Optimality of Chebyshev bounds for Beurling generalized numbers

by

HAROLD G. DIAMOND (Urbana, IL) and WEN-BIN ZHANG* (Chicago, IL)

1. Introduction. Let N(x) and $\pi(x)$ denote the counting function of integers and the counting function of primes, respectively, in a Beurling generalized (henceforth, g-) number system \mathcal{N} . By analogy with classical prime number theory, the inequalities

$$x/\log x \ll \pi(x) \ll x/\log x$$

are called *Chebyshev bounds* for the system \mathcal{N} . Several conditions have been given for such bounds ([Di1], [Zh], [Vn1]). It was conjectured by the first author [Di3] that these bounds held if

(1.1)
$$\int_{1}^{\infty} x^{-2} |N(x) - Ax| \, dx < \infty,$$

but this was disproved by an example of J.-P. Kahane ([Ka1], [Ka2]). In [Vn1] it was shown that (1.1) together with the additional pointwise bound

$$(N(x) - Ax)x^{-1}\log x = o(1)$$

implies the Chebyshev upper bound $\pi(x) \ll x/\log x$. The second condition was weakened by the present authors [DZ] to

(1.2)
$$(N(x) - Ax) x^{-1} \log x = O(1)$$

and, still weaker, the average bound

(1.3)
$$\int_{1}^{x} |N(u) - Au| u^{-1} \log u \, du \ll x.$$

In this paper, we shall show that the conditions (1.1) and (1.2) (resp. (1.3)) are essentially best-possible for Chebyshev bounds.

* Cantonese: Chung Man Ping.

²⁰¹⁰ Mathematics Subject Classification: Primary 11N80.

Key words and phrases: Beurling generalized numbers, Chebyshev prime bounds, optimality.

Added in proof. The Chebyshev upper estimate was also recently established under (1.1) and (1.2) by J. Vindas [Vn2].

MAIN THEOREM 1.1. Given any positive-valued function f(x) on $[1, \infty)$ such that f(x) is increasing and $f(x) \to \infty$ as $x \to \infty$, there exists a gnumber system \mathcal{N}_B such that:

- (1) The associated zeta function $\zeta_B(s)$ is analytic on the open half-plane $\{s = \sigma + it : \sigma > 1\}$. Also, $(s 1)\zeta_B(s)$ has a continuous extension to the closed half-plane $\{\sigma \ge 1\}$ and $it\zeta_B(1 + it) \ne 0$.
- (2) The counting function $N_B(x)$ of the g-integers satisfies

(1.4)
$$\int_{1}^{\infty} x^{-2} |N_B(x) - Ax| \, dx < \infty$$

and

(1.5)
$$N_B(x) - Ax = O\left(\frac{xf(x)}{\log x}\right)$$

with some constant A > 0.

(3) The counting function $\pi_B(x)$ of the g-primes satisfies

$$\limsup_{x \to \infty} \frac{\pi_B(x)}{x/\log x} = \infty \quad and \quad \liminf_{x \to \infty} \frac{\pi_B(x)}{x/\log x} = 0.$$

In other words, if the right side of (1.2) is replaced by an unbounded function f, no matter how slowly it grows, then there exists a g-number system satisfying (1.1) for which the Chebyshev bounds fail.

2. The generalized primes. We construct our g-prime system following an idea from [Ka2]. The proof is divided into several lemmas. We begin by creating from f another function which grows at least as slowly and has several useful analytical properties.

LEMMA 2.1. Given f(x) satisfying the conditions of Theorem 1.1, there exists a function k(x) defined on $[1, \infty)$ such that:

(1) $k(x) \ge 1$ for $x \ge 1$ and $k(x) \ll f(x)$.

(2) k(x) is increasing and $k(x) \to \infty$ as $x \to \infty$.

(3) k(x) is differentiable and $(\log x)/k(x)$ is increasing on $(1,\infty)$.

Proof. First, let

$$f_1(x) := \min\{f(x), \log\log(e^e x)\}, \quad x \ge 1.$$

We have $0 < f_1(x) \leq f(x)$ for $x \geq 1$. Moreover, $f_1(x)$ is increasing and $f_1(x) \to \infty$ as $x \to \infty$.

Next, let

$$f_2(x) := x^{-1} \int_{1}^{x} f_1(t) dt, \quad x \ge 1.$$

We have

$$0 \le f_2(x) \le \frac{x-1}{x} f_1(x) \le f_1(x), \quad x \ge 1.$$

Also, $f_2(x)$ is increasing, since for $\Delta x \ge 0$,

$$f_2(x + \Delta x) \ge \frac{1}{x + \Delta x} \left(\int_1^x f_1(t) dt + f_1(x) \Delta x \right)$$
$$\ge \frac{1}{x + \Delta x} \left(\int_1^x f_1(t) dt + \frac{\Delta x}{x} \int_1^x f_1(t) dt \right) = f_2(x).$$

Also, $f_2(x) \to \infty$ as $x \to \infty$, for

$$f_2(x) > \frac{1}{x} \int_{x/2}^x f_1(t) dt \ge \frac{1}{2} f_1(x/2) \to \infty.$$

Moreover, $f_2(x)$ is continuous.

