Optimality of Chebyshev bounds for Beurling generalized numbers

by
Harold G. Diamond (Urbana, IL) and Wen-Bin Zhang* (Chicago, IL)

1. Introduction. Let $N(x)$ and $\pi(x)$ denote the counting function of integers and the counting function of primes, respectively, in a Beurling generalized (henceforth, g-) number system \mathcal{N}. By analogy with classical prime number theory, the inequalities

$$
x / \log x \ll \pi(x) \ll x / \log x
$$

are called Chebyshev bounds for the system \mathcal{N}. Several conditions have been given for such bounds ([Di1], [Zh, [Vn1]). It was conjectured by the first author [Di3] that these bounds held if

$$
\begin{equation*}
\int_{1}^{\infty} x^{-2}|N(x)-A x| d x<\infty \tag{1.1}
\end{equation*}
$$

but this was disproved by an example of J.-P. Kahane (Ka1], Ka2]). In Vn1] it was shown that (1.1) together with the additional pointwise bound

$$
(N(x)-A x) x^{-1} \log x=o(1)
$$

implies the Chebyshev upper bound $\pi(x) \ll x / \log x$. The second condition was weakened by the present authors [DZ] to

$$
\begin{equation*}
(N(x)-A x) x^{-1} \log x=O(1) \tag{1.2}
\end{equation*}
$$

and, still weaker, the average bound

$$
\begin{equation*}
\int_{1}^{x}|N(u)-A u| u^{-1} \log u d u \ll x . \tag{1.3}
\end{equation*}
$$

In this paper, we shall show that the conditions (1.1) and (1.2) (resp. 1.3)) are essentially best-possible for Chebyshev bounds.

[^0]Added in proof. The Chebyshev upper estimate was also recently established under (1.1) and 1.2 by J. Vindas Vn2.

Main Theorem 1.1. Given any positive-valued function $f(x)$ on $[1, \infty)$ such that $f(x)$ is increasing and $f(x) \rightarrow \infty$ as $x \rightarrow \infty$, there exists a g number system \mathcal{N}_{B} such that:
(1) The associated zeta function $\zeta_{B}(s)$ is analytic on the open half-plane $\{s=\sigma+i t: \sigma>1\}$. Also, $(s-1) \zeta_{B}(s)$ has a continuous extension to the closed half-plane $\{\sigma \geq 1\}$ and it $\zeta_{B}(1+i t) \neq 0$.
(2) The counting function $N_{B}(x)$ of the g-integers satisfies

$$
\begin{equation*}
\int_{1}^{\infty} x^{-2}\left|N_{B}(x)-A x\right| d x<\infty \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{B}(x)-A x=O\left(\frac{x f(x)}{\log x}\right) \tag{1.5}
\end{equation*}
$$

with some constant $A>0$.
(3) The counting function $\pi_{B}(x)$ of the g-primes satisfies

$$
\limsup _{x \rightarrow \infty} \frac{\pi_{B}(x)}{x / \log x}=\infty \quad \text { and } \quad \liminf _{x \rightarrow \infty} \frac{\pi_{B}(x)}{x / \log x}=0
$$

In other words, if the right side of (1.2) is replaced by an unbounded function f, no matter how slowly it grows, then there exists a g-number system satisfying (1.1) for which the Chebyshev bounds fail.
2. The generalized primes. We construct our g-prime system following an idea from [Ka2]. The proof is divided into several lemmas. We begin by creating from f another function which grows at least as slowly and has several useful analytical properties.

Lemma 2.1. Given $f(x)$ satisfying the conditions of Theorem 1.1, there exists a function $k(x)$ defined on $[1, \infty)$ such that:
(1) $k(x) \geq 1$ for $x \geq 1$ and $k(x) \ll f(x)$.
(2) $k(x)$ is increasing and $k(x) \rightarrow \infty$ as $x \rightarrow \infty$.
(3) $k(x)$ is differentiable and $(\log x) / k(x)$ is increasing on $(1, \infty)$.

Proof. First, let

$$
f_{1}(x):=\min \left\{f(x), \log \log \left(e^{e} x\right)\right\}, \quad x \geq 1
$$

We have $0<f_{1}(x) \leq f(x)$ for $x \geq 1$. Moreover, $f_{1}(x)$ is increasing and $f_{1}(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Next, let

$$
f_{2}(x):=x^{-1} \int_{1}^{x} f_{1}(t) d t, \quad x \geq 1
$$

We have

$$
0 \leq f_{2}(x) \leq \frac{x-1}{x} f_{1}(x) \leq f_{1}(x), \quad x \geq 1
$$

Also, $f_{2}(x)$ is increasing, since for $\Delta x \geq 0$,

$$
\begin{aligned}
f_{2}(x+\Delta x) & \geq \frac{1}{x+\Delta x}\left(\int_{1}^{x} f_{1}(t) d t+f_{1}(x) \Delta x\right) \\
& \geq \frac{1}{x+\Delta x}\left(\int_{1}^{x} f_{1}(t) d t+\frac{\Delta x}{x} \int_{1}^{x} f_{1}(t) d t\right)=f_{2}(x)
\end{aligned}
$$

Also, $f_{2}(x) \rightarrow \infty$ as $x \rightarrow \infty$, for

$$
f_{2}(x)>\frac{1}{x} \int_{x / 2}^{x} f_{1}(t) d t \geq \frac{1}{2} f_{1}(x / 2) \rightarrow \infty
$$

Moreover, $f_{2}(x)$ is continuous.
Then let

$$
f_{3}(x):=1+x^{-1} \int_{1}^{x} f_{2}(t) d t
$$

As before, we have

$$
1 \leq f_{3}(x) \leq 1+f_{2}(x) \leq 1+f_{1}(x) \leq 1+f(x), \quad x \geq 1
$$

Also, $f_{3}(x)$ is increasing and $f_{3}(x) \rightarrow \infty$ as $x \rightarrow \infty$. Moreover, $f_{3}(x)$ is differentiable at all points of $(1, \infty)$, since f_{2} is continuous there.

