# Capturing forms in dense subsets of finite fields 

by<br>Brandon Hanson (Toronto)

1. Introduction. In this paper we consider a finite field analogue of the following open problem in arithmetic Ramsey theory HLS.

Problem 1.1. For any $r$-colouring $c: \mathbb{N} \rightarrow\{1, \ldots, r\}$ of the natural numbers, is it possible to solve $c(x+y)=c(x y)$ apart from the trivial solution $(x, y)=(2,2)$ ?

One might suspect that in fact a stronger result might hold, namely that any sufficiently dense set of natural numbers contains the elements $x+y$ and $x y$ for some $x$ and $y$. This would immediately solve the problem since one of the colours in any finite colouring must be sufficiently dense. Such a result is impossible however, since the odd numbers provide a counter-example and are fairly dense in many senses of the word. Fortunately, this simple parity obstruction disappears in the finite field setting. Indeed, in $[\mathrm{S}]$, the following was proved $\left(^{1}\right)$.

TheOrem 1.2. Let $p$ be a prime number, and $A_{1}, A_{2}, A_{3} \subset \mathbb{F}_{p}$ be any sets, $\left|A_{1}\right|\left|A_{2}\right|\left|A_{3}\right| \geq 40 p^{5 / 2}$. Then there are $x, y \in \mathbb{F}_{p}$ such that $x+y \in A_{1}$, $x y \in A_{2}$ and $x \in A_{3}$.

Now, let $q=p^{n}$ be an odd prime power and $\mathbb{F}_{q}$ a finite field of order $q$. Given a binary linear form $L(X, Y)$ and a binary quadratic form $Q(X, Y)$, define $N_{q}(L, Q)$ to be the smallest integer $k$ such that for any subset $A \subset \mathbb{F}_{q}$ with $|A| \geq k$, there exists $(x, y) \in \mathbb{F}_{q}^{2}$ with $L(x, y), Q(x, y) \in A$. In this paper we give estimates on the size of $N_{q}(L, Q)$. Namely, we prove the following theorem.

Main Theorem 1.3. Let $\mathbb{F}_{q}$ be a finite field of odd order. Let $Q \in$ $\mathbb{F}_{q}[X, Y]$ be a binary quadratic form with non-zero discriminant and let $L \in$

2010 Mathematics Subject Classification: Primary 11B30; Secondary 05D10.
Key words and phrases: finite fields, linear, quadratic, forms, dense, Ramsey.
$\left({ }^{1}\right)$ The author would like to thank J. Solymosi for bringing this result to his attention.
$\mathbb{F}_{q}[X, Y]$ be a binary linear form not dividing $Q$. Then

$$
\log q \ll N_{q}(L, Q) \ll \sqrt{q}
$$

This theorem is the content of the next two sections. In the final section, we provide remarks on the analogous problem in the ring of integers modulo $N$ when $N$ is composite.
2. Upper bounds. Let $L(X, Y)$ be a linear form and $Q(X, Y)$ be a quadratic form, both with coefficients in $\mathbb{F}_{q}$. Suppose $A$ is an arbitrary subset of $\mathbb{F}_{q}$. We will reduce the problem of solving $L(x, y), Q(x, y) \in A$ to estimating a character sum.

By a multiplicative character, we mean a group homomorphism $\chi$ : $\mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$. We say $\chi$ is non-trivial if it is not constant, i.e. $\chi \not \equiv 1$. We also extend such characters to $\mathbb{F}_{q}$ with the convention that $\chi(0)=0$. One of the most useful features of characters is that for $\chi$ non-trivial, we have

$$
\sum_{x \in \mathbb{F}_{q}} \chi(x)=0
$$

The quadratic character on $\mathbb{F}_{q}$ is the character given by

$$
\chi(c)= \begin{cases}1 & \text { if } c \neq 0 \text { is a square } \\ -1 & \text { if } c \neq 0 \text { is not a square } \\ 0 & \text { if } c=0\end{cases}
$$

Lemma 2.1. Let $Q \in \mathbb{F}_{q}[X, Y]$ be a binary quadratic form and let $L \in$ $\mathbb{F}_{q}[X, Y]$ be a binary linear form. Suppose $a, b \in \mathbb{F}_{q}$. Then there exist $r, s, t$ $\in \mathbb{F}_{q}$ depending only on $L$ and $Q$ such that

$$
\begin{aligned}
& \left\lvert\,\left\{(x, y) \in \mathbb{F}_{q}^{2}: L(x, y)=a \text { and } \begin{array}{rl}
Q(x, y)=b\} \mid \\
& =\left|\left\{y \in \mathbb{F}_{q}: r y^{2}+s a y+t a^{2}=b\right\}\right|
\end{array} .\right.\right.
\end{aligned}
$$