Then let

$$f_3(x) := 1 + x^{-1} \int_{1}^{x} f_2(t) dt.$$

As before, we have

$$1 \le f_3(x) \le 1 + f_2(x) \le 1 + f_1(x) \le 1 + f(x), \quad x \ge 1.$$

Also, $f_3(x)$ is increasing and $f_3(x) \to \infty$ as $x \to \infty$. Moreover, $f_3(x)$ is differentiable at all points of $(1, \infty)$, since f_2 is continuous there.

Finally, we set

$$k(x) = f_3(\log \log(e^e x)), \quad x \ge 1.$$

For $x \ge 1$ we have

$$1 \le k(x) \le 1 + f(\log \log(e^e x)),$$

and from the definition of $f_1(x)$, $k(x) \ll \log \log \log \log x$. Also, k(x) is increasing and $k(x) \to \infty$. Moreover,

$$\left(\frac{\log x}{k(x)}\right)' = \frac{1}{xk(x)} \left(1 - \frac{f_3'(\log\log(e^e x))}{f_3(\log\log(e^e x))} \frac{\log x}{\log(e^e x)}\right).$$

Note that $f_3(y) > 1$ and that

$$0 \le f_3'(y) = \frac{f_2(y)}{y} - \frac{\int_1^y f_2(t) \, dt}{y^2} < \frac{f_2(y)}{y} < \frac{\log \log(e^e y)}{y} < 1$$

for y > 1. Therefore, for x > 1,

$$\left(\frac{\log x}{k(x)}\right)' \ge \frac{1}{xk(x)} \left(1 - \frac{\log\log(e^e \log\log(e^e x))}{\log\log(e^e x)}\right) > 0,$$

i.e., $(\log x)/k(x)$ is increasing for x > 1.

Using k(x), we next determine a sparse sequence for our construction. Since k(x) increases monotonically to infinity, there exists a sequence c_1, c_2, \ldots such that

$$\sum_{n\geq 1} 1/\sqrt{k(c_n)} < \infty.$$

Next, define another sequence (A_n) recursively by taking $A_1 = e$ and $A_{n+1} = \max\{e^{A_n}, c_{n+1}\}$. Note that the sequence $(\log A_n)$ grows faster than exponentially. We have

(2.1)
$$\sum_{n\geq 1} \frac{\log k(n)}{k(A_n)} < \infty$$

since k(x) is increasing and

$$k(A_n)^{1/2} \ge \frac{1}{2} \log k(A_n) \ge \frac{1}{2} \log k(n).$$

Now we construct the g-prime set of the theorem. Let n_0 be a positive integer; it is to be taken large enough to satisfy each of several conditions below. From here onwards, p denotes a *rational* prime, \mathcal{P} the set of all such, and $\pi(x)$ the counting function of the rational primes. We take

$$\mathcal{P}_{B} = \left(\mathcal{P} \setminus \bigcup_{n \ge n_{0}} \{ p \in [A_{n}, \sqrt{k(n)} A_{n}] \} \right)$$
$$\cup \bigcup_{n \ge n_{0}} \{ A_{n} \text{ with multiplicity } [A_{n} \log k(n)/(2 \log A_{n})] \}.$$

In words, \mathcal{P}_B consists of an initial string of rational primes, then a g-prime A_{n_0} having high multiplicity (a "pulse"), followed by a long interval having no g-primes, after which comes a longer interval of rational primes, then A_{n_0+1} appears, and the cycle repeats. We shall see that the multiplicity of A_n has been balanced with the length of the subsequent dead interval to achieve a positive density of g-integers. Also, note that the intervals $[A_n, \sqrt{k(n)} A_n]$ are pairwise non-overlapping for sufficiently large n_0 , since $k(n) \leq 1 + \log \log(e^e n)$ and $A_{n+1} \geq \exp A_n$. To make formulas easier to read, we shall generally write A_n^* in place of $\sqrt{k(n)} A_n$.

pulse
$$0$$
 $d\pi$ pulse A_n A_n^* A_{n+1}

Fig 1. $d\pi_B$ on one interval

We shall show that the set of g-primes \mathcal{P}_B and associated g-integers \mathcal{N}_B satisfies the conditions of the theorem. We begin with the failure of the Chebyshev bounds.

3. Chebyshev bounds and the zeta function

LEMMA 3.1. Property (3) of the theorem is satisfied.

Proof. First, there exists a sequence on which $\pi(x)$ is too large. Indeed,

$$\frac{\pi_B(A_n)}{A_n/\log A_n} \ge \frac{[A_n \log k(n)/(2\log A_n)]}{A_n/\log A_n} \to \infty \quad \text{as } n \to \infty.$$

Next, we show that $\pi(x)$ is too small on the points $x = A_n^*$, the end of the "dead zones". We begin with an inductive argument to show that

(3.1)
$$\pi_B(A_n-) \le \pi(A_n-).$$

This relation holds trivially (with equality) for $n = n_0$. Note that the number of rational primes inhabiting each dead zone is

$$\pi(A_n^*) - \pi(A_n) \sim \frac{A_n k(n)^{1/2}}{\log A_n + (1/2) \log k(n)} > \frac{A_n \log k(n)}{2 \log A_n}$$

for $n \ge n_0$. Hence, from the definition of \mathcal{P}_B , $\pi_B(A_{n+1}-) = \{\pi(A_{n+1}-) - \pi(A_n^\star)\} + \{\pi_B(A_n) - \pi_B(A_n-)\} + \pi_B(A_n-)$ $\le \{\pi(A_{n+1}-) - \pi(A_n^\star)\} + \frac{A_n \log k(n)}{2 \log A_n} + \pi_B(A_n-) < \pi(A_{n+1}-).$