Finally, we set

$$
k(x)=f_{3}\left(\log \log \left(e^{e} x\right)\right), \quad x \geq 1
$$

For $x \geq 1$ we have

$$
1 \leq k(x) \leq 1+f\left(\log \log \left(e^{e} x\right)\right)
$$

and from the definition of $f_{1}(x), k(x) \ll \log \log \log \log x$. Also, $k(x)$ is increasing and $k(x) \rightarrow \infty$. Moreover,

$$
\left(\frac{\log x}{k(x)}\right)^{\prime}=\frac{1}{x k(x)}\left(1-\frac{f_{3}^{\prime}\left(\log \log \left(e^{e} x\right)\right)}{f_{3}\left(\log \log \left(e^{e} x\right)\right)} \frac{\log x}{\log \left(e^{e} x\right)}\right)
$$

Note that $f_{3}(y)>1$ and that

$$
0 \leq f_{3}^{\prime}(y)=\frac{f_{2}(y)}{y}-\frac{\int_{1}^{y} f_{2}(t) d t}{y^{2}}<\frac{f_{2}(y)}{y}<\frac{\log \log \left(e^{e} y\right)}{y}<1
$$

for $y>1$. Therefore, for $x>1$,

$$
\left(\frac{\log x}{k(x)}\right)^{\prime} \geq \frac{1}{x k(x)}\left(1-\frac{\log \log \left(e^{e} \log \log \left(e^{e} x\right)\right)}{\log \log \left(e^{e} x\right)}\right)>0
$$

i.e., $(\log x) / k(x)$ is increasing for $x>1$.

Using $k(x)$, we next determine a sparse sequence for our construction. Since $k(x)$ increases monotonically to infinity, there exists a sequence c_{1}, c_{2}, \ldots such that

$$
\sum_{n \geq 1} 1 / \sqrt{k\left(c_{n}\right)}<\infty
$$

Next, define another sequence $\left(A_{n}\right)$ recursively by taking $A_{1}=e$ and $A_{n+1}=$ $\max \left\{e^{A_{n}}, c_{n+1}\right\}$. Note that the sequence $\left(\log A_{n}\right)$ grows faster than exponentially. We have

$$
\begin{equation*}
\sum_{n \geq 1} \frac{\log k(n)}{k\left(A_{n}\right)}<\infty \tag{2.1}
\end{equation*}
$$

since $k(x)$ is increasing and

$$
k\left(A_{n}\right)^{1 / 2} \geq \frac{1}{2} \log k\left(A_{n}\right) \geq \frac{1}{2} \log k(n)
$$

Now we construct the g-prime set of the theorem. Let n_{0} be a positive integer; it is to be taken large enough to satisfy each of several conditions below. From here onwards, p denotes a rational prime, \mathcal{P} the set of all such, and $\pi(x)$ the counting function of the rational primes. We take

$$
\begin{aligned}
\mathcal{P}_{B}= & \left(\mathcal{P} \backslash \bigcup_{n \geq n_{0}}\left\{p \in\left[A_{n}, \sqrt{k(n)} A_{n}\right]\right\}\right) \\
& \cup \bigcup_{n \geq n_{0}}\left\{A_{n} \text { with multiplicity }\left[A_{n} \log k(n) /\left(2 \log A_{n}\right)\right]\right\}
\end{aligned}
$$

In words, \mathcal{P}_{B} consists of an initial string of rational primes, then a g-prime $A_{n_{0}}$ having high multiplicity (a "pulse"), followed by a long interval having no g-primes, after which comes a longer interval of rational primes, then $A_{n_{0}+1}$ appears, and the cycle repeats. We shall see that the multiplicity of A_{n} has been balanced with the length of the subsequent dead interval to achieve a positive density of g-integers. Also, note that the intervals $\left[A_{n}, \sqrt{k(n)} A_{n}\right]$ are pairwise non-overlapping for sufficiently large n_{0}, since $k(n) \leq 1+\log \log \left(e^{e} n\right)$ and $A_{n+1} \geq \exp A_{n}$. To make formulas easier to read, we shall generally write A_{n}^{\star} in place of $\sqrt{k(n)} A_{n}$.

pulse	0		$d \pi$
A_{n}	A_{n}^{\star}	A_{n+1}	

Fig 1. $d \pi_{B}$ on one interval

We shall show that the set of g-primes \mathcal{P}_{B} and associated g-integers \mathcal{N}_{B} satisfies the conditions of the theorem. We begin with the failure of the Chebyshev bounds.

3. Chebyshev bounds and the zeta function

Lemma 3.1. Property (3) of the theorem is satisfied.
Proof. First, there exists a sequence on which $\pi(x)$ is too large. Indeed,

$$
\frac{\pi_{B}\left(A_{n}\right)}{A_{n} / \log A_{n}} \geq \frac{\left[A_{n} \log k(n) /\left(2 \log A_{n}\right)\right]}{A_{n} / \log A_{n}} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Next, we show that $\pi(x)$ is too small on the points $x=A_{n}^{\star}$, the end of the "dead zones". We begin with an inductive argument to show that

$$
\begin{equation*}
\pi_{B}\left(A_{n}-\right) \leq \pi\left(A_{n}-\right) \tag{3.1}
\end{equation*}
$$

This relation holds trivially (with equality) for $n=n_{0}$. Note that the number of rational primes inhabiting each dead zone is

$$
\pi\left(A_{n}^{\star}\right)-\pi\left(A_{n}\right) \sim \frac{A_{n} k(n)^{1 / 2}}{\log A_{n}+(1 / 2) \log k(n)}>\frac{A_{n} \log k(n)}{2 \log A_{n}}
$$

for $n \geq n_{0}$. Hence, from the definition of \mathcal{P}_{B},

$$
\begin{aligned}
\pi_{B}\left(A_{n+1}-\right) & =\left\{\pi\left(A_{n+1}-\right)-\pi\left(A_{n}^{\star}\right)\right\}+\left\{\pi_{B}\left(A_{n}\right)-\pi_{B}\left(A_{n}-\right)\right\}+\pi_{B}\left(A_{n}-\right) \\
& \leq\left\{\pi\left(A_{n+1}-\right)-\pi\left(A_{n}^{\star}\right)\right\}+\frac{A_{n} \log k(n)}{2 \log A_{n}}+\pi_{B}\left(A_{n}-\right)<\pi\left(A_{n+1}-\right)
\end{aligned}
$$