Furthermore, $r=0$ if and only if $L \mid Q$, and $r=s=0$ if and only if $L^{2} \mid Q$.
Proof. Write $L(X, Y)=a_{1} X+a_{2} Y$ where without loss of generality we can assume $a_{1} \neq 0$. We can then expand $Q(X, Y)$ in terms of $L(X, Y)$ to obtain

$$
Q(X, Y)=t L(X, Y)^{2}+s L(X, Y) Y+r Y^{2}
$$

If $L(x, y)=a$ then we obtain

$$
Q(x, y)=t a^{2}+s a y+r y^{2}
$$

The $y^{2}$ coefficient vanishes if and only if $Q=L M$ for some linear form $M$. The $y$ and $y^{2}$ coefficients vanish if and only if $Q=t L^{2}$. Certainly, any solution to $L(x, y)=a$ and $Q(x, y)=b$ gives a solution $y$ of $r y^{2}+s a y+t a^{2}$ $=b$. Conversely, if $y$ is such a solution, setting $x=a_{1}^{-1}\left(a-a_{2} y\right)$ produces a solution $(x, y)$.

Recall that the discriminant of a quadratic form $Q(X, Y)=b_{1} X^{2}+$ $b_{2} X Y+b_{3} Y^{2}$ is defined to be $\operatorname{disc}(Q)=b_{2}^{2}-4 b_{1} b_{3}$.

Corollary 2.2. Let $Q \in \mathbb{F}_{q}[X, Y]$ be a binary quadratic form and let $L \in \mathbb{F}_{q}[X, Y]$ be a binary linear form not dividing $Q$. For $a, b \in \mathbb{F}_{q}$, the number of solutions to $L(x, y)=a$ and $Q(x, y)=b$ is

$$
1+\chi\left(\left(s^{2}-4 r t\right) a^{2}+4 r b\right)
$$

where $\chi$ is the quadratic character.
Proof. The quantity $(s a)^{2}-4 r\left(t a^{2}-b\right)$ is the discriminant of $r y^{2}+s a y+$ $t a^{2}-b$. The result follows from the definition of $\chi$ and the quadratic formula.

In fact, from Lemma 2.1, we can essentially handle the situation when $L \mid Q$.

Corollary 2.3. Let $Q \in \mathbb{F}_{q}[X, Y]$ be a binary quadratic form and let $L \in \mathbb{F}_{q}[X, Y]$ be a binary linear form dividing $Q$. Then $N_{q}(L, Q)=1$ if $L^{2}$ does not divide $Q$, otherwise $N_{q}(L, Q) \geq(q+1) / 2$.

Proof. Let $A \subset \mathbb{F}_{q}$. The number of pairs $(x, y)$ with $L(x, y), Q(x, y) \in A$ equals

$$
\sum_{x, y} \mathbf{1}_{A}(L(x, y)) \mathbf{1}_{A}(Q(x, y))=\sum_{a \in A} \sum_{y \in \mathbb{F}_{q}} \mathbf{1}_{A}\left(s a y+t a^{2}\right)
$$

by the above lemma. If $s a \neq 0$ then $s a y+t a^{2}$ ranges over $\mathbb{F}_{q}$ as $y$ ranges over $\mathbb{F}_{q}$, and the inner sum is $|A|$. In this case there are in fact $|A|^{2}$ solutions $(x, y)$. If $a=0$ then $0 \in A$ and we can take $(x, y)=(0,0)$. If $s=0$ then the sum is $q \sum_{a \in A} \mathbf{1}_{A}\left(a^{2} t\right)$. If we set

$$
A= \begin{cases}t \cdot N=\{t n: n \in N\} & \text { if } t \neq 0 \\ N & \text { if } t=0\end{cases}
$$

where $N$ is the set of non-squares in $\mathbb{F}_{q}$, then there are no solutions. This shows that $N_{q}(L, Q) \geq(q+1) / 2$.

We now handle the case that $L$ does not divide $Q$. The following estimate is essentially due to Vinogradov (see for instance the excercises of Chapter 6 in [V] for the analogous result for exponentials).

