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1. Introduction. The theory of multiplicative Diophantine approxima-
tion is concerned with the set

S×n (ψ) :=
{

(x1, . . . , xn) ∈ [0, 1]n :
n∏
i=1

‖qxi‖ < ψ(q) for i.m. q ∈ N
}
,

where ‖qx‖ = min{|qx − p| : p ∈ Z}, ‘i.m.’ means ‘infinitely many’ and
ψ : N→ R+ is a non-negative function. For obvious reasons the function ψ
is often referred to as an approximating function. For convenience, we work
within the unit cube [0, 1]n rather than Rn; this makes full measure results
easier to state and avoids ambiguity. In fact, it is not at all restrictive since
the set under consideration is invariant under translation by integer vectors.

Multiplicative Diophantine approximation is currently an active area of
research. In particular, the long standing conjecture of Littlewood that states
that S×2 (q 7→ εq−1) = R for any ε > 0 has attracted much attention—see [1,
16, 18] and references therein. In this paper we will address the multiplicative
analogue of yet another long standing classical problem, namely, the Duffin–
Schaeffer conjecture.

Given q ∈ N and x ∈ R, let

‖qx‖′ := min{|qx− p| : p ∈ Z, (p, q) = 1},
and consider the standard simultaneous sets

Dn(ψ) :=
{

(x1, . . . , xn) ∈ [0, 1]n :
(

max
1≤i≤n

‖qxi‖′
)n

< ψ(q) for i.m. q ∈ N
}

and

Sn(ψ) :=
{

(x1, . . . , xn) ∈ [0, 1]n :
(

max
1≤i≤n

‖qxi‖
)n

< ψ(q) for i.m. q ∈ N
}
.

An elegant measure-theoretic property of these sets is that they are always
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of zero or full Lebesgue measure | · | irrespective of the dimension or the
approximating function. Formally, for n ≥ 1 and any non-negative function
ψ : N→ R+,

(1) |Sn(ψ)| ∈ {0, 1} and |Dn(ψ)| ∈ {0, 1}.

The former zero-one law is due to Cassels [7] while the latter is due to
Gallagher [10] when n = 1 and Vil’chinskĭı [19] for n arbitrary. By making
use of a refined version of Cassels’ zero-one law, Gallagher [12] proved that
for n ≥ 2,

(2) |Sn(ψ)| = 1 if
∞∑
q=1

ψ(q) =∞.

Remark 1. Regarding the above statement and indeed the statements
and conjectures below, by making use of the Borel–Cantelli lemma from
probability theory, it is straightforward to establish the complementary con-
vergent results; i.e. if the sum in question converges then the set in question
is of zero measure.

The case that n = 1 is excluded from the statement given by (2) since it is
false. Indeed, Duffin & Schaeffer [8] gave a counterexample and formulated
an alternative appropriate statement. The Duffin–Schaeffer conjecture (1)
states that

(3) |Dn(ψ)| = 1 if
∞∑
q=1

(
ϕ(q)

q

)n
ψ(q) =∞,

where ϕ is the Euler phi function. The consequence of the zero-one law for
Dn(ψ) is that it reduces the Duffin–Schaeffer conjecture to showing that
|Dn(ψ)| > 0. Using this fact the conjecture has been established in the
case n ≥ 2 by Pollington & Vaughan [15]. Although various partial results
have been obtained in the case n = 1, the full conjecture represents a key
unsolved problem in number theory. For background and recent develop-
ments regarding this fundamental problem see [2, 8, 13, 14]. However, it is
worth highlighting the Duffin–Schaeffer theorem which states that (3) holds
whenever

lim sup
Q→∞

( Q∑
q=1

(
ϕ(q)

q

)
ψ(q)

)( Q∑
q=1

ψ(q)

)−1
> 0.

Note that this condition implies that the convergence/divergence properties
of the sums in (2) and (3) are equivalent.

(1) To be precise, Duffin and Schaeffer stated their conjecture for n = 1. The higher-
dimensional version is attributed to Sprindžuk—see [17, p. 63].
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As already mentioned, the purpose of this paper is to consider the multi-
plicative setup, and in particular, the multiplicative analogue of the Duffin–
Schaeffer conjecture. With this in mind, it is natural to define the set

D×n (ψ) :=
{

(x1, . . . , xn) ∈ [0, 1]n :

n∏
i=1

‖qxi‖′ < ψ(q) for i.m. q ∈ N
}
.

