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1. Introduction. Congruences for sums of reciprocals modulo a prime
or prime power have been of considerable interest throughout the 20th cen-
tury, mainly because of their close connection to the first case of Fermat’s
Last Theorem; see, e.g., [17, pp. 155 ff.] or [11]. Even though this motivation
is now only of historical interest, such congruences have continued to attract
attention, and have recently been extended to composite moduli; see [1], [2]
or [3]. A brief historical overview is given in [7], where some of the earlier
results, relating sums of reciprocals with Fermat and Euler quotients, have
been further extended.

All these papers are based on methods and results of Emma Lehmer,
whose 1938 paper [11] remains the most important and influential paper
on this topic, although it built on earlier work of Glaisher, Lerch and oth-
ers. One of the more remarkable congruences in Lehmer’s paper [11] is the
following one for sums of reciprocals of squares:

(1.1)

bp/4c∑
j=1

1

j2
≡ (−1)(p−1)/24Ep−3 (mod p),

valid for all primes p ≥ 5, where En is the nth Euler number, which can be
defined by the exponential generating function

(1.2)
2

et + e−t
=
∞∑
n=0

En
n!
tn (|t| < π).

Recently Cai, Fu and Zhou [2] extended (1.1) to prime powers by proving
the following congruence for odd primes p and integers α ≥ 1:

(1.3)

bpα/4c∑
j=1
p-j

1

j2
≡ (−1)(p

α−1)/24Eϕ(pα)−2

{
(mod pα) when p ≥ 5,

(mod 3α−1) when p = 3.
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It is the main purpose of this paper to extend (1.3) to arbitrary moduli n.
We begin with odd moduli in Section 3, after we prove some auxiliary results
on Euler numbers in Section 2. Our main result in Section 3 relies on a
certain arithmetic function which we study further in Section 4, along with
some computational results. In Section 5 we consider the question of the
extended sum vanishing modulo n (or modulo n/3 when 3 |n), and give
a complete characterization for odd n. In Section 6 we deal with even n;
finally, Section 7 contains an application to a sum of reciprocals modulo n2.

2. Congruences for Euler numbers. The Euler numbers, defined in
(1.2), have also been studied extensively because of their connection with
Fermat’s Last Theorem and the arithmetic of cyclotomic fields; see, e.g.,
[17, p. 202] or [9]. The Euler numbers are integers, and it is immediate from
(1.2) that E2k+1 = 0 for all k ≥ 0 since the generating function is even.
Also, it can be shown that even-index Euler numbers have alternating signs,
and the first few numbers are 1,−1, 5,−61, 1385,−50521.

One of the more remarkable properties of the Euler numbers is the Kum-
mer congruence, which in its simplest form can be written as

(2.1) E2k+(p−1) ≡ E2k (mod p)

for integers k ≥ 1 and primes p ≥ 3; see, e.g., [15, Ch. 24]. Numerous
generalizations are known; see, e.g., [4], [5], [6], [19], or [20]. In particular,
the congruence (2.1) has been extended to prime power moduli (see [10,
p. 226] or [6]):

(2.2) Eϕ(pα)+2k ≡ (1− (−1)(p−1)/2p2k)E2k (mod pα).

It is the purpose of this section to extend (2.1) to an arbitrary odd modulus.
While (2.2) could easily be used for this purpose, we choose a different
approach which we consider interesting. We begin with the congruence

(2.3) Em ≡
n−1∑
j=0

(−1)j(2j + 1)m (mod n),

valid for arbitrary integers m ≥ 1 and odd integers n ≥ 1. This congruence
can be found in [10, Lemma 2.5], but similar congruences have been known
for a long time; see, e.g., [4, p. 36].

We also require the following extension of Euler’s generalization of Fer-
mat’s Little Theorem. Generalizing the concept of a square free integer, we
say that an integer n is (k + 1)th-power free if no prime power higher than
the kth power divides n.

Lemma 1. Let n and k be positive integers. Then

(2.4) aϕ(n)+k ≡ ak (mod n) for all a ∈ Z
if and only if n is a (k + 1)th-power free integer.
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Proof. Let n = pα1
1 · · · pαrr , with p1, . . . , pr distinct primes and 1 ≤ αj ≤

k for j = 1, . . . , r. Now fix one such j. By Euler’s theorem we have

aϕ(p
αj
j ) ≡ 1 (mod p

αj
j ) if pj - a.