Lemma 2.4. Let $A, B \subset \mathbb{F}_{q}$ and suppose $\chi$ is a non-trivial multiplicative character. Then for $u, v \in \mathbb{F}_{q}^{\times}$we have

$$
\sum_{a \in A} \sum_{b \in B} \chi\left(u a^{2}+v b\right) \leq 2 \sqrt{q|A||B|} .
$$

Proof. Let $S$ denote the sum in question. Then

$$
|S| \leq \sum_{b \in B}\left|\sum_{a \in A} \chi\left(u a^{2}+v b\right)\right| \leq|B|^{1 / 2}\left(\sum_{b \in \mathbb{F}_{q}}\left|\sum_{a \in A} \chi\left(u a^{2}+v b\right)\right|^{2}\right)^{1 / 2}
$$

by Cauchy's inequality. Expanding the sum in the second factor, we get

$$
\begin{aligned}
\sum_{a_{1}, a_{2} \in A} \sum_{\substack{b \in \mathbb{F}_{q} \\
u a_{2}^{2}+v b \neq 0}} \chi\left(\frac{u a_{1}^{2}+v b}{u a_{2}^{2}+v b}\right) & =\sum_{a_{1}, a_{2} \in A} \sum_{\substack{b \in \mathbb{F}_{q} \\
u a_{2}^{2}+v b \neq 0}} \chi\left(1+\frac{u\left(a_{1}^{2}-a_{2}^{2}\right)}{u a_{2}^{2}+v b}\right) \\
& =\sum_{a_{1}, a_{2} \in A} \sum_{b \in \mathbb{F}_{q}^{\times}} \chi\left(1+u\left(a_{1}^{2}-a_{2}^{2}\right) b\right)
\end{aligned}
$$

after the change of variables $\left(u a_{2}^{2}+v b\right)^{-1} \mapsto b$. When $a_{1}^{2} \neq a_{2}^{2}$, the values of $1+u\left(a_{1}^{2}-a_{2}^{2}\right) b$ range over all values of $\mathbb{F}_{p}$ save 1 as $b$ traverses $\mathbb{F}_{q}^{\times}$. Hence, in this case, the sum amounts to -1 . It follows that the total is at most $4 q|A|$.

Corollary 2.5. Let $Q \in \mathbb{F}_{q}[X, Y]$ be a binary quadratic form and let $L \in \mathbb{F}_{q}[X, Y]$ be a binary linear form not dividing $Q$. Then $N_{q}(L, Q) \leq$ $2 \sqrt{q}+1$ if $\operatorname{disc}(Q) \neq 0$, otherwise $N_{q}(L, Q) \geq(q-1) / 2$.

Proof. Let $A \subset \mathbb{F}_{q}$. By Corollary 2.2 , the number of pairs $(x, y)$ with $L(x, y), Q(x, y) \in A$ is

$$
\sum_{x, y} \mathbf{1}_{A}(L(x, y)) \mathbf{1}_{A}(Q(x, y))=\sum_{a, b \in A} 1+\chi\left(D a^{2}+4 r b\right)
$$

where $D=s^{2}-4 r t$. One can check that in fact $D=a_{1}^{-2} \operatorname{disc}(Q)$.
If $D=0$ then $\chi\left(D a^{2}+4 r b\right)+1=\chi(r) \chi(b)+1$. This will be indentically zero if $A$ is chosen to be the squares or non-squares according to the value of $\chi(r)$. Hence, if $\operatorname{disc}(Q)=0$ then $N_{q}(L, Q) \geq(q-1) / 2$.

Now assume $D \neq 0$. Summing over $a, b \in A$ the number of solutions is

$$
|A|^{2}+\sum_{a, b \in A} \chi\left(D a^{2}+4 r b\right)=|A|^{2}+E(A)
$$

By Lemma 2.4. $E(A)<|A|^{2}$ when $|A| \geq 2 \sqrt{q}+1$, and the result follows.
REmARK 2.6. In the case that $A$ has particularly nice structure, we can improve the upper bound. Suppose $q=p$ is prime and $A$ is an interval. Then as above the number of pairs $(x, y)$ with $L(x, y), Q(x, y) \in A$ is

$$
|A|^{2}+\sum_{a, b \in A} \chi\left(D a^{2}+4 r b\right)
$$

Now

$$
\sum_{a, b \in A} \chi\left(D a^{2}+4 r b\right) \leq \sum_{a \in A}\left|\sum_{b \in A} \chi\left(D a^{2} / 4 r+b\right)\right|
$$

