∈Σ(L)

, where logp

is the Cp-linear extension of Iwasawa’s p-adic logarithm to U1
p (L)− ⊗Zp Cp.

By applying (hZ)Cp to this map it then follows from (20) that for every
element u in Up(L)− one has an equality

Ξj
Z(u⊗Zp 1) = (hZ)Cp

((
logp

(
j(ρ(u))⊗Zp 1

))
ρ∈Σ(L)

)
=

(
1

j(2πi)

∑
g∈G

logp
(
j ◦ σb(g(u))

)
g−1
)

1≤b≤dK
.

After recalling the explicit definition (16) of the homomorphism Φu it is

then clear that, with respect to the obvious Cp[G]−-basis of
⊕dK

b=1Cp[G]−,
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the matrix of the composite Ξj
Z ◦ (Φu)Cp is equal to

M j(u) :=

(
1

j(2πi)

∑
g∈G

logp
(
j ◦ σb(g(ua))

)
g−1
)

1≤a,b≤dK
,

as required.
It now only remains to check that the homomorphism φu,Z is injective

provided that u belongs to the set UL/K,p defined just after (2). In this case
the map Φu is obviously injective and so im(Φu) is a free Zp[G]−-module.
On the other hand, from the lower row of the exact commutative diagram
in [25, Lemma (10.3.12)] (with S equal to Sp(L) in our notation) one finds
that the kernel of the homomorphism AL,S,p that occurs in (17) is equal to
the intersection

im(∆L,S(L)) ∩
(∏
w|p

L×w ⊗̂Z Zp
)
⊂

∏
w∈Sp(L)

L×w ⊗̂Z Zp,

where the diagonal homomorphism ∆L,S(L) is as in (5).
Given the commutativity of the diagram (18) this implies that the com-

posite map Φu ◦ ψZ induces an isomorphism

(21) ker(φu,Z) ∼= im(Φu) ∩ im(∆L,S(L)).

Now this intersection is equal to

im(Φu) ∩∆L,S(L)(O×L ⊗Z Zp)− = im(Φu) ∩∆L,S(L)((O×L ⊗Z Zp)−)

and this module is trivial since im(Φu) is Zp-free whilst (O×L ⊗ZZp)− is finite
(as already noted in Remark 1.4). The isomorphism (21) therefore implies
that φu,Z is injective, as claimed.

This completes the proof of Proposition 2.3.

3. A useful algebraic observation. In this section we prove a purely
algebraic result that plays an important role in our proof of Theorem 1.1.

To do this we fix a Dedekind domain R with field of fractions F and
an extension field E of F . We also fix an R-order A in a finitely generated
semisimple F -algebra A and we set AE := E ⊗F A. (The standard example
we have in mind for this is the case R = Zp, E = Cp and A = Zp[G]− and
A = Qp[G]− for some finite group G.)

3.1. Fitting invariants and the denominator ideal. In this subsec-
tion we quickly review the invariants that are introduced by Nickel in [26].

For ζ(A)-submodules of an R-torsionfree ζ(A)-module X Nickel intro-
duces an equivalence relation of ‘Nrd(A)-equivalence’ and a notion of inclu-
sion among its classes. More precisely, two such submodules M and N of
X are said to be Nrd(A)-equivalent if there are a natural number n and
a matrix U ∈ GLn(A) such that M = Nrd(U)N and the corresponding
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equivalence class is denoted by [M ]Nrd(A). There are also natural notions of
inclusion and containment for these classes: one writes [M ]Nrd(A) ⊂ [N ]Nrd(A)

if for each M ′ ∈ [M ]Nrd(A) one has M ′ ⊆ N ′ for some N ′ ∈ [N ]Nrd(A), and
for x in X one writes x ∈ [M ]Nrd(A) if x ∈M ′ for some M ′ in [M ]Nrd(A).

Let M be a finitely presented A-module M and

(22) Am
h→ An →M → 0

a finite presentation of M . Let S(h) denote the set of all n × n submatri-
ces of the associated matrix of h (in the canonical basis) if m ≥ n. The
(non-commutative) Fitting invariant of h over A is then defined to be the
equivalence class

FittA(h) =

{
[〈Nrd(H) : H ∈ S(h)〉]Nrd(A) if m ≥ n,

[{0}]Nrd(A) if m < n.