Thus (3.1) holds. It follows that, as $n \to \infty$,

$$\begin{aligned} \frac{\pi_B(A_n^\star)}{A_n^\star/\log A_n^\star} &= \frac{\pi_B(A_n)}{A_n^\star/\log A_n^\star} \\ &\leq \frac{\pi(A_n) + A_n \log k(n)/(2\log A_n)}{A_n^\star/\log A_n^\star} \ll \frac{\log k(n)}{k(n)^{1/2}} \to 0. \quad \bullet \end{aligned}$$

Our further analysis uses an auxiliary system appearing in [Di2]. Let

$$d\pi_0 := d(\pi_B - \pi)_v,$$

the variation of $d(\pi_B - \pi)$;

$$d\Pi_0(x) := \sum_{\ell \ge 1} \frac{1}{\ell} d\pi_0(x^{1/\ell});$$

and

$$N_0(x) := 1 + \sum_{n \ge 1} \frac{1}{n!} \int_1^x d\Pi_0^{*n},$$

where the last expression denotes the *n*-fold multiplicative convolution of $d\Pi_0$ with itself. Note that $d\pi_0(u) = d\Pi_0(u) = 0$ on $\{u : u < A_{n_0}\}$ and $d\pi_0(u) = 0$ on each interval (A_n^{\star}, A_{n+1}) with $n \ge n_0$.

Also, we need a preliminary estimate.

Lemma 3.2.

(3.2)
$$\sum_{A_m$$

Proof. In Stieltjes integral form, the left-hand side of (3.2) is

$$\int_{A_m}^{A_m^*} \frac{dt}{t \log t} + \int_{A_m}^{A_m^*} \frac{1}{t} \left\{ d\pi(t) - \frac{dt}{\log t} \right\} =: I_1 + I_2,$$

say. We have

$$I_{1} = \log\left\{\frac{\log(A_{m} k(m)^{1/2})}{\log A_{m}}\right\} = \log\left\{1 + \frac{\log k(m)}{2\log A_{m}}\right\}$$
$$= \frac{\log k(m)}{2\log A_{m}} - \frac{1}{8}\left(\frac{\log k(m)}{\log A_{m}}\right)^{2} + O\left(\frac{\log^{3} k(m)}{\log^{3} A_{m}}\right).$$

For I_2 , use integration by parts and the classical prime number theorem error bound

(3.3)
$$R(x) := \int_{2}^{x} \left\{ d\pi(t) - \frac{dt}{\log t} \right\} \ll \frac{x}{\log^2 x}.$$

We find

$$I_{2} = \frac{R(A_{m}^{\star})}{A_{m}^{\star}} - \frac{R(A_{m})}{A_{m}} + \int_{A_{m}}^{A_{m}^{\star}} \frac{R(t)}{t^{2}} dt$$
$$\ll \frac{1}{\log^{2} A_{m}} + \int_{A_{m}}^{A_{m}\sqrt{k(m)}} \frac{O(1) dt}{t \log^{2} t} \ll \frac{\log k(m)}{\log^{2} A_{m}}.$$

LEMMA 3.3.

(3.4)
$$\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} d\Pi_0(x) < \infty.$$

Proof. We first note that

$$\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} d\pi_0(x) = \sum_{n \ge n_0} \left(A_n^{-1} \frac{\log A_n}{k(A_n)} \left[\frac{A_n \log k(n)}{2 \log A_n} \right] + \sum_{A_n$$

Then, by the monotonicity of $\log x$ and of k(x) and the last lemma,

$$\sum_{A_n$$

Since $\log A_n^* \ll \log A_n$, we have

$$\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} \, d\pi_0(x) \ll \sum_{n \ge n_0} \frac{\log k(n)}{k(A_n)} < \infty$$

by (2.1). Finally, the left-hand side of (3.4) equals

$$\sum_{\ell \ge 1} \frac{1}{\ell} \int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} d\pi_0(x^{1/\ell}) = \sum_{\ell \ge 1} \frac{1}{\ell} \int_{1}^{\infty} u^{-\ell} \frac{\ell \log u}{k(u^\ell)} d\pi_0(u)$$
$$\leq \frac{1}{1 - A_{n_0}^{-1}} \int_{1}^{\infty} u^{-1} \frac{\log u}{k(u)} d\pi_0(u) < \infty. \quad \bullet$$

The zeta function for \mathcal{N}_B is defined, analogously to the Riemann zeta function, by the Mellin integral

$$\zeta_B(s) := \int_{1-}^{\infty} u^{-s} \, dN_B(u).$$

We now show that $\zeta_B(s)$ does have the expected properties.

LEMMA 3.4. $\zeta_B(s)$ is analytic for $\sigma > 1$, and $(s-1)\zeta_B(s)$ has a continuous extension to the closed half-plane $\sigma \ge 1$. Moreover, it $\zeta_B(1+it) \ne 0$.