Thus (3.1) holds. It follows that, as $n \rightarrow \infty$,

$$
\begin{aligned}
\frac{\pi_{B}\left(A_{n}^{\star}\right)}{A_{n}^{\star} / \log A_{n}^{\star}} & =\frac{\pi_{B}\left(A_{n}\right)}{A_{n}^{\star} / \log A_{n}^{\star}} \\
& \leq \frac{\pi\left(A_{n}\right)+A_{n} \log k(n) /\left(2 \log A_{n}\right)}{A_{n}^{\star} / \log A_{n}^{\star}} \ll \frac{\log k(n)}{k(n)^{1 / 2}} \rightarrow 0
\end{aligned}
$$

Our further analysis uses an auxiliary system appearing in [Di2]. Let

$$
d \pi_{0}:=d\left(\pi_{B}-\pi\right)_{v}
$$

the variation of $d\left(\pi_{B}-\pi\right)$;

$$
d \Pi_{0}(x):=\sum_{\ell \geq 1} \frac{1}{\ell} d \pi_{0}\left(x^{1 / \ell}\right)
$$

and

$$
N_{0}(x):=1+\sum_{n \geq 1} \frac{1}{n!} \int_{1}^{x} d \Pi_{0}^{* n}
$$

where the last expression denotes the n-fold multiplicative convolution of $d \Pi_{0}$ with itself. Note that $d \pi_{0}(u)=d \Pi_{0}(u)=0$ on $\left\{u: u<A_{n_{0}}\right\}$ and $d \pi_{0}(u)=0$ on each interval $\left(A_{n}^{\star}, A_{n+1}\right)$ with $n \geq n_{0}$.

Also, we need a preliminary estimate.

Lemma 3.2.

$$
\begin{equation*}
\sum_{A_{m}<p \leq A_{m}^{\star}} p^{-1}=\frac{\log k(m)}{2 \log A_{m}}-\frac{1}{8}\left(\frac{\log k(m)}{\log A_{m}}\right)^{2}+O\left(\frac{\log k(m)}{\log ^{2} A_{m}}\right) \tag{3.2}
\end{equation*}
$$

Proof. In Stieltjes integral form, the left-hand side of (3.2) is

$$
\int_{A_{m}}^{A_{m}^{\star}} \frac{d t}{t \log t}+\int_{A_{m}}^{A_{m}^{\star}} \frac{1}{t}\left\{d \pi(t)-\frac{d t}{\log t}\right\}=: I_{1}+I_{2}
$$

say. We have

$$
\begin{aligned}
I_{1} & =\log \left\{\frac{\log \left(A_{m} k(m)^{1 / 2}\right)}{\log A_{m}}\right\}=\log \left\{1+\frac{\log k(m)}{2 \log A_{m}}\right\} \\
& =\frac{\log k(m)}{2 \log A_{m}}-\frac{1}{8}\left(\frac{\log k(m)}{\log A_{m}}\right)^{2}+O\left(\frac{\log ^{3} k(m)}{\log ^{3} A_{m}}\right)
\end{aligned}
$$

For I_{2}, use integration by parts and the classical prime number theorem error bound

$$
\begin{equation*}
R(x):=\int_{2}^{x}\left\{d \pi(t)-\frac{d t}{\log t}\right\} \ll \frac{x}{\log ^{2} x} \tag{3.3}
\end{equation*}
$$

We find

$$
\begin{aligned}
I_{2} & =\frac{R\left(A_{m}^{\star}\right)}{A_{m}^{\star}}-\frac{R\left(A_{m}\right)}{A_{m}}+\int_{A_{m}}^{A_{m}^{\star}} \frac{R(t)}{t^{2}} d t \\
& \ll \frac{1}{\log ^{2} A_{m}}+\int_{A_{m}}^{A_{m} \sqrt{k(m)}} \frac{O(1) d t}{t \log ^{2} t} \ll \frac{\log k(m)}{\log ^{2} A_{m}}
\end{aligned}
$$

Lemma 3.3.

$$
\begin{equation*}
\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} d \Pi_{0}(x)<\infty \tag{3.4}
\end{equation*}
$$

Proof. We first note that

$$
\begin{aligned}
\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} & d \pi_{0}(x) \\
= & \sum_{n \geq n_{0}}\left(A_{n}^{-1} \frac{\log A_{n}}{k\left(A_{n}\right)}\left[\frac{A_{n} \log k(n)}{2 \log A_{n}}\right]+\sum_{A_{n}<p \leq A_{n}^{\star}} p^{-1} \frac{\log p}{k(p)}\right)
\end{aligned}
$$

Then, by the monotonicity of $\log x$ and of $k(x)$ and the last lemma,

$$
\sum_{A_{n}<p \leq A_{n}^{\star}} p^{-1} \frac{\log p}{k(p)} \leq \frac{\log A_{n}^{\star}}{k\left(A_{n}\right)} \sum_{A_{n}<p \leq A_{n}^{\star}} p^{-1} \ll \frac{\log A_{n}^{\star}}{k\left(A_{n}\right)} \frac{\log k(n)}{\log A_{n}} .
$$

Since $\log A_{n}^{\star} \ll \log A_{n}$, we have

$$
\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} d \pi_{0}(x) \ll \sum_{n \geq n_{0}} \frac{\log k(n)}{k\left(A_{n}\right)}<\infty
$$

by (2.1). Finally, the left-hand side of (3.4) equals

$$
\begin{aligned}
\sum_{\ell \geq 1} \frac{1}{\ell} \int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} d \pi_{0}\left(x^{1 / \ell}\right) & =\sum_{\ell \geq 1} \frac{1}{\ell} \int_{1}^{\infty} u^{-\ell} \frac{\ell \log u}{k\left(u^{\ell}\right)} d \pi_{0}(u) \\
& \leq \frac{1}{1-A_{n_{0}}^{-1}} \int_{1}^{\infty} u^{-1} \frac{\log u}{k(u)} d \pi_{0}(u)<\infty
\end{aligned}
$$

The zeta function for \mathcal{N}_{B} is defined, analogously to the Riemann zeta function, by the Mellin integral

$$
\zeta_{B}(s):=\int_{1-}^{\infty} u^{-s} d N_{B}(u)
$$

We now show that $\zeta_{B}(s)$ does have the expected properties.
Lemma 3.4. $\zeta_{B}(s)$ is analytic for $\sigma>1$, and $(s-1) \zeta_{B}(s)$ has a continuous extension to the closed half-plane $\sigma \geq 1$. Moreover, it $\zeta_{B}(1+i t) \neq 0$.