One also defines Fittmax
A (M) to be the unique Fitting invariant of M over

A which is maximal among all Fitting invariants of M with respect to the
partial order ‘⊂’.

In addition, if M admits a quadratic presentation h (that is, there exists
an exact sequence (22) with m = n), then one sets

FittA(M) := FittA(h).

This equivalence class can be shown to be independent of the chosen quadra-
tic presentation h, and therefore coincides with Fittmax

A (M).

We now recall another important construction of Nickel, the so-called
‘denominator ideal’. To do this note that for every matrix H in Md(A)
there is a unique matrix H∗ in Md(A) with HH∗ = H∗H = nrA(H)Id
and such that for every primitive central idempotent e of F [G] the matrix
H∗e is invertible if and only if the reduced norm NrdA(H)e is non-zero.
The denominator ideal of A is then defined to be the ideal of ζ(A) that is
obtained by setting

H(A) :={x ∈ ζ(A) : if d > 0 and H ∈ Md(A) then xH∗ ∈ Md(A)}.

Note that for each H ∈ Md(A) the matrix H∗ belongs to Md(M) for
any maximal order M in A that contains A [27, Lemma 4.1]. In particular
therefore, if A = R[G] for a finite group G, then Jacobinski’s description
in [22] of the central conductor of M in R[G] implies that for any F -valued
character ψ of G the element ψ(1)−1|G|eψ belongs to H(R[G]), and so one
has |G|ζ(M) ⊆ H(R[G]) ⊆ ζ(R[G]).

In [23] Johnston and Nickel have recently given some more precise in-
formation on the ideal H(A) and have also explicitly computed it in several
important cases: for example, they have shown that H(Zp[G]) = ζ(Zp[G]) if
and only if p does not divide the order of the commutator subgroup of G
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(as is obviously the case if G is abelian and also, for example, if G is the
alternating group A4 on four letters and p is odd).

We shall make much use of the following result of Nickel (which coincides
with [26, Theorem 4.2]).

Proposition 3.1. If R is an integrally closed complete commutative
noetherian local ring and M is a finitely presented A-module, then one has
an inclusion

H(A) · Fittmax
A (M) ⊂ AnnA(M).

3.2. The annihilation result. Motivated by Proposition 2.1, in this
subsection we assume to be given data of the following form:

(H1) a cohomologically perfect complex C• of A-modules that is acyclic
outside degrees one and two and is such that the A-module H1(C•)
is projective;

(H2) an isomorphism of AE-modules λ : E ⊗RH2(C•) ∼= E ⊗RH1(C•);
(H3) an element L of ζ(AE)× with δA,AE

(L) = −χ(C•, λ);
(H4) an injective homomorphism of A-modules φ : H1(C•)→ H2(C•).

Here we write δA,AE
for the composite of the inverse of the (bijective) reduced

norm homomorphism K1(AE) → ζ(AE)× and the standard connecting ho-
momorphism of relative K-theory ∂A,AE

: K1(AE) → K0(A, AE). We have
then a commutative diagram of the form

ζ(A)× �
� // ζ(AE)×

δA,AE

''
K1(A) // K1(AE)

NrdAE

OO

∂A,AE // K0(A, AE)

in which the lower row is exact.

We shall also assume that the order A has the following property:

(∗) any finitely generated projective (left) A-module P is free if and only
if the associated A-module PF is free.

We recall in particular that, by a well-known result of Swan (see, for
example, [16, Theorem (32.1)]), for any finite group G any direct factor A
of Zp[G] has the property (∗).

We shall now prove the following result.