The ultimate goal is to prove the following two statements.

Conjecture 1. Let n ≥ 2 and ψ : N→ [0, 1/2). Then

(4) |S×n (ψ)| = 1 if
∞∑
q=1

ψ(q)(logψ(q)−1)n−1 =∞.

Conjecture 2. Let n ≥ 1 and ψ : N→ [0, 1/2). Then

(5) |D×n (ψ)| = 1 if

∞∑
q=1

(
ϕ(q)

q

)n
ψ(q)(logψ(q)−1)n−1 =∞.

Throughout the paper,

ψ(q)(logψ(q)−1)n−1 := 0 whenever ψ(q) = 0.

In view of the Duffin–Schaeffer counterexample it is necessary to exclude
n = 1 from the statement of Conjecture 1. Clearly, the Duffin–Schaeffer
conjecture and Conjecture 2 coincide when n = 1.

Remark 2. For n ≥ 2, the results of Gallagher and of Pollington &
Vaughan establish the analogues of the above conjectures for the standard
simultaneous sets Sn(ψ) and Dn(ψ).

1.1. The story so far: convexity versus monotonicity. Through-
out this section, assume that n ≥ 2. Geometrically, the multiplicative sets
S×n (ψ) and D×n (ψ) consist of points in the unit cube that lie within infinitely
many ‘hyperbolic’ domains

H = H(ψ,p, q) :=
{

x ∈ [0, 1]n :

n∏
i=1

|xi − pi/q| < ψ(q)/qn
}

centered around rational points p/q where p = (p1, . . . , pn) ∈ Zn and
q ∈ N. In the case of D×n (ψ) we impose the additional co-primeness con-
dition (pi, q) = 1 on the rational points. The approximating function ψ
governs the size of the domains H. In the case of the standard simultaneous
sets Sn(ψ) and Dn(ψ) the domains H are replaced by the ‘cubical’ domains

C = C(ψ,p, q) :=
{

x ∈ [0, 1]n : max
1≤i≤n

|xi − pi/q|n < ψ(q)/qn
}
.

The significant difference between the standard and the multiplicative
situations is that the domains C are convex while the domains H are non-
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convex. It is this difference that lies behind the fact that Conjectures 1
& 2 are still open whilst their standard simultaneous counterparts have
been established—recall we assume that n ≥ 2. In short, without impos-
ing additional assumptions, convexity is vital in the methods employed
by Gallagher and by Pollington & Vaughan to establish (2) and (3) re-
spectively. Indeed, their methods can be refined and adapted to deal with
lim sup sets arising from more general convex domains but convexity itself
seems to be unremovable—see [13, Chp. 3] and references therein. However,
the landscape is completely different if we impose the additional assump-
tion that the approximating function ψ is monotonic. For instance we can
then overcome the fact that the domains H associated with the sets S×n (ψ)
and D×n (ψ) are non-convex and Conjectures 1 & 2 correspond to a well
known theorem of Gallagher [11]. In fact, Gallagher considers lim sup sets
arising from more general domains but monotonicity plays a crucial role in
his approach and seems to be unremovable. Note that for monotonic ψ the
convergence/divergence properties of the sums appearing in (4) and (5) are
equivalent and since S×n (ψ) ⊃ D×n (ψ) it follows that Conjecture 2 implies
Conjecture 1.

The upshot is that the current body of metrical results for lim sup sets
requires either that the approximating domains are convex or that the ap-
proximating function is monotonic.

1.2. Statement of results. Our first theorem is the multiplicative
analogue of the Cassels–Gallagher zero-one law. It reduces Conjectures 1
& 2 to showing that the corresponding sets are of positive measure. In
principle, it is easier to prove positive measure statements than full measure
statements. More to the point, there is a well established mechanism in place
to obtain lower bounds for the measure of lim sup sets—see §4 below or [3,
§8] for a more comprehensive account.

Theorem 1. Let n ≥ 1 and ψ : N→ R+. Then

|S×n (ψ)| ∈ {0, 1} and |D×n (ψ)| ∈ {0, 1}.
The proof will rely on the general technique developed in §2 which we

refer to as the cross fibering principle. Given its simplicity, we suspect that
it may well have applications elsewhere in one form or another.

The following theorem represents our ‘direct’ contribution to Conjectures
1 & 2 and is the complete multiplicative analog of the Duffin–Schaeffer
theorem.