Proof. We write

$$
\zeta_{B}(s)=\exp \left\{\int_{1}^{\infty} x^{-s} d \Pi_{B}(x)\right\}=\zeta(s) \exp \left\{\int_{1}^{\infty} x^{-s} d\left(\Pi_{B}-\Pi\right)(x)\right\},
$$

where $\zeta(s)$ is the Riemann zeta function and $\Pi(x)=\sum_{\ell \geq 1} \ell^{-1} \pi\left(x^{1 / \ell}\right)$. Note that $d\left(\Pi_{B}-\Pi\right)_{v} \leq d \Pi_{0}$ by the triangle inequality. Since $(\log x) / k(x) \gg 1$ for $x \geq A_{n_{0}}$, Lemma 3.3 implies that the last integral converges absolutely for $\sigma \geq 1$. Hence $\zeta_{B}(s)$ is analytic on $\{s: \sigma>1\}$ and, by familiar properties of the Riemann zeta function,

$$
(s-1) \zeta_{B}(s)=(s-1) \zeta(s) \exp \left\{\int_{1}^{\infty} x^{-s} d\left(\Pi_{B}-\Pi\right)(x)\right\}
$$

has a continuous extension to $\sigma \geq 1$ and furthermore

$$
i t \zeta_{B}(1+i t)=i t \zeta(1+i t) \exp \left\{\int_{1}^{\infty} x^{-(1+i t)} d\left(\Pi_{B}-\Pi\right)(x)\right\} \neq 0 .
$$

Thus, property (1) of the theorem is proved.
4. The counting function $N_{B}(x)$. Our remaining job is to give estimates for $N_{B}(x)$, to establish property (2) of the theorem. We first have

Lemma 4.1.

$$
\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} d N_{0}(x)<\infty .
$$

Proof. Recall that $k(x)$ is increasing. Hence

$$
1+\frac{\log \left(x_{1} \cdots x_{n}\right)}{k\left(x_{1} \cdots x_{n}\right)} \leq\left(1+\frac{\log x_{1}}{k\left(x_{1}\right)}\right) \cdots\left(1+\frac{\log x_{n}}{k\left(x_{n}\right)}\right)
$$

for $x_{i} \geq A_{n_{0}}, i=1, \ldots, n$. Then we have

$$
\begin{aligned}
\int_{1}^{\infty} x^{-1}\left(1+\frac{\log x}{k(x)}\right) d \Pi_{0}^{* n}(x) & \leq \int_{1}^{\infty} x^{-1}\left\{\left(1+\frac{\log x}{k(x)}\right) d \Pi_{0}(x)\right\}^{* n} \\
& =\int_{1}^{\infty}\left\{x^{-1}\left(1+\frac{\log x}{k(x)}\right) d \Pi_{0}(x)\right\}^{* n} \\
& =\left\{\int_{1}^{\infty} x^{-1}\left(1+\frac{\log x}{k(x)}\right) d \Pi_{0}(x)\right\}^{n} .
\end{aligned}
$$

Therefore, by Lemma 3.3,

$$
\int_{1}^{\infty} x^{-1}\left(1+\frac{\log x}{k(x)}\right) d N_{0}(x) \leq \exp \left\{\int_{1}^{\infty} x^{-1}\left(1+\frac{\log x}{k(x)}\right) d \Pi_{0}(x)\right\}<\infty
$$

By the fundamental relation between $d N$ and $d \Pi$ (resp. $d N_{B}$ and $d \Pi_{B}$) and the homomorphic property of exponentials we have

$$
d N_{B}=\exp \left\{d \Pi_{B}\right\}=\exp \left\{d \Pi+d\left(\Pi_{B}-\Pi\right)\right\}=d N * \exp \left\{d\left(\Pi_{B}-\Pi\right)\right\}
$$

Thus the counting function of g -integers satisfies

$$
\begin{align*}
N_{B}(x)= & \int_{1-}^{x} N\left(\frac{x}{t}\right) \exp \left\{d\left(\Pi_{B}-\Pi\right)\right\}(t) \tag{4.1}\\
= & N(x)+\int_{1}^{x} N\left(\frac{x}{t}\right) \sum_{n \geq 1} \frac{1}{n!} d\left(\Pi_{B}-\Pi\right)^{* n}(t) \\
= & x+\theta(x)+x \sum_{n \geq 1} \frac{1}{n!} \int_{1}^{x} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* n}(t) \\
& +\sum_{n \geq 1} \frac{1}{n!} \int_{1}^{x} \theta\left(\frac{x}{t}\right) d\left(\Pi_{B}-\Pi\right)^{* n}(t)
\end{align*}
$$

with $N(x)$ the counting function of rational integers and $\theta(x)=N(x)-x$.