Raising both sides to the power ϕ(pα1
1 ) · · ·ϕ(pαrr ) (but without ϕ(p

αj
j )), we

get

(2.5) aϕ(p
α1
1 )···ϕ(pαrr ) ≡ 1 (mod p

αj
j ).

Now, if we multiply both sides of (2.5) by ak then, recalling that αj ≤ k,
we see that the congruence

(2.6) aϕ(p
α1
1 ···p

αr
r )+k ≡ ak (mod p

αj
j )

holds for all integers a. But j is arbitrary, and thus by the Chinese Remainder
Theorem (or in this case simply by the definition of the congruences) we get

aϕ(p
α1
1 ···p

αr
r )+k ≡ ak (mod pα1

1 · · · p
αr
r ),

which is (2.4). Conversely, suppose that αj > k for some j. Then for a = pj
the exponent of a on the left of (2.4) is some K > k, so that p

αj
j | pKj − pkj ,

which is a contradiction.

The desired extension of the Kummer congruence (2.1) now follows im-
mediately from (2.3) and Lemma 1:

Lemma 2. Let k ≥ 1 be an integer and n ≥ 1 an odd (k + 1)th-power
free integer. Then

(2.7) Eϕ(n)+k ≡ Ek (mod n).

Proof. Using (2.3) and Lemma 1, we have

Eϕ(n)+k ≡
n−1∑
j=0

(−1)j(2j + 1)ϕ(n)+k (mod n)

≡
n−1∑
j=0

(−1)j(2j + 1)k ≡ Ek (mod n),

which was to be shown.

3. The main result. In this section we are going to extend the gener-
alization (1.3) of Lehmer’s congruence (1.1) to arbitrary odd moduli n. For
the statement of our result we require the following expression that depends
on the prime factorization of n.

Given the odd integer n, write it in its prime power decomposition

(3.1) n = pα1
1 · · · p

αr
r .
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Then define the integer A(n) by A(n) = 1 when r = 1, and for r ≥ 2,

(3.2) A(n) :=

r∑
j=1

r∏
i=1
i 6=j

p
αiϕ(p

αj
j )

i

(
1− (−1)(pi−1)/2

p2i

)
.

With this expression we have the following result for the sum

(3.3) S4(n) :=

bn/4c∑
j=1

(j,n)=1

1

j2
.

Theorem 1. Let n be an odd positive integer. Then

(3.4)

S4(n) ≡


(−1)(n−1)/24A(n)Eϕ(n)−2 (mod n) when 3 - n,
(−1)(n−1)/24A(n)Eϕ(n)−2 (mod n/3) when n ≡ 0 (mod 9),

(−1)(n−1)/2 409 A(n3 )Eϕ(n)−2 (mod n/3) when n ≡ ±3 (mod 9).

To simplify notation, we use the following convention for the remainder
of this paper:

(3.5) A (mod pα) means

{
A (mod pα) when p ≥ 5,

A (mod 3α−1) when p = 3.

The main ingredient in the proof of Theorem 1 is the following lemma.

Lemma 3. Let n be an odd positive integer and p a prime divisor of n.
If pα is the highest power of p dividing n, then

(3.6)

bn/4c∑
j=1
p-j

1

j2
≡ (−1)(n−1)/24Eϕ(n)−2 (mod pα).

The idea of proof of Lemma 3 is as follows. We write n = mpα, p - m,
and divide bn/4c into multiples of pα and a (positive or negative) remainder
bpα/4c. To evaluate the corresponding sums, we use the congruence (1.3) of
Cai et al. [2] and the following lemma due to Cai [1, Lemma 1].

Lemma 4. Let n ≥ 2 be an integer. Then

(3.7) S1(n) :=

n−1∑
j=1

(j,n)=1

1

j2
≡ 0


(mod n) when 3 - n, n 6= 2a,

(mod n/3) when 3 | n,
(mod n/2) when n = 2a.