Theorem 2. Let n ≥ 1, ψ : N→ [0, 1/2). Then

|S×n (ψ)| = 1 = |D×n (ψ)| if

∞∑
q=1

ψ(q)(logψ(q)−1)n−1 =∞
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and if additionally

(6)

lim sup
Q→∞

Q∑
q=1

(
ϕ(q)

q

)n
ψ(q)(logψ(q)−1)n−1

( Q∑
q=1

ψ(q)(logψ(q)−1)n−1
)−1

>0.

In turn,

(7) |S×n (ψ)| = 0 = |D×n (ψ)| if
∞∑
q=1

ψ(q)(logψ(q)−1)n−1 <∞.

Note that the ‘additional’ assumption (6) implies that the convergence/
divergence properties of the sums in Conjectures 1 & 2 are equivalent.

Remark 3. Theorem 2 enables us to establish the complete analogue of
Gallagher’s multiplicative theorem [11] within the framework of the ‘p-adic
Littlewood conjecture’—see §4.1. It is also worth pointing out that the same
arguments that show that the Duffin–Schaeffer theorem is valid for example
when ψ(q) is monotonic with q restricted to a lacunary sequence, or when
ψ(q) is arbitrary with q restricted to the sequence of primes, are equally
applicable in the context of Theorem 2.

Remark 4. In the case when ψ(q) ≤ q−δ for all sufficiently large q ∈
N and some fixed δ > 0 the term logψ(q)−1 can be replaced with log q
throughout the statement of Theorem 2. However, in general this ‘modified’
version (in which logψ(q)−1 is replaced with log q) of the divergence part
of Theorem 2 is false (2). For instance, assume that n ≥ 2 and let P be an
infinite collection of primes such that

∑
p∈P (log log p)n−1(log p)−1 <∞ and

ψ(q) = (log q)−1 if q ∈ P and 0 otherwise. Then
∞∑
q=1

ψ(q)(logψ(q)−1)n−1 <
∞∑
p∈P

(log log q)n−1

log p
<∞

and so |S×n (ψ)| = 0 = |D×n (ψ)| by the convergence part of Theorem 2.
However,

∞∑
q=1

ψ(q)(log q)n−1 ≥
∞∑
q=1

(log q)n−1

log q
≥
∞∑
q=1

1 =∞

since n ≥ 2, and

Q∑
q=1

(
ϕ(q)

q

)n
ψ(q)(log q)n−1 �

Q∑
q=1

ψ(q)(log q)n−1

(2) The authors are grateful to the anonymous reviewer of the paper who has pointed
out a mistake in the earlier version of the text, where we miss out the fact that such a
simplification is not always possible.
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since ψ is supported on primes and thus ϕ(q) = q − 1 whenever ψ(q) 6= 0.
Thus, the ‘modified’ version of the divergence part of Theorem 2 would be
false for this ψ. Here and elsewhere a � b means that a and b are comparable,
that is, a� b and a� b, where� and� are the Vinogradov symbols that
indicate an inequality with an unspecified positive multiplicative constant.

2. Cross fibering principle. Let X and Y be two non-empty sets. Let
S ⊂ X × Y . Given x ∈ X, the set

Sx := {y : (x, y) ∈ S} ⊂ Y

will be called a fiber of S through x. Similarly, given y ∈ Y , the set

Sy := {x : (x, y) ∈ S} ⊂ X

will be called a fiber of S through y. Given a measure µ over X, we will say
that A ⊂ X is µ-trivial if A is either null or full with respect to µ; that is,

µ(A) = 0 or µ(X rA) = 0.

It is an immediate consequence of Fubini’s theorem (see below) that

(8) S is µ× ν-trivial ⇒ µ-almost every fiber Sx is ν-trivial,

and likewise

(9) S is µ× ν-trivial ⇒ ν-almost every fiber Sy is µ-trivial.

Neither of these implications can be reversed in their own right. However, if
the right hand side statements are combined together then we actually have
a criterion which we will refer to as the cross fibering principle.

Theorem 3. Let µ be a σ-finite measure over X, ν be a σ-finite measure
over Y and S ⊂ X × Y be a µ× ν-measurable set. Then

(10) S is µ× ν-trivial ⇔
µ-almost every fiber Sx is ν-trivial

&

ν-almost every fiber Sy is µ-trivial.