Let

$$
c_{1}:=\int_{1}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)(t)
$$

an absolutely convergent integral by Lemma 3.3. As we saw in the proof of Lemma 4.1.

$$
\int_{1}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* n}(t)
$$

is absolutely convergent; it equals

$$
\left(\int_{1}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)(t)\right)^{n}=c_{1}^{n}
$$

Add and subtract terms $\int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* n}(t)$ and rewrite 4.1) as

$$
\begin{equation*}
N_{B}(x)=A x+x E(x) \tag{4.2}
\end{equation*}
$$

where

$$
A=1+\sum_{n \geq 1} \frac{1}{n!} \int_{1}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* n}(t)=e^{c_{1}}
$$

and

$$
\begin{equation*}
E(x):=x^{-1} \theta(x)-E_{1}(x)+E_{2}(x) \tag{4.3}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{1}(x):=\sum_{n \geq 1} \frac{1}{n!} \int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* n}(t) \tag{4.4}
\end{equation*}
$$

and

$$
E_{2}(x):=x^{-1} \sum_{n \geq 1} \frac{1}{n!} \int_{1}^{x} \theta\left(\frac{x}{t}\right) d\left(\Pi_{B}-\Pi\right)^{* n}(t)
$$

Also, Lemmas 4.1 and 2.1(3) together imply that

$$
\zeta_{0}(s):=\int_{1-}^{\infty} x^{-s} d N_{0}(x)
$$

converges absolutely for $\sigma \geq 1$. Hence, $\zeta_{0}(s)$ is analytic on $\sigma>1$ and continuous on $\sigma \geq 1$.

Lemma 4.2. We have

$$
\begin{equation*}
\frac{N_{0}(x)}{x} \ll \frac{k(x)}{\log x} \tag{4.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|E_{2}(x)\right| \leq \frac{N_{0}(x)}{x} \ll \frac{k(x)}{\log x} \tag{4.6}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\int_{1}^{\infty} x^{-1}\left|E_{2}(x)\right| d x<\infty \tag{4.7}
\end{equation*}
$$

Proof. By Lemma 4.1,

$$
\int_{A_{n_{0}}}^{x} y^{-1} \frac{\log y}{k(y)} d N_{0}(y)<\int_{1}^{\infty} y^{-1} \frac{\log y}{k(y)} d N_{0}(y)<\infty
$$

The left-hand side equals, by integration by parts,

$$
\begin{aligned}
x^{-1} \frac{\log x}{k(x)} N_{0}(x)-A_{n_{0}}^{-1} & \frac{\log A_{n_{0}}}{k\left(n_{0}\right)} N_{0}\left(A_{n_{0}}\right) \\
& +\int_{A_{n_{0}}}^{x} N_{0}(y) y^{-2}\left(\frac{\log y-1}{k(y)}+\frac{y k^{\prime}(y) \log y}{k^{2}(y)}\right) d y
\end{aligned}
$$

Recalling that $k^{\prime}(x) \geq 0$ and noting that $\log A_{n_{0}} \geq 1$, we have

$$
\int_{A_{n_{0}}}^{x} y^{-1} \frac{\log y}{k(y)} d N_{0}(y) \geq x^{-1} \frac{\log x}{k(x)} N_{0}(x)-A_{n_{0}}^{-1} \frac{\log A_{n_{0}}}{k\left(A_{n_{0}}\right)} N_{0}\left(A_{n_{0}}\right)
$$

Thus, 4.5 follows. Next,

$$
\left|E_{2}(x)\right| \leq \frac{1}{x} \sum_{n \geq 1} \frac{1}{n!} \int_{1}^{x} d \Pi_{0}^{* n}(t)<\frac{N_{0}(x)}{x}
$$

and (4.6) follows. Moreover, by Lemma 4.1 again,

$$
\int_{1}^{\infty} x^{-s} \frac{N_{0}(x)}{x} d x=\frac{\zeta_{0}(s)}{s}
$$

for $\sigma \geq 1$. Hence

$$
\int_{1}^{\infty} x^{-1}\left|E_{2}(x)\right| d x \leq \int_{1}^{\infty} x^{-2} N_{0}(x) d x=\zeta_{0}(1)<\infty
$$

The analysis of $E_{1}(x)$ requires a more delicate argument.

5. Fundamental estimates

Lemma 5.1. For $n \geq n_{0}$, a sufficiently large number, we have

$$
\begin{align*}
&\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| \tag{5.1}\\
& \leq \begin{cases}\frac{1}{4}\left(\log k\left(n_{0}\right) / \log A_{n_{0}}\right)^{2} & \text { if } 1 \leq x \leq A_{n_{0}} \\
\log k(n) / \log A_{n} & \text { if } A_{n}<x \leq A_{n}^{\star} \\
\frac{1}{4}\left(\log k(n+1) / \log A_{n+1}\right)^{2} & \text { if } A_{n}^{\star}<x \leq A_{n+1}\end{cases}
\end{align*}
$$

Also, for $\ell \geq 2$,

$$
\begin{align*}
& \left|\int_{x}^{\infty} t^{-\ell} d\left(\pi_{B}-\pi\right)(t)\right| \tag{5.2}\\
& \quad \leq \begin{cases}A_{n_{0}}^{-\ell+1} \log k\left(n_{0}\right) / \log A_{n_{0}} & \text { if } 1 \leq x \leq A_{n_{0}} \\
2 A_{n}^{-\ell+1} / \log A_{n} & \text { if } A_{n}<x \leq A_{n}^{\star} \\
A_{n+1}^{-\ell+1} \log k(n+1) / \log A_{n+1} & \text { if } A_{n}^{\star}<x \leq A_{n+1}\end{cases}
\end{align*}
$$

Proof. For $A_{n}^{\star}<x \leq A_{n+1}, n \geq n_{0}$, or $1 \leq x \leq A_{n_{0}}$ (i.e., $n+1=n_{0}$),

$$
\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)=\sum_{m \geq n+1}\left(A_{m}^{-1}\left[\frac{A_{m} \log k(m)}{2 \log A_{m}}\right]-\sum_{A_{m}<p \leq A_{m}^{\star}} p^{-1}\right)
$$