Proposition 3.2. Let C•, λ, L, and φ be data satisfying the hypotheses
(H1)–(H4). If A has the property (∗) then

NrdAE
(λ ◦ (E ⊗R φ)) · L ∈ FittA(cok(φ)).
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Proof. To prove this result we fix a complex Ψ1 d−→ Ψ2 that is isomor-
phic to C• in Dperf(A), where the A-modules Ψ1 and Ψ2 are both finitely
generated and of finite projective dimension and Ψ1 is placed in degree one.
After fixing such an isomorphism we obtain an exact sequence of A-modules
of the form

0→ H1 ι−→ Ψ1 d−→ Ψ2 π−→ H2 → 0,

where we have set H1 := H1(C•) and H2 := H2(C•). Since H1 is projective

we can also fix a lift φ̃ of φ through the surjective homomorphism π and so
obtain an exact commutative diagram of A-modules

(23)

H1 = //

=
��

H1 0 //
� _

ι
��

H1 = //
� _

φ̃
��

H1
� _

φ
��

H1 � � ι // Ψ1 d //

����

Ψ2 π // //

����

H2

κ
����

cok(ι) �
� d′ // cok(φ̃)

π′ // // cok(φ)

In this diagram the lower vertical arrows are the natural projection maps
and the homomorphisms d′ and π′ are those that are induced by d and π
respectively; exactness of the diagram is therefore an easy consequence of
the fact that φ is assumed to be injective (by condition (H4)).

In particular, the exactness of the second and third columns in (23)
combines with the projectivity of H1 (by condition (H1)) and our choice

of modules Ψ i to imply that the A-modules cok(ι) and cok(φ̃) are of finite
projective dimension, and then the exactness of the lower row implies that
the A-module cok(φ) is also of finite projective dimension.

We write Ψ•1 and Ψ•2 for the complexes H1 0−→ H1 and cok(ι)
d′−→ cok(φ̃),

where in both cases the first term is placed in degree one. Then Ψ•2 is acyclic
outside degree two, π′ induces an identification of H2(Ψ•2 ) with cok(φ) and
the above diagram gives rise to a short exact sequence of perfect complexes
of A-modules

(24) 0→ Ψ•1
α−→ Ψ•

β−→ Ψ•2 → 0

in which H1(α) is the identity map on H1, H2(α) = φ, H1(β) is the zero
map and H2(β) = κ.

Now the exactness of the last column in (23) combines with the fact that
the A-modules H1

F and H2
F are isomorphic (as follows from condition (H2))

to imply that H2(Ψ•2 ) = cok(φ) is a torsion R-module. Thus, after applying
the functor E ⊗R − to the long exact sequence of cohomology of the exact
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sequence (24) we obtain an exact commutative diagram of AE-modules

0 // H2(Ψ•1 )E
H2(α)E //

λ◦φE
��

H2(Ψ•)E
H2(β)E //

λ
��

H2(Ψ•2 )E //

0
��

0

0 // H1(Ψ•1 )E
H1(α)E // H1(Ψ•)E

H1(β)E // H1(Ψ•2 )E // 0

By applying the additivity criterion for refined Euler characteristics of
Breuning and Burns (in the form of [6, Lemma 5.7]) to both this diagram
and the exact sequence (24) we obtain the following equality in K0(A, AE):

(25) χ(Ψ•1 , λ ◦ φE) + χ(Ψ•2 , 0) = χ(Ψ•, λ).

Now since A has Krull dimension one and cok(φ) has finite projective dimen-
sion, there exists a natural number n and an exact sequence of A-modules of
the form 0→ P → An → cok(φ)→ 0 in which P is projective. Since cok(φ)F
vanishes, this sequence implies that the A-modules PF and AnF = An are
isomorphic and so condition (∗) implies that P is isomorphic to An. Hence
there exists an exact sequence of A-modules of the form

0→ An
ψ−→ An → cok(φ)→ 0.

We can interpret this exact sequence as an isomorphism in Dperf(A)

between Ψ•2
∼= cok(φ)[−2] and the complex Ψ•3 that is equal to An

ψ−→ An,
where the first term occurs in degree one. By Lemma 3.4 below, one then
has equalities

χ(Ψ•1 , λ ◦ φE) = [H1, λ ◦ φE , H1] = ∂A,AE
([H1

E , λ ◦ φE ])

= δA,AE
(NrdAE

(λ ◦ φE))

and

χ(Ψ•2 , 0) = χ(Ψ•3 , 0) = [An, ψ−1E ,An] = ∂A,AE
([AnE , ψ

−1
E ])

= δA,AE
(NrdAE

(ψ−1E )).