The proof of this theorem will make use of the following form of Fubini’s
theorem which can be found in [5, p. 233] and [9, §2.6.2].

Fubini’s theorem. Let µ be a σ-finite measure over X and ν be a
σ-finite measure over Y . Then µ× ν is a regular measure over X × Y such
that:

(i) If A is a µ-measurable set and B is a ν-measurable set then A× B
is a µ× ν-measurable set and

(µ× ν)(A×B) = µ(A) · ν(B).
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(ii) If S is a µ× ν-measurable set, then

Sy is µ-measurable for ν-almost all y,

Sx is ν-measurable for µ-almost all x,

the functions

(11) X → R : x 7→ ν(Sx) and Y → R : y 7→ µ(Sy)

are integrable and

(12) (µ× ν)(S) =
�
µ(Sy) dν =

�
ν(Sx) dµ.

2.1. Proof of Theorem 3. The measures µ and ν are σ-finite. Thus,
without loss of generality we can assume that the measures are finite and
indeed that they are probability measures, that is,

µ(X) = 1 = ν(Y ).

Necessity (⇒). Without loss of generality, we can assume (µ×ν)(S) = 0
since otherwise we can replace S by its complement X rS. Therefore, both
the integrals appearing in (12) vanish. Note that the integrals themselves are
obtained by integrating the non-negative functions (11). The upshot is that
these functions vanish almost everywhere with respect to the appropriate
measures, which in turn implies the right hand side of (10).

Sufficiency (⇐). Let X̃ be the set of x ∈ X such that Sx is ν-measurable
and trivial. Similarly, let Ỹ be the set of y ∈ Y such that Sy is µ-measurable
and trivial. In view of part (ii) of Fubini’s theorem and the right hand side
of (10) we deduce that both X̃ and Ỹ are sets of full measure, that is,
µ(Xr X̃) = 0 and ν(Y r Ỹ ) = 0. In particular, X̃ is µ-measurable and Ỹ is
ν-measurable. Now partition X̃ and Ỹ into two disjoint subsets as follows:

X0 := {x ∈ X̃ : ν(Sx) = 0},
X1 := X̃ rX0 = {x ∈ X̃ : ν(Sx) = 1},
Y0 := {y ∈ Ỹ : µ(Sy) = 0},
Y1 := Ỹ r Y0 = {y ∈ Ỹ : ν(Sy) = 1}.

Let XA denote the characteristic function of a set A. By definition and
part (ii) of Fubini’s theorem, the functions (11) almost everywhere coincide
with the functions XX1 and XY1 . Since the functions (11) are integrable,
so are XX1 and XY1 , and hence the sets X1 and Y1 are respectively µ- and
ν-measurable. This, together with the fact that X̃ and Ỹ are respectively
µ- and ν-measurable, implies that X0 = X̃ rX1 is µ-measurable and Y0 =
Ỹ r Y1 is ν-measurable.
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Observe that µ(X0) +µ(X1) = µ(X̃) = 1 and ν(Y0) + ν(Y1) = ν(Ỹ ) = 1.
Let us assume that the sets Xi and Yi are non-trivial. In other words,

(13) 0 < µ(Xi) < 1 and 0 < ν(Yi) < 1 for i = 0, 1.

By part (i) of Fubini’s theorem, the set M := X0 × Y1 is µ× ν-measurable.
Now consider the set S∩M and observe that My = X0 if y ∈ Y1 and My = ∅
otherwise. Therefore, on using the first equality of (12) we obtain

(14) (µ× ν)(S ∩M) =
�
µ(Sy ∩My) dν =

�
µ(Sy ∩X0)XY1(y) dν.

By definition, for y ∈ Y1 the set Sy is full in X and hence in X0. As a
consequence, µ(Sy∩X0) = µ(X0) for y ∈ Y1. Therefore, (13) and (14) imply
that

(15) (µ× ν)(S ∩M) =
�
µ(X0)XY1(y) dν = µ(X0)ν(Y1) > 0.

On the other hand, observe that Mx = Y1 if x ∈ X0 and Mx = ∅ otherwise.
Then, on using the second equality of (12) we obtain

(16) (µ× ν)(S ∩M) =
�
ν(Sx ∩Mx) dµ =

�
ν(Sx ∩ Y1)XX0(x) dµ.

By definition, for x ∈ X0 the set Sx is null and so ν(Sx∩Y1) = 0 for x ∈ X0.
Therefore, (16) implies that

(µ× ν)(S ∩M) =
�
0 dµ = 0.