Remark. In passing we note that S1(n) ≡ 0 (mod n) when 3 |n and
n has a prime divisor p ≡ 1 (mod 6) (see, [7, Corollary 1]). While this
refinement and the case n even will not be needed here, we will return to it
later in Section 6.
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Proof of Lemma 3. With n = mpα, p - m as above, we let

n ≡ ε (mod 4), m ≡ ε (mod 4), pα ≡ ε1 (mod 4),

with ε, ε, ε1 = ±1. Then ε = εε1, and we have

(3.8)
mpα − 2 + ε

4
=
m− ε

4
pα + ε

pα − 2 + ε1
4

− 1− ε
2

,

which is easy to verify by direct calculation. Now (3.8) can be rewritten as

(3.9)

⌊
n

4

⌋
=
m− ε

4
pα + ε

⌊
pα

4

⌋
− 1− ε

2
.

When ε = 1, we have a positive remainder upon division by pα; in this case
Lemma 4 (with n = pα) and (1.3) give

(3.10)

bn/4c∑
j=1
p-j

1

j2
≡ (−1)(p

α−1)/24Eϕ(pα)−2 (mod pα)

(for m ≡ ε = 1 (mod 4)). When ε = −1, then (3.9) indicates that we
sum over (m − ε)/4 full ranges of pα, and then subtract a “quarter range”
from the last pα-range. The additional (1− ε)/2 accounts for the final term
((m−ε)/4)pα. Hence again with Lemma 4 (with n = pα) and (1.3), combined
with the fact that

1

(pα − j)2
≡ 1

j2
(mod pα),

we have again (3.10), but with the right-hand side multiplied by −1. That
is, altogether we have

(3.11)

bn/4c∑
j=1
p-j

1

j2
≡ (−1)(m−1)/2(−1)(p

α−1)/24Eϕ(pα)−2 (mod pα).

To continue, we first note that by a standard argument (see, e.g., [14, p. 144])
we have

(3.12)
m− 1

2
+
pα − 1

2
≡ mpα − 1

2
=
n− 1

2
(mod 2).

Next we use Lemma 2 with n = pα and k = ϕ(pα) − 2. Since for all odd
prime p and integers α ≥ 1 we clearly have ϕ(pα)−1 = (p−1)pα−1−1 > α,
the modulus pα is (k + 1)th-power free. Since

ϕ(n) = ϕ(mpα) = ϕ(m)ϕ(pα),

an iterated application of Lemma 2 shows that

(3.13) Eϕ(n)−2 ≡ Eϕ(pα)−2 (mod pα).

Finally, this and (3.12) applied to (3.11) gives (3.6).
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To obtain Theorem 1 from Lemma 3, we could use an “inclusion-exclu-
sion” argument. However, we find it more convenient to use an equivalent
approach via the Möbius function as was done, for instance, in [3, p. 1818].
Below we will use the definition of the Möbius function, namely

(3.14) µ(n) =

{
(−1)r when n = p1 · · · pr,
0 otherwise,

where p1, . . . , pr are distinct primes. We also require the basic property

(3.15)
∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1;

see, e.g., [14, p. 193]. Let p be a prime divisor of the odd modulus n in
Theorem 1, and write n = mpα, p - m. If m = 1, then Theorem 1 is just
(1.3) and there is nothing more to show; so we assume that m > 1. Using
(3.15), we write

bn/4c∑
j=1

(j,n)=1

1

j2
=

bn/4c∑
j=1

p-j, (j,m)=1

1

j2
=

bn/4c∑
j=1
p-j

1

j2

∑
k|(j,m)

µ(k)

=
∑
k|m

µ(k)

bn/4c∑
j=1
p-j, k|j

1

j2
=
∑
k|m

µ(k)

bn/(4k)c∑
j=1
p-j

1

(kj)2
=
∑
k|m

µ(k)

k2

bn/(4k)c∑
j=1
p-j

1

j2
.

To continue, we label the primes in the decomposition (3.13) such that
p = p1 and m = pα2

2 · · · pαrr . Then with (3.14) the last identity becomes

(3.16)

bn/4c∑
j=1

(j,n)=1

1

j2
=

r−1∑
ν=0

∑
2≤j1<···<jν≤r

(−1)ν

(pj1 · · · pjν )2

bn∗/4c∑
j=1
p-j

1

j2
,

where for simplicity of notation n∗ stands for

(3.17) n∗ :=
n

pj1 · · · pjν
.