Proof. We write

$$\zeta_B(s) = \exp\left\{\int_{1}^{\infty} x^{-s} \, d\Pi_B(x)\right\} = \zeta(s) \exp\left\{\int_{1}^{\infty} x^{-s} \, d(\Pi_B - \Pi)(x)\right\},\,$$

where $\zeta(s)$ is the Riemann zeta function and $\Pi(x) = \sum_{\ell \geq 1} \ell^{-1} \pi(x^{1/\ell})$. Note that $d(\Pi_B - \Pi)_v \leq d\Pi_0$ by the triangle inequality. Since $(\log x)/k(x) \gg 1$ for $x \geq A_{n_0}$, Lemma 3.3 implies that the last integral converges absolutely for $\sigma \geq 1$. Hence $\zeta_B(s)$ is analytic on $\{s : \sigma > 1\}$ and, by familiar properties of the Riemann zeta function,

$$(s-1)\zeta_B(s) = (s-1)\zeta(s) \exp\left\{\int_{1}^{\infty} x^{-s} d(\Pi_B - \Pi)(x)\right\}$$

has a continuous extension to $\sigma \geq 1$ and furthermore

$$it\zeta_B(1+it) = it\zeta(1+it)\exp\left\{\int_{1}^{\infty} x^{-(1+it)} d(\Pi_B - \Pi)(x)\right\} \neq 0.$$

Thus, property (1) of the theorem is proved. \blacksquare

4. The counting function $N_B(x)$. Our remaining job is to give estimates for $N_B(x)$, to establish property (2) of the theorem. We first have

Lemma 4.1.

$$\int_{1}^{\infty} x^{-1} \frac{\log x}{k(x)} \, dN_0(x) < \infty.$$

Proof. Recall that k(x) is increasing. Hence

$$1 + \frac{\log(x_1 \cdots x_n)}{k(x_1 \cdots x_n)} \le \left(1 + \frac{\log x_1}{k(x_1)}\right) \cdots \left(1 + \frac{\log x_n}{k(x_n)}\right)$$

for $x_i \ge A_{n_0}$, $i = 1, \ldots, n$. Then we have

$$\int_{1}^{\infty} x^{-1} \left(1 + \frac{\log x}{k(x)} \right) d\Pi_{0}^{*n}(x) \leq \int_{1}^{\infty} x^{-1} \left\{ \left(1 + \frac{\log x}{k(x)} \right) d\Pi_{0}(x) \right\}^{*n}$$
$$= \int_{1}^{\infty} \left\{ x^{-1} \left(1 + \frac{\log x}{k(x)} \right) d\Pi_{0}(x) \right\}^{*n}$$
$$= \left\{ \int_{1}^{\infty} x^{-1} \left(1 + \frac{\log x}{k(x)} \right) d\Pi_{0}(x) \right\}^{n}.$$

Therefore, by Lemma 3.3,

$$\int_{1}^{\infty} x^{-1} \left(1 + \frac{\log x}{k(x)} \right) dN_0(x) \le \exp\left\{ \int_{1}^{\infty} x^{-1} \left(1 + \frac{\log x}{k(x)} \right) d\Pi_0(x) \right\} < \infty.$$

By the fundamental relation between dN and $d\Pi$ (resp. dN_B and $d\Pi_B$) and the homomorphic property of exponentials we have

$$dN_B = \exp\{d\Pi_B\} = \exp\{d\Pi + d(\Pi_B - \Pi)\} = dN * \exp\{d(\Pi_B - \Pi)\}.$$

Thus the counting function of g-integers satisfies

(4.1)
$$N_B(x) = \int_{1-}^x N\left(\frac{x}{t}\right) \exp\{d(\Pi_B - \Pi)\}(t)$$
$$= N(x) + \int_{1}^x N\left(\frac{x}{t}\right) \sum_{n \ge 1} \frac{1}{n!} d(\Pi_B - \Pi)^{*n}(t)$$
$$= x + \theta(x) + x \sum_{n \ge 1} \frac{1}{n!} \int_{1}^x t^{-1} d(\Pi_B - \Pi)^{*n}(t)$$
$$+ \sum_{n \ge 1} \frac{1}{n!} \int_{1}^x \theta\left(\frac{x}{t}\right) d(\Pi_B - \Pi)^{*n}(t)$$

with N(x) the counting function of rational integers and $\theta(x) = N(x) - x$.

Let

$$c_1 := \int_{1}^{\infty} t^{-1} d(\Pi_B - \Pi)(t),$$

an absolutely convergent integral by Lemma 3.3. As we saw in the proof of Lemma 4.1,

$$\int_{1}^{\infty} t^{-1} d(\Pi_B - \Pi)^{*n}(t)$$

is absolutely convergent; it equals

$$\left(\int_{1}^{\infty} t^{-1} d(\Pi_B - \Pi)(t)\right)^n = c_1^n.$$

Add and subtract terms $\int_x^\infty t^{-1} d(\Pi_B - \Pi)^{*n}(t)$ and rewrite (4.1) as

(4.2)
$$N_B(x) = Ax + xE(x),$$

where

$$A = 1 + \sum_{n \ge 1} \frac{1}{n!} \int_{1}^{\infty} t^{-1} d(\Pi_B - \Pi)^{*n}(t) = e^{c_1}$$

and

(4.3)
$$E(x) := x^{-1}\theta(x) - E_1(x) + E_2(x)$$

with

(4.4)
$$E_1(x) := \sum_{n \ge 1} \frac{1}{n!} \int_x^\infty t^{-1} d(\Pi_B - \Pi)^{*n}(t)$$

and

$$E_2(x) := x^{-1} \sum_{n \ge 1} \frac{1}{n!} \int_1^x \theta\left(\frac{x}{t}\right) d(\Pi_B - \Pi)^{*n}(t).$$

Also, Lemmas 4.1 and 2.1(3) together imply that

$$\zeta_0(s) := \int_{1-}^{\infty} x^{-s} \, dN_0(x)$$

converges absolutely for $\sigma \geq 1$. Hence, $\zeta_0(s)$ is analytic on $\sigma > 1$ and continuous on $\sigma \geq 1$.