This contradicts (15). Therefore at least one of the sets Xi and Yi must
be trivial. This together with (12) implies that S is trivial and thereby
completes the proof.

Remark 5. Using induction, Theorem 3 can be easily extended to the
product of any finite number of measure spaces.

3. Proof of Theorem 1. The proof is by induction. Consider the set
S×n (ψ). When n = 1, we have S×1 (ψ) = S1(ψ), and Cassels’ zero-one law
implies that S×1 (ψ) is µ-trivial where µ is one-dimensional Lebesgue measure
on X := [0, 1].

Now assume that n > 1 and that Theorem 1 is true for all dimensions
k < n. Given a k-tuple (x1, . . . , xk) ∈ [0, 1]k, consider the function

ψ(x1,...,xk)(q) :=
ψ(q)

‖qx1‖ · · · ‖qxk‖
.

Here we adopt the convention that α/0 := +∞ if α > 0 and that α/0 := 0
if α = 0. With reference to §2, let Y := [0, 1]n−1 and let ν be (n − 1)-
dimensional Lebesgue measure on Y . Furthermore, let S := S×n (ψ). Then
it is readily verified that for any x1 ∈ X the fiber Sx1 is equal to the set
S×1 (ψ(x1)), and similarly for any (x2, . . . , xn) ∈ Y the fiber S(x2,...,xn) is

equal to the set S×n−1(ψ(x2,...,xn)). In view of the induction hypothesis, Sx1 is
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µ-trivial and S(x2,...,xn) is ν-trivial. Therefore, by Theorem 3 it follows that
S is µ × ν-trivial. In other words, the n-dimensional Lebesgue measure of
S×n (ψ) is either zero or one. This establishes Theorem 1 for the set S×n (ψ).

Apart from obvious notational changes, the proof for the set D×n (ψ) is
exactly the same except that when n = 1 we appeal to Gallagher’s zero-one
law rather than Cassels’ zero-one law.

3.1. A multiplicative zero-one law for linear forms. In what fol-
lows, m ≥ 1 and n ≥ 1 are integers. Given a ‘multi-variable’ approximating
function Ψ : Zn → R+, let S×n,m(Ψ) denote the set of X ∈ [0, 1]mn such that

(17) Π(qX + p) < Ψ(q)

for infinitely many (p,q) ∈ Zn × Zm r {0}. Here Π(y) :=
∏n
i=1 |yi| for a

vector y = (y1, . . . , yn) ∈ Rn, X is regarded as an m × n matrix and q is
regarded as a row vector. Thus, qX ∈ Rn represents a system of n real linear
forms in m variables. Naturally, let D×m,n(Ψ) denote the subset of S×m,n(Ψ)
corresponding to X ∈ [0, 1]mn for which (17) holds infinitely often with the
additional co-primeness condition (pi,q) = 1 for all 1 ≤ i ≤ n. Clearly, when
m = 1 and Ψ(q) = ψ(|q|), the sets S×m,n(Ψ) and S×n (ψ) coincide, as do the
sets D×m,n(Ψ) and D×n (ψ).

The following statement is the natural generalisation of Theorem 1 to
the linear forms framework. It also gives a positive answer to Question 4
raised in [4].

Theorem 4. Let m,n ≥ 1 and Ψ : Zn → R+ be a non-negative function.
Then

|S×m,n(Ψ)| ∈ {0, 1} and |D×m,n(Ψ)| ∈ {0, 1}.

In view of the linear forms version of the Cassels–Gallagher zero-one law
established in [4], the proof of Theorem 4 is pretty much the same as the
proof of Theorem 1 with obvious modification. More specifically, all that is
required from [4] is Theorem 1 with n = 1.

4. Proof of Theorem 2. To begin with, we recall that S×n (ψ) ⊃ D×n (ψ)
and therefore is suffices to prove the divergence part for D×n (ψ) and the con-
vergence part for S×(ψ) only. Regarding the divergence case, by Theorem 1,
we are done if we can show that |D×n (ψ)| > 0. Given q ∈ N, let

Aq := {(x1, . . . , xn) ∈ [0, 1)n : x1 · · ·xn ≤ ψ(q)},

and

Bq :=

{
x ∈ [0, 1)n :

qx− p ∈ Aq for some p = (p1, . . . , pn) ∈ Zn

with (pi, q) = 1 for all i

}
.
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Note that Aq = Bq = ∅ whenever ψ(q) = 0 and that

B := lim sup
q→∞

Bq ⊂ D×n (ψ).