To finish the proof, we apply Lemma 3 to the right-most sum in (3.16), with
n∗ instead of n in (3.6). Then, applying (3.12) repeatedly to (3.17), we get

(3.18) (−1)(n
∗−1)/2 = (−1)(n−1)/2(−1)(pj1−1)/2 · · · (−1)(pjν−1)/2.

Also, with the same argument as in (3.13) we have

(3.19) Eϕ(n∗)−2 ≡ Eϕ(pα)−2 ≡ Eϕ(n)−2 (mod pα),
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so (3.18) and (3.19) together with (3.6) show that

(3.20)

bn∗/4c∑
j=1
p-j

1

j2

≡ (−1)(pj1−1)/2 · · · (−1)(pjν−1)/2(−1)(n−1)/24Eϕ(n)−2 (mod pα).

Thus, with (3.16) we have

(3.21)

bn/4c∑
j=1

(j,n)=1

1

j2

≡
( r∏
i=2

(
1− (−1)(pi−1)/2

p2i

))
(−1)(n−1)/24Eϕ(n)−2 (mod pα).

To complete the proof of Theorem 1, we first assume that 3 - n. We
let p run through all prime divisors of n, and use the Chinese Remainder
Theorem in the following form (see, e.g., [14, pp. 64–65]): Given the r ≥ 2
congruences

x ≡ aj (mod p
αj
j ), j = 1, . . . , r,

there is a unique simultaneous solution x0 modulo n = pα1
1 · · · pαrr given by

(3.22) x0 =
r∑
j=1

n

p
αj
j

bjaj ,

where bj ≡ (n/p
αj
j )−1 (mod p

αj
j ). Now, by Euler’s generalization of Fermat’s

Little Theorem we can take

(3.23) bj =

(
n

p
αj
j

)ϕ(pαjj )−1
.

If we substitute (3.23) into (3.22) and take aj to be the right-hand side of
(3.21) (with p replaced by pj), then we immediately get the first part of
(3.4), with A(n) given by (3.2).

The case 9 |n requires a more careful analysis. Since the exceptional
prime p = 3 is involved, the congruence (3.21) holds only modulo pα−1 (for
p = 3), and the combined modulus is

n

3
= 3α1−1pα2

2 · · · p
αr
r (α1 ≥ 2).

We proceed as before, but the analogue of (3.22) is now

(3.24) x0 =
n/3

3α1−1 b1a1 +
r∑
j=2

n/3

p
αj
j

bjaj .
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First, to determine b1, we note that(
n

3α1

)−1
≡
(
n

3α1

)ϕ(3α1 )−1
(mod 3α1),

and thus

(3.25) b1 ≡
(
n/3

3α1−1

)−1
≡
(
n

3α1

)ϕ(3α1 )−1
(mod 3α1−1),

as required by the Chinese Remainder Theorem. For j ≥ 2 we have

(3.26) bj ≡
(
n/3

p
αj
j

)−1
= 3

(
n

p
αj
j

)−1
≡ 3

(
n

p
αj
j

)ϕ(pαjj )−1
(mod p

αj
j ).

If we substitute (3.25) and (3.26) into (3.24), we see that, with p1 = 3,

x0 ≡
r∑
j=1

(
n

p
αj
j

)ϕ(pαjj )

aj (mod n/3)

is the solution given by the Chinese Remainder Theorem. This, along with
the definition (3.2), leads to the second part of (3.4).

Finally, when 3 |n but 9 - n (in other words, n ≡ ±3 (mod 9)), then
pα = 1 for p = 3, and the congruence (3.21) is meaningless and can be
deleted from consideration. However, the factor

1− (−1)(p1−1)/2

p21
= 1 +

1

9

(for p1 = 3) still appears on the right-hand side of (3.22) for all other
primes p. This accounts for the extra factor 10/9 in the third part of the
right-hand side of (3.4), while the Chinese Remainder Theorem has been
used as in the previous parts.