LEMMA 4.2. We have

(4.5)
$$\frac{N_0(x)}{x} \ll \frac{k(x)}{\log x}$$

 $and\ hence$

(4.6)
$$|E_2(x)| \le \frac{N_0(x)}{x} \ll \frac{k(x)}{\log x}.$$

Also,

(4.7)
$$\int_{1}^{\infty} x^{-1} |E_2(x)| \, dx < \infty.$$

Proof. By Lemma 4.1,

$$\int_{A_{n_0}}^x y^{-1} \frac{\log y}{k(y)} \, dN_0(y) < \int_1^\infty y^{-1} \frac{\log y}{k(y)} \, dN_0(y) < \infty.$$

The left-hand side equals, by integration by parts,

$$x^{-1} \frac{\log x}{k(x)} N_0(x) - A_{n_0}^{-1} \frac{\log A_{n_0}}{k(n_0)} N_0(A_{n_0}) + \int_{A_{n_0}}^x N_0(y) y^{-2} \left(\frac{\log y - 1}{k(y)} + \frac{yk'(y)\log y}{k^2(y)}\right) dy.$$

Recalling that $k'(x) \ge 0$ and noting that $\log A_{n_0} \ge 1$, we have

$$\int_{A_{n_0}}^x y^{-1} \frac{\log y}{k(y)} \, dN_0(y) \ge x^{-1} \frac{\log x}{k(x)} \, N_0(x) - A_{n_0}^{-1} \frac{\log A_{n_0}}{k(A_{n_0})} \, N_0(A_{n_0}).$$

Thus, (4.5) follows. Next,

$$|E_2(x)| \le \frac{1}{x} \sum_{n \ge 1} \frac{1}{n!} \int_{1}^{x} d\Pi_0^{*n}(t) < \frac{N_0(x)}{x}$$

and (4.6) follows. Moreover, by Lemma 4.1 again,

$$\int_{1}^{\infty} x^{-s} \frac{N_0(x)}{x} \, dx = \frac{\zeta_0(s)}{s}$$

for $\sigma \geq 1$. Hence

$$\int_{1}^{\infty} x^{-1} |E_2(x)| \, dx \le \int_{1}^{\infty} x^{-2} N_0(x) \, dx = \zeta_0(1) < \infty. \blacksquare$$

The analysis of $E_1(x)$ requires a more delicate argument.

5. Fundamental estimates

LEMMA 5.1. For $n \ge n_0$, a sufficiently large number, we have

(5.1)
$$\left| \int_{x}^{\infty} t^{-1} d(\pi_{B} - \pi)(t) \right| \leq \begin{cases} \frac{1}{4} (\log k(n_{0}) / \log A_{n_{0}})^{2} & \text{if } 1 \leq x \leq A_{n_{0}}, \\ \log k(n) / \log A_{n} & \text{if } A_{n} < x \leq A_{n}^{\star}, \\ \frac{1}{4} (\log k(n+1) / \log A_{n+1})^{2} & \text{if } A_{n}^{\star} < x \leq A_{n+1}. \end{cases}$$

Also, for $\ell \geq 2$,

(5.2)
$$\left| \int_{x}^{\infty} t^{-\ell} d(\pi_{B} - \pi)(t) \right| \leq \begin{cases} A_{n_{0}}^{-\ell+1} \log k(n_{0}) / \log A_{n_{0}} & \text{if } 1 \le x \le A_{n_{0}}, \\ 2A_{n}^{-\ell+1} / \log A_{n} & \text{if } A_{n} < x \le A_{n}^{\star}, \\ A_{n+1}^{-\ell+1} \log k(n+1) / \log A_{n+1} & \text{if } A_{n}^{\star} < x \le A_{n+1}. \end{cases} \right|$$

Proof. For
$$A_n^* < x \le A_{n+1}, n \ge n_0$$
, or $1 \le x \le A_{n_0}$ (i.e., $n+1=n_0$),

$$\int_x^\infty t^{-1} d(\pi_B - \pi)(t) = \sum_{m \ge n+1} \left(A_m^{-1} \left[\frac{A_m \log k(m)}{2 \log A_m} \right] - \sum_{A_m$$

By Lemma 3.2,

$$\begin{aligned} A_m^{-1} \bigg[\frac{A_m \log k(m)}{2 \log A_m} \bigg] &- \sum_{A_m$$