Thus it suffices to prove that |B| > 0. For this purpose we will use the
following generalisation of the divergent part of the standard Borel–Cantelli
lemma (see for example [17, Lemma 5]).

Lemma 1. Let (Ω,A, µ) be a probability space and {Eq} ⊆ A be a se-
quence of sets such that

∑∞
q=1 µ(Eq) =∞. Then

µ
(

lim sup
q→∞

Eq

)
≥ lim sup

Q→∞

(
∑Q

s=1 µ(Es))
2∑Q

s,t=1 µ(Es ∩ Et)
.

Naturally we shall use this lemma with Eq = Bq. The following estimates
for the measure of |Bq| can be found in [10, §§1, 2]—they make use of the
assumption that 0 ≤ ψ(q) ≤ 1/2. For q ∈ N,

|Aq| � ψ(q)(logψ(q)−1)n−1,

|Bq| = (ϕ(q)/q)n|Aq| � (ϕ(q)/q)nψ(q)(logψ(q)−1)n−1.

Then, by (6), for infinitely many Q we have

(18)

Q∑
q=1

|Bq| �
Q∑
q=1

ψ(q)(logψ(q)−1)n−1 �
Q∑
q=1

|Aq|.

Together with the divergent sum hypothesis this implies that

(19)
∞∑
q=1

|Bq| =∞.

Regarding the measures of overlaps, Lemma 2 in [11] implies that

(20) |Bq ∩Bq′ | ≤ |Aq| |Aq′ | for q 6= q′

with ψ(q) 6= 0 and ψ(q′) 6= 0. Note that (20) is valid if ψ(q) = 0 or
ψ(q′) = 0 since we have zero on both sides of the inequality. Since (18)

diverges,
∑Q

q=1 |Aq| ≥ 1 for Q sufficiently large and so

Q∑
q,q′=1

|Bq ∩Bq′ | ≤
( Q∑
q=1

|Aq|
)2

+

Q∑
q=1

|Aq| ≤ 2
( Q∑
q=1

|Aq|
)2
.

This together with (18) and (19) implies via Lemma 1 that |lim supq→∞Bq|
> 0 and thereby proves the divergence case of Theorem 2.

The convergence case is a consequence of, for example, Theorem 13 from
[17, §5]. Before saying how to derive it we note that the role of m and n
is reversed in [17, §5] compared to the present paper. Thus, with reference
to Theorem 13 in [17, §5] one has to take n = 1, S = N and A(a) to
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consist of (x1, . . . , xm) ∈ [0, 1)m such that ‖x1‖ · · · ‖xm‖ < ψ(a) for a ∈ S.
Note that any point in A(a) is obtained from a point of Aq (introduced
above) by applying relevant symmetries xi 7→ 1 − xi. This gives |A(a)| �
|Aq| � ψ(q)(logψ(q)−1)n−1 and hence the condition

∑
a |A(a)| < ∞ which

is required to derive our Theorem 2 for convergence from Theorem 13 in
[17, §5].

4.1. An application to p-adic approximation. Theorems 1 & 2
settle the conjecture and problem stated in [6, §4.5] regarding the mul-
tiplicative set S×n (ψ). In particular, as a consequence of Theorem 2 we are
able to prove the following generalisation of the main result appearing in [6].
In short the statement corresponds to the complete analogue of Gallagher’s
multiplicative theorem [11] within the framework of the ‘p-adic Littlewood
conjecture’—for further details see [1, 6] and references therein. Given a
prime p, we denote by |q|p the p-adic norm of q ∈ Z.

Theorem 5. Let k ∈ N, p1, . . . , pk be distinct prime numbers and F :
N→ R+ be a positive function such that

(21) F (q) = F (q′) whenever |q|pi = |q′|pi for all i.

Let Ψ : N→ R+ will be a positive decreasing function. If

(22)

∞∑
q=1

Ψ(q)

F (q)

(
log+

F (q)

Ψ(q)

)n−1
converges, where log+ x := log max{2, x}, then for almost every (x1, . . . , xn)
∈ Rn the inequality

(23) F (q)‖qx1‖ · · · ‖qxn‖ < Ψ(q)

has only finitely many solutions q ∈ N. On the other hand, if (22) diverges
then for almost every (x1, . . . , xn) ∈ Rn inequality (23) has infinitely many
solutions q ∈ N.