Finally, we combine the fact that the complexes Ψ• and C• are isomorphic
in Dperf(A) with the definition of the element L that occurs in condition
(H3) to deduce that

χ(Ψ•, λ) = χ(C•, λ) = −δA,AE
(L).

By substituting the last three displayed formulas into (25) we then obtain
an equality

δA,AE
(NrdAE

(λ ◦ φE)NrdAE
(ψ−1E )L) = 0.

Now the kernel of δA,AE
is equal to NrdAE

(ker(∂A,AE
)) = NrdAE

(K1(A))
and, since A is semilocal, the natural homomorphism GLn(A) → K1(A) is
surjective (by, for example, [16, (40.41), (40.42)]).
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The last displayed equality therefore implies the existence of a matrix ε
in GLn(A) = AutA(An) with

(26) NrdAE
(λ ◦ φE)L = NrdAE

(ψE)NrdAE
(εE) = NrdAE

((ψ ◦ ε)E).

But

An
ψ◦ε−−→ An → cok(φ)→ 0

is a quadratic presentation of the A-module cok(φ), so NrdAE
((ψ ◦ ε)E)ζ(A)

is a Nrd(A)-representative of the invariant FittA(cok(φ)). In particular there-
fore, the equality (26) implies that NrdAE

(λ◦φE)L belongs to FittA(cok(φ)),
as required to complete the proof of Proposition 3.2.

Corollary 3.3. Let C•, λ and L be any data satisfying the hypotheses
(H1)–(H3) and assume that A has the property (∗). Then for any injective
homomorphism of A-modules

φ : H1(C•)→ H2(C•)

one has an inclusion

H(A) ·NrdAE
(λ ◦ (E ⊗R φ)) · L ⊂ AnnA(cok(φ)).

Proof. This result follows as a direct consequence of combining Propo-
sitions 3.2 and 3.1.

We conclude this subsection by making an explicit calculation of the
refined Euler characteristics that occur in the proof of Proposition 3.2.

Lemma 3.4. Let P • = [P 1 d→ P 2] be a complex of finitely generated
projective A-modules with P 1 placed in degree one and set Hk := Hk(P •)
for both k = 1, 2. Then for each isomorphism of AE-modules τ : H2

E
∼= H1

E
the following assertions are valid:

(i) If H1
E = H2

E = 0 then χ(P •, τ) = [P 2, (dE)−1, P 1].

(ii) If dE = 0 then χ(P •, τ) = [P 2, τ, P 1].

Proof. Let π : P 2 → H2 be the canonical projection and, since AE is
semsimple, we fix splitting maps µ and ν for the following exact sequences
of AE-modules:

0 // H1
E

// P 1
E

dE // ker(πE) //
µ

kk 0

and

0 // ker(πE) // P 2
E

πE // H2
E

//
ν

jj 0.
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We write τ̂ for the unique map which makes the following diagram com-
mute:

P 2
E

τ̂ //

∼=
��

P 1
E

∼=
��

H2
E ⊕ ker(πE)

τ⊕Id // H1
E ⊕ ker(πE)

Then the Euler characteristic χ(P •, τ) is defined to be equal to the element
[P 2, τ̂ , P 1] of K0(A, AE).

In addition, a simple computation shows that for each c ∈ P 2
E one has

τ̂(c) = τ(πE(c)) + µ
(
c− ν(πE(c))

)
and from here it is easy to see that

• if H1
E = H2

E = 0 then πE = 0, dE is an isomorphism and τ̂ = µ =
(dE)−1, and
• if dE = 0 then µ = 0, πE is the identity map and τ̂ = τ .

The claims (i) and (ii) are now clear.

4. The proofs of Theorem 1.1 and Corollary 1.2. We shall first
combine the results of Propositions 2.1, 2.2 and 3.2 to obtain the theorem
below.

In this result we use both the equivariant leading term LjL/K,S and the

p-adic regulator lattice RjL/K,S that occur in Theorem 1.1.

We also write M t
S(L) for the maximal abelian pro-p extension of L that

is unramified outside the set of places that lie above those in S but are not p-
adic, and we note that Gal(M t

S(L)/L) is endowed with a natural conjugation
action of Zp[G].