Therefore we have

$$\int_{x}^{\infty} t^{-1} d(\pi_B - \pi)(t) \bigg| = \sum_{m \ge n+1} \left\{ \frac{1}{8} \left(\frac{\log k(m)}{\log A_m} \right)^2 + O\left(\frac{\log k(m)}{\log^2 A_m} \right) \right\}$$
$$\leq \frac{1}{4} \left(\frac{\log k(n+1)}{\log A_{n+1}} \right)^2$$

for n_0 large enough. This proves the first and the third inequalities of (5.1). For $A_n < x \le A_n^*$, $n \ge n_0$, by the definition of \mathcal{P}_B ,

$$\int_{x}^{\infty} t^{-1} d(\pi_B - \pi)(t) = -\sum_{x$$

From the third inequality of (5.1), just proved,

$$\Big|\int_{A_{n+1}}^{\infty} t^{-1} d(\pi_B - \pi)(t)\Big| \le \frac{1}{4} \left(\frac{\log k(n+1)}{\log A_{n+1}}\right)^2.$$

Also, by (3.2),

$$\sum_{x$$

Hence

$$\left|\int_{x}^{\infty} t^{-1} d(\pi_B - \pi)(t)\right| \le \frac{\log k(n)}{\log A_n}$$

This proves the second inequality of (5.1).

Now suppose that $\ell \geq 2$. For $A_n^* < x \leq A_{n+1}$, $n \geq n_0$, or $1 \leq x \leq A_{n_0}$ (i.e., $n+1=n_0$), we have in a similar way

$$\int_{x}^{\infty} t^{-\ell} d(\pi_B - \pi)(t) = \sum_{m \ge n+1} \left(A_m^{-\ell} \left[\frac{A_m \log k(m)}{2 \log A_m} \right] - \sum_{A_m$$

Applying the method used in proving Lemma 3.2, write

$$\sum_{A_m$$

say. We have, by integration by parts,

$$I_1' = \frac{A_m^{1-\ell}}{(\ell-1)\log A_m} - \frac{(A_m^{\star})^{1-\ell}}{(\ell-1)\log A_m^{\star}} + O\left(\frac{A_m^{1-\ell}}{\log^2 A_m}\right).$$

For I'_2 , apply integration by parts and the prime number estimate (3.3). We find

$$I_{2}' = R(t)t^{-\ell} \Big|_{A_{m}}^{A_{m}^{\star}} + \ell \int_{A_{m}}^{A_{m}^{\star}} R(t)t^{-\ell-1} dt \ll \frac{A_{m}^{1-\ell}}{\log^{2} A_{m}}$$

Together, these estimates imply that

(5.3)
$$\sum_{A_m$$

provided that m is sufficiently large. Thus

$$\left| A_m^{-\ell} \left[\frac{A_m \log k(m)}{2 \log A_m} \right] - \sum_{A_m$$

and so we get

$$\left|\int_{x}^{\infty} t^{-\ell} d(\pi_B - \pi)(t)\right| \le \sum_{m \ge n+1} \frac{A_m^{-\ell+1} \log k(m)}{2 \log A_m} \le \frac{A_{n+1}^{-\ell+1} \log k(n+1)}{\log A_{n+1}}.$$

Now suppose $A_n < x \leq A_n^*$, $n \geq n_0$. We have

$$\int_{x}^{\infty} t^{-\ell} d(\pi_B - \pi)(t) = -\sum_{x$$

The sum is clearly bounded above by $\sum_{A_n , and the last sum equals$

$$\frac{(1+o(1))A_n^{1-\ell}}{(\ell-1)\log A_n}$$

by the first relation in (5.3). If we combine this estimate with the inequality derived when $A_n^* < x \le A_{n+1}$, $n \ge n_0$, we find

$$\left|\int_{x}^{\infty} t^{-\ell} d(\pi_B - \pi)(t)\right| \le \frac{(1 + o(1))A_n^{-\ell+1}}{(\ell - 1)\log A_n} + \frac{A_{n+1}^{-\ell+1}\log k(n+1)}{\log A_{n+1}} \le \frac{2A_n^{-\ell+1}}{\log A_n}.$$

This completes the proof of (5.2). \blacksquare

LEMMA 5.2. For n_0 sufficiently large,

$$c_2 := \int_{1}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\Pi_B - \Pi)(t) \Big| dx \le 2 \frac{\log^2 k(n_0)}{\log A_{n_0}}$$

Proof. By (5.1),

$$\int_{1}^{A_{n_0}} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\pi_B - \pi)(t) \Big| dx \le \frac{\log^2 k(n_0)}{4 \log A_{n_0}},$$
$$\int_{A_n}^{A_n^{\star}} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\pi_B - \pi)(t) \Big| dx \le \frac{\log^2 k(n)}{2 \log A_n},$$
$$\int_{A_n^{\star}}^{A_{n+1}} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\pi_B - \pi)(t) \Big| dx \le \frac{\log^2 k(n+1)}{4 \log A_{n+1}}.$$

Hence

$$\int_{1}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\pi_B - \pi)(t) \Big| dx$$

$$\leq \frac{\log^2 k(n_0)}{4 \log A_{n_0}} + \sum_{n \ge n_0} \left(\frac{\log^2 k(n)}{2 \log A_n} + \frac{\log^2 k(n+1)}{4 \log A_{n+1}} \right) \le \frac{\log^2 k(n_0)}{\log A_{n_0}}$$

for n_0 sufficiently large. Also, for $\ell \geq 2$,

$$\int_{1}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\pi_{B} - \pi)(t^{1/\ell}) \Big| dx = \int_{1}^{\infty} x^{-1} \Big| \int_{x^{1/\ell}}^{\infty} u^{-\ell} d(\pi_{B} - \pi)(u) \Big| dx$$
$$= \ell \int_{1}^{\infty} y^{-1} \Big| \int_{y}^{\infty} u^{-\ell} d(\pi_{B} - \pi)(u) \Big| dy.$$