Proof. We will use Theorem 2 with ψ(q) = Ψ(q)/F (q). Indeed, the case
of convergence is a straightforward application of Theorem 2 as in this case
the convergence of (22) implies the convergence condition in (7). In what
follows we consider the divergence case.

First of all observe that ‖qx1‖ · · · ‖qxn‖ ≤ 2−n for all q ∈ N. Therefore,
without loss of generality we can assume that Ψ(q)/F (q) < 2−n for all q ∈ N.
Furthermore, by replacing Ψ(q) with 2−nΨ(q) if necessary, we can assume

that Ψ(q)/F (q) < e−n for all q. In particular, this means that log+
F (q)
Ψ(q) =

log F (q)
Ψ(q) .

Throughout, Z+ will denote non-negative integers, α = (α1, . . . , αk)
∈ Zk+ and |α| = maxi αi. Each q ∈ N can be uniquely written as q =
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pα1
1 · · · p

αk
k ` for some α = (α1, . . . , αk) and ` ∈ N with (`, p1 · · · pk) = 1. Then,

by (21), the monotonicity of Ψ and the assumption that Ψ(q)/F (q) < e−n,
the function

fα(`) :=
Ψ(q)

F (q)

(
log

F (q)

Ψ(q)

)n−1
where q = pα1

1 · · · p
αk
k ` and (`, p1 · · · pk) = 1

is decreasing in ` for each fixed α. Label the numbers `i (i ∈ N) with
(`i, p1 · · · pk) = 1 in increasing order: `1 < `2 < · · · . By (22),

(24)
∑
α∈Zk

+

∞∑
i=1

fα(`i) =∞.

Thus, by Theorem 2 with ψ(q) = Ψ(q)/F (q), to complete the proof of The-
orem 5 it suffices to show that, for sufficiently large Q,

(25)
∑
|α|≤Q

∑
i≤Q

(
ϕ(pα1

1 · · · p
αk
k `i)

pα1
1 · · · p

αk
k `i

)n
fα(`i)�

∑
|α|≤Q

∑
i≤Q

fα(`i).

Since ϕ(pα1
1 · · · p

αk
k `i) =

∏k
i=1(1−p

−1
i )pα1

1 · · · p
αk
k ϕ(`i), inequality (25) would

follow on showing that for each fixed α ∈ Zk+,

(26)
∑
i≤Q

(
ϕ(`i)

`i

)n
fα(`i)�

∑
i≤Q

fα(`i)

with the implied constant being independent of α. Lemma 2 from [6] gives∑
j≤i ϕ(`j)/`j � i. This together with Jensen’s inequality implies that∑
j≤i(ϕ(`j)/`j)

n � i. Then, by partial summation and the monotonicity

of fα, for each fixed α and Q > 1 we have∑
i≤Q

(
ϕ(`i)

`i

)n
fα(`i)

=
∑
i≤Q

(fα(`i)− fα(`i+1))
i∑

j=1

(
ϕ(`j)

`j

)n
+ fα(`Q+1)

Q∑
j=1

(
ϕ(`j)

`j

)n
�
∑
i≤Q

i
(
fα(`i)− fα(`i+1)

)
+Qfα(`Q+1) =

∑
i≤Q

fα(`i).

This establishes (26) and thus completes the proof.

Remark 6. It is impossible to replace log F (q)
Ψ(q) with log q in (22). To see

that this is so, let k = n = 1, p1 = p, Ψ(q) = q−2 and F (q) = |q|2p(1 −
log |q|p)2. Write each q ∈ N as pα` with α ∈ Z+, ` ∈ N and (p, `) = 1. Then

Ψ(q)

F (q)
=

(pα`)−2

p−2α(1 + α log p)2
� 1

`2(1 + α)2
.
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Consequently, (22) is comparable to∑
α≥0

∑
(`,p)=1

1

`2(1 + α)2
log(`2(1 + α)2)�

∑
α≥0

∑
`≥1

(log `) log(1 + α)

`2(1 + α)2
<∞.

On the other hand,
∞∑
q=1

Ψ(q)

F (q)
(log q)n−1 �

∑
α≥0

∑
(`,p)=1

1

`2(1 + α)2
log(pα`)�

∑
α≥0

1

1 + α
=∞.
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