Theorem 4.1. If the conjectural equality (8) is valid, then

RjL/K,S · L
j
L/K,S ⊂ FittZp[G]−

(
Gal(M t

S(L)/L)−
)
,

and hence also

H(Zp[G]−) · RjL/K,S · L
j
L/K,S ⊂AnnZp[G]−

(
Gal(M t

S(L)/L)−
)

⊂AnnZp[G]

(
Gal(M t

S(L)/L)
)

= AnnZ[G]

(
Gal(M t

S(L)/L)
)
⊗Z Zp.

Before proving this theorem we note that it leads directly to the proof
of our main results.

Corollary 4.2. Theorem 1.1 and Corollary 1.2 are valid.
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Proof. The inclusion of Theorem 1.1, respectively Corollary 1.2, follows
immediately from Theorem 4.1 and the inclusion

FittZp[G]−
(
Gal(M t

Sp
(L)/L)−

)
⊆ FittZp[G]−

(
(Cl(OL)⊗Z Zp)−

)
=
(
FittZ[G](Cl(OL))⊗Z Zp

)−
,

respectively

AnnZp[G]

(
Gal(M t

Sp
(L)/L)

)
⊆ AnnZ[G](Cl(OL))⊗Z Zp,

proved in Lemma 4.3 below.

Lemma 4.3. Fix an element u of U1
p (L)dK and consider the homomor-

phism φu that is constructed in Proposition 2.3. Then there are natural sur-
jective homomorphisms of Zp[G]-modules

(27)
cok(φu) � Gal(M t

Sp
(L)/L)− and Gal(M t

Sp
(L)/L) � Cl(OL)⊗Z Zp

and hence also inclusions of non-commutative Fitting invariants

FittZp[G]−(cok(φu)) ⊂ FittZp[G]−
(
Gal(M t

Sp
(L)/L)−

)
⊂ FittZp[G]−

(
(Cl(OL)⊗Z Zp)−

)
and of annihilator ideals

AnnZp[G]

(
Gal(M t

Sp
(L)/L)

)
⊆ AnnZp[G](Cl(OL)⊗Z Zp)
= AnnZ[G](Cl(OL))⊗Z Zp.

Proof. It is enough for us to prove that there exist surjective homomor-
phisms as in (27), since then the inclusions between the annihilator ideals
are obvious and those between the respective Fitting invariants follow im-
mediately from the result of Nickel in [26, Proposition 3.5]. Further, the
existence of the second-occurring surjective homomorphism in (27) is an ob-
vious consequence of the fact that class field theory identifies Cl(OL)⊗Z Zp
with the Galois group of HL,p/L where HL,p is the Hilbert p-class field of L
and so is contained in M t

Sp
(L).

To prove the existence of the first-occurring surjective homomorphism in
(27) we note that the explicit definition of the homomorphism φu (= φu,Z)
via the commutative diagram (18) ensures that its image is contained in the
image of a−L,S,p, where the homomorphism aL,S,p is defined in (17) using the
Artin reciprocity map. Now class field theory implies that the image of aL,S,p
is equal to the subgroup of Gal(MSp(L)/L) that is generated by the inertia
subgroups of each place of L above p. The definition of the field M t

Sp
(L)

therefore implies that this subgroup is equal to Gal(MSp(L)/M t
Sp

(L)) and
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so there are natural surjective homomorphisms of the form

cok(φu) � cok(a−L,S,p) = cok(aL,S,p)
−

∼= Gal(MSp(L)/L)−/Gal(MSp(L)/M t
Sp

(L))−

∼= Gal(M t
Sp

(L)/L)−,

as required.

Proof of Theorem 4.1. Set C• := RΓc(OL,Sp ,Zp(1)). Then Proposi-

tion 2.1 implies that the complex C•,− and isomorphism ΦjL/K that occurs

in Proposition 2.2 together satisfy the hypotheses (H1) and (H2) of §3.2.

In addition, by combining the conjectural equality (8) with the result of
Proposition 2.2 one has an equality

δG,p(j∗(θ
∗
L/K,Sp

(1)#,−) = −χ
(
RΓc(OL,Sp ,Zp(1))−, ΦjL/K

)
.

This shows that the element L := j∗(θ
∗
L/K,Sp

(1)#,−) satisfies the hypothesis

(H3) of §3.2 with respect to the pair C•,− and ΦjL/K .