A well-known result of Burgess states that if $|A| \gg p^{1 / 4+\varepsilon}$ for some $\varepsilon>0$, then the inner sum is $O\left(|A| p^{-\delta}\right)$ for some $\delta=\delta(\varepsilon)>0$ (see [IK, Chapter 12]).
3. A lower bound. In this section we give a lower bound for $N_{q}(L, Q)$ in the case that $L$ does not divide $Q$ and $\operatorname{disc}(Q) \neq 0$. To do so we need to produce a set $A$ such that $L(x, y)$ and $Q(x, y)$ are never both elements of $A$. Equivalently, we need to produce a set $A$ for which $\chi\left(D a^{2}+4 r b\right)=-1$ for all pairs $(a, b) \in A \times A$.

Let $a \in \mathbb{F}_{q}$ and define

$$
X_{a}(b)= \begin{cases}1 & \text { if } \chi\left(D a^{2}+4 r b\right)=\chi\left(D b^{2}+4 r a\right)=-1 \\ 0 & \text { otherwise }\end{cases}
$$

Thus the desired set $A$ will have $X_{a}(b)=1$ for $a, b \in A$. The idea behind our argument is probabilistic. Suppose we create a graph $\Gamma$ with vertex set

$$
V=\left\{a \in \mathbb{F}_{q}: X_{a}(a)=1\right\}
$$

and edge set

$$
E=\left\{\{a, b\}: X_{a}(b)=X_{b}(a)=1\right\}
$$

These edges appear to be randomly distributed and occur with probability roughly $1 / 4$. In this setting,

$$
N_{q}(L, Q)=1+\omega(\Gamma)
$$

where $\omega(\Gamma)$ is the clique number of $\Gamma$ (i.e. the size of the largest complete subgraph of $\Gamma)$. Let $G(n, \delta)$ be the graph with $n$ vertices that is the result of connecting two vertices randomly and independently with some fixed probability $\delta>0$. Such a graph has clique number roughly $\log n$ (see AS, Chapter 10]). It is tempting to treat $\Gamma$ as such a graph and construct a clique by greedily choosing vertices, and indeed this is how the set $A$ is constructed. It is worth mentioning that this model suggests that the right upper bound for $N_{q}(L, Q)$ is also roughly $\log n$.

Lemma 3.1. Let $B \subset \mathbb{F}_{q}$. Then for $a \in \mathbb{F}_{q}$ we have

$$
\sum_{b \in B} X_{a}(b)=\frac{1}{4} \sum_{b \in B}\left(1-\chi\left(D a^{2}+4 r b\right)\right)\left(1-\chi\left(D b^{2}+4 r a\right)\right)+O(1)
$$

Proof. The summands on the right are

$$
\begin{aligned}
& \left(1-\chi\left(D a^{2}+4 r b\right)\right)\left(1-\chi\left(D b^{2}+4 r a\right)\right) \\
& = \begin{cases}4 & \text { if } \chi\left(D a^{2}+4 r b\right)=\chi\left(D b^{2}+4 r a\right)=-1, \\
2 & \text { if }\left\{\chi\left(D a^{2}+4 r b\right), \chi\left(D b^{2}+4 r a\right)\right\}=\{0,-1\}, \\
1 & \text { if } \chi\left(D a^{2}+4 r b\right)=\chi\left(D b^{2}+4 r a\right)=0, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

For fixed $a$, the second and third cases can only occur for $O(1)$ values of $b$.

We will use the following well-known theorem of Weil (see for instance Chapter 11 of [IK]).

Theorem 3.2 (Weil). Suppose $\chi \in \widehat{\mathbb{F}_{q}^{\times}}$has order $d>1$ and $f \in \mathbb{F}_{q}[X]$ is not of the form $f=g^{d}$ for some $g \in \overline{\mathbb{F}_{q}}[X]$. If $f$ has $m$ distinct roots in $\overline{\mathbb{F}_{q}}$ then

$$
\left|\sum_{x \in \mathbb{F}_{q}} \chi(f(x))\right| \leq m \sqrt{q}
$$

Lemma 3.3. Let $A, B \subset \mathbb{F}_{q}$ with $|A|,|B|>\sqrt{q}$. Then

$$
\sum_{a \in A} \sum_{b \in B} X_{a}(b)=\frac{|A||B|}{4}+O\left(|A||B|^{1 / 2} q^{1 / 4}\right)
$$