By (5.2), in a similar way, the right side of the last equation is at most

$$\ell \left(A_{n_0}^{-\ell+1} \log k(n_0) + \sum_{n \ge n_0} \left\{ \frac{A_n^{-\ell+1} \log k(n)}{\log A_n} + A_{n+1}^{-\ell+1} \log k(n+1) \right\} \right) \\ < 2\ell A_{n_0}^{-\ell+1} \log k(n_0).$$

Hence

$$\begin{split} \int_{1}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\Pi_{B} - \Pi)(t) \Big| dx \\ &= \int_{1}^{\infty} x^{-1} \Big| \int_{x}^{\infty} \sum_{\ell \ge 1} \frac{1}{\ell} t^{-1} d(\pi_{B} - \pi)(t^{1/\ell}) \Big| dx \\ &\le \sum_{\ell \ge 1} \frac{1}{\ell} \int_{1}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\pi_{B} - \pi)(t^{1/\ell}) \Big| dx \\ &\le \frac{\log^{2} k(n_{0})}{\log A_{n_{0}}} + 2 \sum_{\ell \ge 2} A_{n_{0}}^{-\ell+1} \log k(n_{0}) \le \frac{2 \log^{2} k(n_{0})}{\log A_{n_{0}}}. \end{split}$$

6. Proof of the theorem. It remains to study $E_1(x)$ (defined in (4.4)). LEMMA 6.1. For x > 1,

(6.1)
$$E_1(x) \ll \frac{k(x)}{\log x}.$$

Proof. We have

$$\left|\int_{x}^{\infty} t^{-1} d(\Pi_{B} - \Pi)^{*n}(t)\right| \leq \int_{x}^{\infty} t^{-1} d\Pi_{0}^{*n}(t) \leq \frac{k(x)}{\log x} \int_{x}^{\infty} t^{-1} \frac{\log t}{k(t)} d\Pi_{0}^{*n}(t)$$

since $(\log t)/k(t)$ is increasing. It follows that

$$|E_1(x)| \le c_3 \frac{k(x)}{\log x},$$

where

$$c_3 := \int_{1+}^{\infty} t^{-1} \frac{\log t}{k(t)} \, dN_0(t) < \infty$$

by Lemma 4.1. \blacksquare

LEMMA 6.2.

(6.2)
$$\int_{1}^{\infty} x^{-1} |E_1(x)| \, dx < \infty.$$

Proof. We have

$$\int_{1}^{\infty} x^{-1} |E_1(x)| \, dx = \int_{1}^{\infty} x^{-1} \bigg| \sum_{\ell \ge 1} \frac{1}{\ell!} \int_{x}^{\infty} t^{-1} \, d(\Pi_B - \Pi)^{*\ell}(t) \bigg| \, dx \le I_1 + I_2,$$

say, where

$$I_{1} := \int_{1}^{\infty} x^{-1} \bigg| \sum_{1 \le \ell \le \log x / \log A_{n_{0}}} \frac{1}{\ell!} \int_{x}^{\infty} t^{-1} d(\Pi_{B} - \Pi)^{*\ell}(t) \bigg| dx,$$
$$I_{2} := \int_{1}^{\infty} x^{-1} \bigg| \sum_{\ell > \log x / \log A_{n_{0}}} \frac{1}{\ell!} \int_{x}^{\infty} t^{-1} d(\Pi_{B} - \Pi)^{*\ell}(t) \bigg| dx.$$

Recall that $(\Pi_B - \Pi)(x) = 0$ for $x < A_{n_0}$, so there is no contribution to the integrals unless $\log x/\log A_{n_0} \ge 1$. For $\ell > \log x/\log A_{n_0}$, i.e., $A_{n_0}^{\ell} > x$, we have

$$\int_{x}^{\infty} t^{-1} d(\Pi_B - \Pi)^{*\ell}(t) = \int_{1}^{\infty} t^{-1} d(\Pi_B - \Pi)^{*\ell}(t) = \left(\int_{1}^{\infty} t^{-1} d(\Pi_B - \Pi)(t)\right)^{\ell} = c_1^{\ell}.$$

Hence

$$\sum_{\ell > \log x/\log A_{n_0}} \frac{1}{\ell!} \int_x^\infty t^{-1} d(\Pi_B - \Pi)^{*\ell}(t) = \sum_{\ell > \log x/\log A_{n_0}} \frac{1}{\ell!} c_1^\ell,$$

and therefore

(6.3)
$$I_{2} \leq \int_{1}^{\infty} x^{-1} \left(\sum_{\ell > \log x / \log A_{n_{0}}} \frac{|c_{1}|^{\ell}}{\ell!} \right) dx$$
$$= \sum_{\ell \geq 1} \frac{|c_{1}|^{\ell}}{\ell!} \int_{1}^{A_{n_{0}}^{\ell}} x^{-1} dx = |c_{1}| e^{|c_{1}|} \log A_{n_{0}}$$

Next, we have

$$I_{1} \leq \int_{A_{n_{0}}^{\infty}}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\Pi_{B} - \Pi)(t) \Big| dx + \sum_{\ell \geq 2} \frac{1}{\ell!} \int_{A_{n_{0}}^{\ell}}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\Pi_{B} - \Pi)^{*\ell}(t) \Big| dx.$$

.