In addition, for any element u of U−L/K,p, the homomorphism φu of

Zp[G]−-modules that is constructed in Proposition 2.3 satisfies (H4).

Thus, since Zp[G]− has the property (∗) (by Swan’s Theorem), Proposi-
tions 3.2 and 2.3 can be applied to this data to obtain the following inclusion
(in the sense discussed in §3.1):

NrdCp[G](M
j(u)) · j∗(θ∗L/K,Sp

(1)#,−) ⊂ FittZp[G]−(cok(φu)),

and hence, by Lemma 4.3, also an inclusion

(28) NrdCp[G](M
j(u)) · j∗(θ∗L/K,Sp

(1)#,−) ⊂ FittZp[G]−
(
Gal(M t

S(L)/L)−
)
.

Now, by taking the minus part of the formula of Lemma 4.4 below, one has
an equality

np,S(L/K) · LjL/K,S ≡ j∗(θ
∗
L/K,Sp

(1)#,−) mod NrdQp[G]−(K1(Zp[G]−)).

Thus, after taking account of the fact that the non-commutative Fitting in-
variants of Zp[G]−-modules are preserved under multiplication by elements
of the group NrdQp[G]−(K1(Zp[G]−)), in the inclusion (28) one can replace

the element j∗(θ
∗
L/K,Sp

(1)#,−) by np,S(L/K) · LjL/K,S and so obtain an in-

clusion

NrdCp[G](M
j(u)) · np,S(L/K) · LjL/K,S ⊂ FittZp[G]−

(
Gal(M t

S(L)/L)−
)
.

This proves the first inclusion in the statement of Theorem 4.1 and the
second inclusion then follows directly from the algebraic result of Proposi-
tion 3.1. This completes the proof of Theorem 4.1.
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We end this section by proving the technical result which was used in
the argument given above. We use the element np,S(L/K) of ζ(Q[G]) that
is defined in §1.

Lemma 4.4. In ζ(Cp[G])× one has a congruence

np,S(L/K) · θ∗L/K,S(1) ≡ θ∗L/K,Sp
(1) mod NrdQp[G](K1(Zp[G])).

Proof. For any element x of Qp[G]× we shall write [x]r for the automor-
phism of Qp[G], considered as a left Qp[G]-module, that is given by right
multiplication by the element x. For each place v of K that is unramified in
L we shall also fix a place w of L above v and write Frw for the corresponding
Frobenius element in G.

Then, since S contains all places of K which ramify in L, the definition
of (truncated) Stickelberger functions implies that

θ∗L/K,Sp
(1) = θ∗L/K,S(1)

∏
v∈Sp\S

NrdQp[G]([id− FrwNv−1]r)

= θ∗L/K,S(1)
∏

v∈Sp\S

NrdQp[G]([Nv]r)
−1NrdQp[G]([Nv − Frw]r)

≡ θ∗L/K,S(1)
∏

v∈Sp\S

NrdQp[G]([Nv]r)
−1 mod NrdQp[G](K1(Zp[G])).

The congruence here is valid because each place v in Sp \S is p-adic. Indeed,
for this reason the equality

(Nv − Frw)

f−1∑
i=0

(Nv)f−1−i(Frw)i = (Nv)f − (Frw)f = (Nv)f − 1,

where f denotes the order of Frw in G, implies that Nv − Frw is a unit
in Zp[G] and hence that the element NrdQp[G]([Nv − Frw]r) belongs to
NrdQp[G](K1(Zp[G])).

The claimed result now follows from the last displayed congruence be-
cause the definition of np,S(L/K) ensures that for each character χ in Ir(G)
one has equalities

eχ
∏

v∈Sp\S

NrdQp[G]([Nv]r) =
∏

v∈Sp\S

eχNrdQp[G]([Nv]r)

= eχ
∏

v∈Sp\S

detQc
p
(Nv | Vχ)

= eχ
∏

v∈Sp\S

(Nv)χ(1) = eχ · np,S(L/K)−1

and hence that
∏
v∈Sp\S NrdQp[G]([Nv]r)

−1 = np,S(L/K).

This completes the proof of all of the claims that we made above.
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