By Lemma 3.2,

$$
\begin{aligned}
& A_{m}^{-1}\left[\frac{A_{m} \log k(m)}{2 \log A_{m}}\right]-\sum_{A_{m}<p \leq A_{m}^{\star}} p^{-1} \\
& \quad=\frac{\log k(m)}{2 \log A_{m}}+O\left(A_{m}^{-1}\right)-\left\{\frac{\log k(m)}{2 \log A_{m}}-\frac{1}{8}\left(\frac{\log k(m)}{\log A_{m}}\right)^{2}+O\left(\frac{\log k(m)}{\log ^{2} A_{m}}\right)\right\} \\
& \quad=\frac{1}{8}\left(\frac{\log k(m)}{\log A_{m}}\right)^{2}+O\left(\frac{\log k(m)}{\log ^{2} A_{m}}\right)
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| & =\sum_{m \geq n+1}\left\{\frac{1}{8}\left(\frac{\log k(m)}{\log A_{m}}\right)^{2}+O\left(\frac{\log k(m)}{\log ^{2} A_{m}}\right)\right\} \\
& \leq \frac{1}{4}\left(\frac{\log k(n+1)}{\log A_{n+1}}\right)^{2}
\end{aligned}
$$

for n_{0} large enough. This proves the first and the third inequalities of (5.1).
For $A_{n}<x \leq A_{n}^{\star}, n \geq n_{0}$, by the definition of \mathcal{P}_{B},

$$
\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)=-\sum_{x<p \leq A_{n}^{\star}} p^{-1}+\int_{A_{n+1}}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)
$$

From the third inequality of (5.1), just proved,

$$
\left|\int_{A_{n+1}}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| \leq \frac{1}{4}\left(\frac{\log k(n+1)}{\log A_{n+1}}\right)^{2} .
$$

Also, by (3.2),

$$
\sum_{x<p \leq A_{n}^{\star}} p^{-1} \leq \sum_{A_{n}<p \leq A_{n}^{\star}} p^{-1} \leq \frac{\log k(n)}{2 \log A_{n}}+O\left(\left\{\frac{\log k(n)}{\log A_{n}}\right\}^{2}\right) .
$$

Hence

$$
\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| \leq \frac{\log k(n)}{\log A_{n}}
$$

This proves the second inequality of (5.1).
Now suppose that $\ell \geq 2$. For $A_{n}^{\star}<x \leq A_{n+1}, n \geq n_{0}$, or $1 \leq x \leq A_{n_{0}}$ (i.e., $n+1=n_{0}$), we have in a similar way

$$
\int_{x}^{\infty} t^{-\ell} d\left(\pi_{B}-\pi\right)(t)=\sum_{m \geq n+1}\left(A_{m}^{-\ell}\left[\frac{A_{m} \log k(m)}{2 \log A_{m}}\right]-\sum_{A_{m}<p \leq A_{m}^{\star}} p^{-\ell}\right) .
$$

Applying the method used in proving Lemma 3.2, write

$$
\sum_{A_{m}<p \leq A_{m}^{\star}} p^{-\ell}=\int_{A_{m}}^{A_{m}^{\star}} \frac{d t}{t^{\ell} \log t}+\int_{A_{m}}^{A_{m}^{\star}} t^{-\ell}\left\{d \pi(t)-\frac{d t}{\log t}\right\}=: I_{1}^{\prime}+I_{2}^{\prime}
$$

say. We have, by integration by parts,

$$
I_{1}^{\prime}=\frac{A_{m}^{1-\ell}}{(\ell-1) \log A_{m}}-\frac{\left(A_{m}^{\star}\right)^{1-\ell}}{(\ell-1) \log A_{m}^{\star}}+O\left(\frac{A_{m}^{1-\ell}}{\log ^{2} A_{m}}\right)
$$

For I_{2}^{\prime}, apply integration by parts and the prime number estimate (3.3). We find

$$
I_{2}^{\prime}=\left.R(t) t^{-\ell}\right|_{A_{m}} ^{A_{m}^{\star}}+\ell \int_{A_{m}}^{A_{m}^{\star}} R(t) t^{-\ell-1} d t \ll \frac{A_{m}^{1-\ell}}{\log ^{2} A_{m}}
$$

Together, these estimates imply that

$$
\begin{equation*}
\sum_{A_{m}<p \leq A_{m}^{\star}} p^{-\ell}=\frac{(1+o(1)) A_{m}^{1-\ell}}{(\ell-1) \log A_{m}}, \tag{5.3}
\end{equation*}
$$

provided that m is sufficiently large. Thus

$$
\left|A_{m}^{-\ell}\left[\frac{A_{m} \log k(m)}{2 \log A_{m}}\right]-\sum_{A_{m}<p \leq A_{m}^{\star}} p^{-\ell}\right| \leq \frac{A_{m}^{-\ell+1} \log k(m)}{2 \log A_{m}}
$$

and so we get

$$
\left|\int_{x}^{\infty} t^{-\ell} d\left(\pi_{B}-\pi\right)(t)\right| \leq \sum_{m \geq n+1} \frac{A_{m}^{-\ell+1} \log k(m)}{2 \log A_{m}} \leq \frac{A_{n+1}^{-\ell+1} \log k(n+1)}{\log A_{n+1}}
$$

Now suppose $A_{n}<x \leq A_{n}^{\star}, n \geq n_{0}$. We have

$$
\int_{x}^{\infty} t^{-\ell} d\left(\pi_{B}-\pi\right)(t)=-\sum_{x<p \leq A_{n}^{\star}} p^{-\ell}+\int_{A_{n+1}}^{\infty} t^{-\ell} d\left(\pi_{B}-\pi\right)(t)
$$

The sum is clearly bounded above by $\sum_{A_{n}<p \leq A_{n}^{\star}} p^{-\ell}$, and the last sum equals

$$
\frac{(1+o(1)) A_{n}^{1-\ell}}{(\ell-1) \log A_{n}}
$$

by the first relation in 5.3 . If we combine this estimate with the inequality derived when $A_{n}^{\star}<x \leq A_{n+1}, n \geq n_{0}$, we find

$$
\left|\int_{x}^{\infty} t^{-\ell} d\left(\pi_{B}-\pi\right)(t)\right| \leq \frac{(1+o(1)) A_{n}^{-\ell+1}}{(\ell-1) \log A_{n}}+\frac{A_{n+1}^{-\ell+1} \log k(n+1)}{\log A_{n+1}} \leq \frac{2 A_{n}^{-\ell+1}}{\log A_{n}}
$$

This completes the proof of 5.2 .
Lemma 5.2. For n_{0} sufficiently large,

$$
c_{2}:=\int_{1}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)(t)\right| d x \leq 2 \frac{\log ^{2} k\left(n_{0}\right)}{\log A_{n_{0}}} .
$$