For $\ell \geq 2$,

$$\begin{split} \int_{A_{n_0}^{\ell}}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\Pi_B - \Pi)^{*\ell}(t) \Big| dx \\ &\leq \int_{A_{n_0}^{\ell}}^{\infty} x^{-1} \Big(\int_{A_{n_0}^{\ell-1}}^{\infty} \Big| \int_{x/v}^{\infty} u^{-1} d(\Pi_B - \Pi)(u) \Big| v^{-1} d\Pi_0^{*\ell-1}(v) \Big) dx \\ &= \int_{A_{n_0}^{\ell-1}}^{\infty} \Big(\int_{A_{n_0}^{\ell}}^{\infty} x^{-1} \Big| \int_{x/v}^{\infty} u^{-1} d(\Pi_B - \Pi)(u) \Big| dx \Big) v^{-1} d\Pi_0^{*\ell-1}(v). \end{split}$$

Letting x/v = y, the inner integral on the right-hand side becomes

$$\int_{A_{n_0}^{\ell}/v}^{\infty} \frac{1}{vy} \Big| \int_{y}^{\infty} u^{-1} d(\Pi_B - \Pi)(u) \Big| v \, dy$$

$$\leq \int_{1}^{\infty} y^{-1} \Big| \int_{y}^{\infty} u^{-1} d(\Pi_B - \Pi)(u) \Big| \, dy = c_2 < \infty$$

by Lemma 5.2. Therefore,

$$\begin{split} \int_{A_{n_0}^{\ell}}^{\infty} x^{-1} \Big| \int_{x}^{\infty} t^{-1} d(\Pi_B - \Pi)^{*\ell}(t) \Big| \, dx &\leq c_2 \int_{A_{n_0}^{\ell-1}}^{\infty} v^{-1} \, d\Pi_0^{*\ell-1}(v) \\ &\leq c_2 \Big(\int_{1}^{\infty} v^{-1} \, d\Pi_0(v) \Big)^{\ell-1} = c_2 c_4^{\ell-1}, \end{split}$$

where

$$c_4 := \int_{1}^{\infty} x^{-1} \, d\Pi_0(x).$$

Hence

(6.4)
$$I_1 \le c_2 + \sum_{\ell \ge 2} \frac{1}{\ell!} c_2 c_4^{\ell-1} \le c_2 (1 + e^{c_4})/2.$$

From (6.4) and (6.3), (6.2) follows.

It remains only to establish property (2) of the theorem. The relations (4.2), (4.3), (4.6), and (6.1), along with the inequality $k(x) \ll f(x)$ of Lemma 2.1, give

$$\frac{|N(x) - Ax|}{x} = |E(x)| \le \frac{1}{x} + |E_1(x)| + |E_2(x)| \ll \frac{f(x)}{\log x}.$$

Also, by (4.7) and (6.2),

$$\int_{1}^{\infty} x^{-2} |N(x) - Ax| \, dx \leq \int_{1}^{\infty} x^{-1} (x^{-1} + |E_1(x)| + |E_2(x)|) \, dx < \infty.$$

These estimates complete the proof of Theorem 1.1.

References

- [Di1] H. G. Diamond, Chebyshev estimates for Beurling generalized prime numbers, Proc. Amer. Math. Soc. 39 (1973), 503–508.
- [Di2] H. G. Diamond, Asymptotic distribution of Beurling's generalized integers, Illinois J. Math. 14 (1970), 12–28.
- [Di3] H. G. Diamond, Chebyshev type estimates in prime number theory, in: Séminaire de Théorie des Nombres, 1973–1974 (Univ. de Bordeaux I), Lab. Théor. des Nombres, CNRS, 1974, Exp. No. 24.
- [DZ] H. G. Diamond and W.-B. Zhang, Chebyshev bounds for Beurling numbers, Acta Arith. 160 (2013), 143–157.
- [Ka1] J.-P. Kahane, Sur les nombres premiers généralisés de Beurling. Preuve d'une conjecture de Bateman et Diamond, J. Théor. Nombres Bordeaux 9 (1997), 251– 266.
- [Ka2] J.-P. Kahane, Le rôle des algèbres A de Wiener, A[∞] de Beurling et H¹ de Sobolev dans la théorie des nombres premiers généralisés de Beurling, Ann. Inst. Fourier (Grenoble) 48 (1998), 611–648.
- [Vn1] J. Vindas, Chebyshev estimates for Beurling generalized prime numbers. I, J. Number Theory 132 (2012), 2371–2376.
- [Vn2] J. Vindas, Chebyshev upper estimates for Beurling's generalized prime numbers, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 175–180.
- [Zh] W.-B. Zhang, Chebyshev type estimates for Beurling generalized prime numbers, Proc. Amer. Math. Soc. 101 (1987), 205–212.

Harold G. Diamond (corresponding author)	Wen-Bin Zhang
Department of Mathematics	920 West Lawrence Ave. #1112
University of Illinois	Chicago, IL 60640, U.S.A.
Urbana, IL 61801, U.S.A.	E-mail: cheungmanping@yahoo.com
E-mail: diamond@math.uiuc.edu	

Received on 6.10.2012 and in revised form on 17.5.2013 (7223)