Proof. By the preceding lemma, it suffices to estimate

$$
\begin{aligned}
& \sum_{a \in A} \frac{1}{4}\left(\sum_{b \in B}\left(1-\chi\left(D a^{2}+4 r b\right)\right)\left(1-\chi\left(D b^{2}+4 r a\right)\right)\right)+O(1) \\
&= \frac{|A||B|}{4}-\frac{1}{4} \sum_{a \in A} \sum_{b \in B} \chi\left(D a^{2}+4 r b\right)-\frac{1}{4} \sum_{a \in A} \sum_{b \in B} \chi\left(D b^{2}+4 r a\right) \\
& \quad+\frac{1}{4} \sum_{a \in A} \sum_{b \in B} \chi\left(\left(D a^{2}+4 r b\right)\left(D b^{2}+4 r a\right)\right)+O(|A|)
\end{aligned}
$$

By Lemma 2.1, the first two sums above are $O(\sqrt{q|A||B|})=O\left(|A||B|^{1 / 2} q^{1 / 4}\right)$. By Cauchy's inequality, the final sum is bounded by

$$
|B|^{1 / 2}\left(\sum_{b \in \mathbb{F}_{q}}\left|\sum_{a \in A} \chi\left(\left(D a^{2}+4 r b\right)\left(D b^{2}+4 r a\right)\right)\right|^{2}\right)^{1 / 2}
$$

Expanding the square modulus, the second factor is the square-root of

$$
\sum_{a_{1}, a_{2} \in A} \sum_{b \in \mathbb{F}_{q}} \chi\left(\left(D a_{1}^{2}+4 r b\right)\left(D b^{2}+4 r a_{1}\right)\left(D a_{2}^{2}+4 r b\right)\left(D b^{2}+4 r a_{2}\right)\right)
$$

By Weil's theorem, the inner sum is bounded by $6 \sqrt{q}$ when the polynomial

$$
f(b)=\left(D a_{1}^{2}+4 r b\right)\left(D b^{2}+4 r a_{1}\right)\left(D a_{2}^{2}+4 r b\right)\left(D b^{2}+4 r a_{2}\right)
$$

is not a square. This happens for all but $O(|A|)$ pairs $\left(a_{1}, a_{2}\right)$. Hence the bound is $O\left(|A| q+|A|^{2} \sqrt{q}\right)$. Since $|A|>\sqrt{q}$, this is $O\left(|A|^{2} \sqrt{q}\right)$ and the overall bound is $O\left(|A||B|^{1 / 2} q^{1 / 4}\right)$.

We immediately deduce the following.
Corollary 3.4. There is an absolute constant $c>0$ such that if $B \subset \mathbb{F}_{q}$ with $|B| \geq c \sqrt{q}$ then there is an element $a \in B$ such that

$$
\left|\left\{b \in B: X_{a}(b)=1\right\}\right| \geq \frac{1}{8}|B|
$$

Proof. Indeed, taking $A=B$ in the preceding theorem,

$$
\max _{a \in B}\left\{\sum_{b \in B} X_{a}(b)\right\} \geq \frac{1}{|B|} \sum_{a, b \in B} X_{a}(b)=\frac{|B|}{4}+O\left(q^{1 / 4}|B|^{1 / 2}\right) \geq \frac{|B|}{8}
$$

when $|B|>c \sqrt{q}$ for some appropriately chosen $c$.
Corollary 3.5. Let $Q \in \mathbb{F}_{q}[X, Y]$ be a binary quadratic form and let $L \in \mathbb{F}_{q}[X, Y]$ be a binary linear form not dividing $Q$. Then if $\operatorname{disc}(Q) \neq 0$ we have $N_{q}(L, Q) \gg \log q$.

Proof. We will construct a clique in the graph $\Gamma$ introduced above. First we claim that $|V|=(q-1) / 2+O(1)$. Indeed

$$
\sum_{a \in \mathbb{F}_{q}^{\times}} \chi\left(D a^{2}+4 r a\right)=\sum_{a \in \mathbb{F}_{q}^{\times}} \chi\left(a^{-2}\right) \chi\left(D a^{2}+4 r a\right)=\sum_{a \in \mathbb{F}_{q}^{\times}} \chi\left(D+4 r a^{-1}\right)=O(1)
$$

by orthogonality. The final term is $O(1)$ and the claim follows since $\chi$ takes on the values $\pm 1$ on $\mathbb{F}_{q}^{\times}$.