Proof. By (5.1),

$$
\begin{aligned}
& \int_{1}^{A_{n_{0}}} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| d x \leq \frac{\log ^{2} k\left(n_{0}\right)}{4 \log A_{n_{0}}} \\
& \int_{A_{n}}^{A_{n}^{\star}} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| d x \leq \frac{\log ^{2} k(n)}{2 \log A_{n}} \\
& \int_{A_{n}^{\star}}^{A_{n+1}} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| d x \leq \frac{\log ^{2} k(n+1)}{4 \log A_{n+1}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{1}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)(t)\right| d x \\
& \quad \leq \frac{\log ^{2} k\left(n_{0}\right)}{4 \log A_{n_{0}}}+\sum_{n \geq n_{0}}\left(\frac{\log ^{2} k(n)}{2 \log A_{n}}+\frac{\log ^{2} k(n+1)}{4 \log A_{n+1}}\right) \leq \frac{\log ^{2} k\left(n_{0}\right)}{\log A_{n_{0}}}
\end{aligned}
$$

for n_{0} sufficiently large. Also, for $\ell \geq 2$,

$$
\begin{aligned}
\int_{1}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)\left(t^{1 / \ell}\right)\right| d x & =\int_{1}^{\infty} x^{-1}\left|\int_{x^{1 / \ell}}^{\infty} u^{-\ell} d\left(\pi_{B}-\pi\right)(u)\right| d x \\
& =\ell \int_{1}^{\infty} y^{-1}\left|\int_{y}^{\infty} u^{-\ell} d\left(\pi_{B}-\pi\right)(u)\right| d y
\end{aligned}
$$

By (5.2), in a similar way, the right side of the last equation is at most

$$
\begin{array}{r}
\ell\left(A_{n_{0}}^{-\ell+1} \log k\left(n_{0}\right)+\sum_{n \geq n_{0}}\left\{\frac{A_{n}^{-\ell+1} \log k(n)}{\log A_{n}}+A_{n+1}^{-\ell+1} \log k(n+1)\right\}\right) \\
<2 \ell A_{n_{0}}^{-\ell+1} \log k\left(n_{0}\right)
\end{array}
$$

Hence

$$
\begin{aligned}
& \int_{1}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\Pi \Pi_{B}-\Pi\right)(t)\right| d x \\
&=\int_{1}^{\infty} x^{-1}\left|\int_{x}^{\infty} \sum_{\ell \geq 1}^{\infty} \frac{1}{\ell} t^{-1} d\left(\pi_{B}-\pi\right)\left(t^{1 / \ell}\right)\right| d x \\
& \leq \sum_{\ell \geq 1} \frac{1}{\ell} \int_{1}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\pi_{B}-\pi\right)\left(t^{1 / \ell}\right)\right| d x \\
& \leq \frac{\log ^{2} k\left(n_{0}\right)}{\log A_{n_{0}}}+2 \sum_{\ell \geq 2} A_{n_{0}}^{-\ell+1} \log k\left(n_{0}\right) \leq \frac{2 \log ^{2} k\left(n_{0}\right)}{\log A_{n_{0}}}
\end{aligned}
$$

6. Proof of the theorem. It remains to study $E_{1}(x)$ (defined in (4.4)).

Lemma 6.1. For $x>1$,

$$
\begin{equation*}
E_{1}(x) \ll \frac{k(x)}{\log x} \tag{6.1}
\end{equation*}
$$

Proof. We have

$$
\left|\int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* n}(t)\right| \leq \int_{x}^{\infty} t^{-1} d \Pi_{0}^{* n}(t) \leq \frac{k(x)}{\log x} \int_{x}^{\infty} t^{-1} \frac{\log t}{k(t)} d \Pi_{0}^{* n}(t)
$$

since $(\log t) / k(t)$ is increasing. It follows that

$$
\left|E_{1}(x)\right| \leq c_{3} \frac{k(x)}{\log x}
$$

where

$$
c_{3}:=\int_{1+}^{\infty} t^{-1} \frac{\log t}{k(t)} d N_{0}(t)<\infty
$$

by Lemma 4.1 .

Lemma 6.2.

$$
\begin{equation*}
\int_{1}^{\infty} x^{-1}\left|E_{1}(x)\right| d x<\infty \tag{6.2}
\end{equation*}
$$

Proof. We have

$$
\int_{1}^{\infty} x^{-1}\left|E_{1}(x)\right| d x=\int_{1}^{\infty} x^{-1}\left|\sum_{\ell \geq 1} \frac{1}{\ell!} \int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)\right| d x \leq I_{1}+I_{2}
$$

say, where

$$
\begin{aligned}
I_{1} & :=\int_{1}^{\infty} x^{-1}\left|\sum_{1 \leq \ell \leq \log x / \log A_{n_{0}}} \frac{1}{\ell!} \int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)\right| d x \\
I_{2} & :=\int_{1}^{\infty} x^{-1}\left|\sum_{\ell>\log x / \log A_{n_{0}}} \frac{1}{\ell!} \int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)\right| d x
\end{aligned}
$$

Recall that $\left(\Pi_{B}-\Pi\right)(x)=0$ for $x<A_{n_{0}}$, so there is no contribution to the integrals unless $\log x / \log A_{n_{0}} \geq 1$. For $\ell>\log x / \log A_{n_{0}}$, i.e., $A_{n_{0}}^{\ell}>x$, we have
$\int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)=\int_{1}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)=\left(\int_{1}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)(t)\right)^{\ell}=c_{1}^{\ell}$.
Hence

$$
\sum_{\ell>\log x / \log A_{n_{0}}} \frac{1}{\ell!} \int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)=\sum_{\ell>\log x / \log A_{n_{0}}} \frac{1}{\ell!} c_{1}^{\ell}
$$

and therefore

$$
\begin{align*}
I_{2} & \leq \int_{1}^{\infty} x^{-1}\left(\sum_{\ell>\log x / \log A_{n_{0}}} \frac{\left|c_{1}\right|^{\ell}}{\ell!}\right) d x \tag{6.3}\\
& =\sum_{\ell \geq 1} \frac{\left|c_{1}\right|^{\ell}}{\ell!} \int_{1}^{A_{n_{0}}^{\ell}} x^{-1} d x=\left|c_{1}\right| e^{\left|c_{1}\right|} \log A_{n_{0}}
\end{align*}
$$