Now set $V_{0}=V$ and assume $q$ is large. Write $\left|V_{0}\right|=c^{\prime} q>c \sqrt{q}$ (with $c$ as in the preceding corollary and $\left.c^{\prime} \approx 1 / 2\right)$. For $a \in V_{0}$, let $N(a)$ denote the neighbours of $a$ (i.e. those $b$ which are joined to $a$ by an edge). Then there is an $a_{1} \in V_{0}$ such that $\left|N\left(a_{1}\right)\right| \geq c^{\prime} q / 8$. Let $A_{1}=\left\{a_{1}\right\}$, let $V_{1}=N\left(a_{1}\right) \subset V_{0}$, and for $a \in V_{1}$ let $N_{1}(a)=N(a) \cap V_{1}$. By choice, all elements of $V_{1}$ are connected to $a_{1}$. Now $\left|V_{1} \backslash A_{1}\right| \geq c^{\prime} q / 8-1 \geq c^{\prime} q / 16$ so, provided this is at least $c^{\prime} q / 16$, there is some element $a_{2}$ of $V_{1} \backslash A_{1}$ such that $\left|N_{1}\left(a_{2}\right)\right| \geq\left|V_{1} \backslash A_{1}\right| / 8$. Let $A_{2}=A_{1} \cup\left\{a_{2}\right\}, V_{2}=N_{1}\left(a_{2}\right) \subset V_{1}$ and define $N_{2}(a)=N(a) \cap V_{2}$. Once again each element of $V_{2}$ is connected to each element of $A_{2}$. We repeat this process provided that at stage $i$ there exists an element $a_{i+1} \in V_{i} \backslash A_{i}$ with $\left|N_{i}\left(a_{i+1}\right)\right| \geq\left|V_{i} \backslash A_{i}\right| / 8$. We set $A_{i+1}=A_{i} \cup\left\{a_{i+1}\right\}$ and observe that $A_{i+1}$ induces a clique. We may iterate provided $\left|V_{i} \backslash A_{i}\right|>c \sqrt{q}$, which is guaranteed for $i \ll \log q$. The final set $A_{i}$ (which has size $i$ ) will be the desired set $A$.

The combination of this corollary and 2.5 completes the proof of 1.3 .
4. Remarks for composite modulus. Consider the analogous question in the ring $\mathbb{Z} / N \mathbb{Z}$ with $N$ odd. Let $L(X, Y)=a_{1} X+a_{2} Y$ with $\left(a_{1}, N\right)=1$ and $Q(X, Y)=b_{1} X^{2}+b_{2} X Y+b_{3} Y^{2}$. We then let $A \subset \mathbb{Z} / N \mathbb{Z}$ and wish to find $(x, y) \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $L(x, y), Q(x, y) \in A$. As before, this amounts to finding a solution to

$$
Q\left(a_{1}^{-1}\left(a-a_{2} Y\right), Y\right)=b
$$

for some $a, b \in A$. In general, one cannot find a solution based on the size of $A$ alone unless $A$ is very large. Indeed, if $p$ is a small prime dividing $N$,
and $t \bmod p$ is chosen such that the discriminant of

$$
Q\left(a_{1}^{-1}\left(t-a_{2} Y\right), Y\right)-t
$$

is a non-residue modulo $p$, then taking $A=\{a \bmod N: a \equiv t \bmod p\}$ provides a set of density $1 / p$ which fails to admit a solution.

Acknowledgements. I would like to thank Leo Goldmakher and John Friedlander for introducing me to the problem and helpful discussion. I also thank the anonymous referee for helpful comments.

The author is supported by NSERC of Canada.

## References

[AS] N. Alon and J. H. Spencer, The Probabilistic Method, 3rd ed., Wiley, 2008.
[HLS] N. Hindman, I. Leader, and D. Strauss, Open problems in partition regularity, Combin. Probab. Comput. 12 (2003), 571-583.
[IK] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc., 2004.
[S] I. D. Shkredov, On monochromatic solutions of some nonlinear equations in $\mathbb{Z} / p \mathbb{Z}$, Math. Notes 88 (2010), 603-611; transl. of: Mat. Zametki 88 (2010), 625-634.
[V] I. M. Vinogradov, An Introduction to the Theory of Numbers, Pergamon Press, 1955.

Brandon Hanson
Department of Mathematics
University of Toronto
M5S 2E4 Toronto, Canada
E-mail: bhanson@math.toronto.edu