Next, we have

$$
\begin{aligned}
I_{1} \leq & \int_{A_{n_{0}}+}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)(t)\right| d x \\
& +\sum_{\ell \geq 2} \frac{1}{\ell!} \int_{A_{n_{0}}^{\ell}+}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)\right| d x .
\end{aligned}
$$

For $\ell \geq 2$,

$$
\begin{aligned}
\int_{A_{n_{0}}^{\ell}+}^{\infty} x^{-1} \mid & \int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t) \mid d x \\
& \leq \int_{A_{n_{0}}^{\ell}}^{\infty} x^{-1}\left(\int_{A_{n_{0}}^{\ell-1}}^{\infty}\left|\int_{x / v}^{\infty} u^{-1} d\left(\Pi_{B}-\Pi\right)(u)\right| v^{-1} d \Pi_{0}^{* \ell-1}(v)\right) d x \\
& =\int_{A_{n_{0}}^{\ell-1}}^{\infty}\left(\int_{A_{n_{0}}^{\ell}}^{\infty} x^{-1}\left|\int_{x / v}^{\infty} u^{-1} d\left(\Pi_{B}-\Pi\right)(u)\right| d x\right) v^{-1} d \Pi_{0}^{* \ell-1}(v)
\end{aligned}
$$

Letting $x / v=y$, the inner integral on the right-hand side becomes

$$
\begin{aligned}
& \int_{A_{n_{0}}^{\ell} / v}^{\infty} \frac{1}{v y}\left|\int_{y}^{\infty} u^{-1} d\left(\Pi_{B}-\Pi\right)(u)\right| v d y \\
& \leq \int_{1}^{\infty} y^{-1}\left|\int_{y}^{\infty} u^{-1} d\left(\Pi_{B}-\Pi\right)(u)\right| d y=c_{2}<\infty
\end{aligned}
$$

by Lemma 5.2. Therefore,

$$
\begin{aligned}
\int_{A_{n_{0}}^{\ell}+}^{\infty} x^{-1}\left|\int_{x}^{\infty} t^{-1} d\left(\Pi_{B}-\Pi\right)^{* \ell}(t)\right| d x & \leq c_{2} \int_{A_{n_{0}}^{\ell-1}}^{\infty} v^{-1} d \Pi_{0}^{* \ell-1}(v) \\
& \leq c_{2}\left(\int_{1}^{\infty} v^{-1} d \Pi_{0}(v)\right)^{\ell-1}=c_{2} c_{4}^{\ell-1}
\end{aligned}
$$

where

$$
c_{4}:=\int_{1}^{\infty} x^{-1} d \Pi_{0}(x)
$$

Hence

$$
\begin{equation*}
I_{1} \leq c_{2}+\sum_{\ell \geq 2} \frac{1}{\ell!} c_{2} c_{4}^{\ell-1} \leq c_{2}\left(1+e^{c_{4}}\right) / 2 \tag{6.4}
\end{equation*}
$$

From (6.4) and (6.3), (6.2) follows.
It remains only to establish property (2) of the theorem. The relations (4.2), (4.3), 4.6), and (6.1), along with the inequality $k(x) \ll f(x)$ of Lemma 2.1, give

$$
\frac{|N(x)-A x|}{x}=|E(x)| \leq \frac{1}{x}+\left|E_{1}(x)\right|+\left|E_{2}(x)\right| \ll \frac{f(x)}{\log x}
$$

Also, by (4.7) and 6.2),

$$
\int_{1}^{\infty} x^{-2}|N(x)-A x| d x \leq \int_{1}^{\infty} x^{-1}\left(x^{-1}+\left|E_{1}(x)\right|+\left|E_{2}(x)\right|\right) d x<\infty
$$

These estimates complete the proof of Theorem 1.1 .

References

[Di1] H. G. Diamond, Chebyshev estimates for Beurling generalized prime numbers, Proc. Amer. Math. Soc. 39 (1973), 503-508.
[Di2] H. G. Diamond, Asymptotic distribution of Beurling's generalized integers, Illinois J. Math. 14 (1970), 12-28.
[Di3] H. G. Diamond, Chebyshev type estimates in prime number theory, in: Séminaire de Théorie des Nombres, 1973-1974 (Univ. de Bordeaux I), Lab. Théor. des Nombres, CNRS, 1974, Exp. No. 24.
[DZ] H. G. Diamond and W.-B. Zhang, Chebyshev bounds for Beurling numbers, Acta Arith. 160 (2013), 143-157.
[Ka1] J.-P. Kahane, Sur les nombres premiers généralisés de Beurling. Preuve d'une conjecture de Bateman et Diamond, J. Théor. Nombres Bordeaux 9 (1997), 251266.
[Ka2] J.-P. Kahane, Le rôle des algèbres A de Wiener, A^{∞} de Beurling et H^{1} de Sobolev dans la théorie des nombres premiers généralisés de Beurling, Ann. Inst. Fourier (Grenoble) 48 (1998), 611-648.
[Vn1] J. Vindas, Chebyshev estimates for Beurling generalized prime numbers. I, J. Number Theory 132 (2012), 2371-2376.
[Vn2] J. Vindas, Chebyshev upper estimates for Beurling's generalized prime numbers, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 175-180.
[Zh] W.-B. Zhang, Chebyshev type estimates for Beurling generalized prime numbers, Proc. Amer. Math. Soc. 101 (1987), 205-212.

Harold G. Diamond (corresponding author)
Department of Mathematics
University of Illinois
Urbana, IL 61801, U.S.A.
E-mail: diamond@math.uiuc.edu

Wen-Bin Zhang
920 West Lawrence Ave. \#1112
Chicago, IL 60640, U.S.A.
E-mail: cheungmanping@yahoo.com

[^0]: * Cantonese: Chung Man Ping. 2010 Mathematics Subject Classification: Primary 11N80.
 Key words and phrases: Beurling generalized numbers, Chebyshev prime bounds, optimality.