The proof of Theorem 1 is now complete.

4. Some results on the function A(n). Although the function A(n),
as defined in (3.2), is rather complicated, it is possible to derive a few simple
properties. The following theorem is the main result of this section; it will
be applied in the following section.

Theorem 2. Let n be an odd positive integer. Then:

(a) if A(n) ≡ 0 (mod n), then 3 |n but 9 - n;
(b) if 9 |n and A(n) ≡ 0 (mod n/3), then n = 45.

To prove this, we first note that A(n) ≡ 0 (mod n), resp. A(n) ≡ 0
(mod n/3), if and only if

(4.1) A(n) ≡ 0 (mod p
αj
j ), resp. A(n) ≡ 0 (mod p

αj
j ), j = 1, . . . , r,

where we have used the notation of (3.5). We need the following two lemmas.
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Lemma 5. For an odd positive integer n we have A(n) ≡ 0 (mod n) if
and only if

(4.2)
r∏
i=1
i 6=j

(p2i − (−1)(pi−1)/2) ≡ 0 (mod p
αj
j ) for all j = 1, . . . , r

unless n ≡ ±3 (mod 9). Similarly, if 9 |n then A(n) ≡ 0 (mod n/3) if and

only if (4.2) holds modulo p
αj
j .

Proof. The hypothesis means that p
αj
j ≥ 5 and thus ϕ(p

αj
j ) ≥ 4. This

implies that αiϕ(p
αj
j ) − 2 ≥ αi for all αi ≥ 1, which is easy to verify. This

in turn means that for all i = 1, . . . , r we have

pαii | p
αiϕ(p

αj
j )−2

i ,

and for a given index ν all summands in (3.2) vanish modulo pανν , with the
exception of the summand for j = ν. In this case we note that by Euler’s
generalization of Fermat’s Little Theorem we have( r∏

i=1
i 6=ν

pαii

)ϕ(pανν )
≡ 1 (mod pανν ).

Hence the congruence (4.1) implies
r∏
i=1
i 6=ν

(
1− (−1)(pi−1)/2

p2i

)
≡ 0 (mod pανν ),

and upon multiplying both sides by the appropriate products of squares of
the pi and renaming ν to j, we get (4.2). The opposite direction follows
from the Chinese Remainder Theorem. If 9 | n and A(n) ≡ 0 (mod n/3),
the proof remains the same.

Lemma 6. Suppose that either (i) n 6≡ ±3 (mod 9) and A(n) ≡ 0
(mod n), or (ii) 9 |n and A(n) ≡ 0 (mod n/3). Then the largest prime
factor of n satisfies q ≡ 1 (mod 4), and there is another prime factor p ≡ 3
(mod 4) such that

p2 + 1 ≡ 0 (mod q),(4.3)

q2 − 1 ≡ 0 (mod p).(4.4)

Proof. First we note that a necessary condition for (4.2) to hold is that
the congruences must hold modulo pj . This means that the remainder of the
proof is identical for the cases (i) and (ii). Assume that the prime factors of
n are ordered by size: p1 < · · · < pr. Consider the last one of the modified
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congruences (4.2), namely

(4.5)
r−1∏
i=1

(p2i − (−1)(pi−1)/2) ≡ 0 (mod pr).

Now pr has to divide one of the factors in (4.5), say the one for i = ν. If
pν ≡ 1 (mod 4) then the corresponding quadratic term factors, and we have
pr | pν − 1 or pr | pν + 1, which is impossible since pr is the largest prime fac-
tor. If, on the other hand, pν ≡ 3 (mod 4) then we have p2ν +1 ≡ 0 (mod pr),
and by quadratic reciprocity this is impossible when pr ≡ 3 (mod 4). There-
fore we require pr ≡ 1 (mod 4), while there has to be at least one other
prime factor pν ≡ 3 (mod 4). This proves the lemma, with p := pν and
q := pr.

To finish the proof of Theorem 2, we note that by Theorem 1 in [8], the
pair of quadratic congruences (4.3), (4.4) has p = 3, q = 5 as its only prime
solution. Then by Lemma 6 the only n which can possibly satisfy conditions
(i) or (ii) are of the form n = 3α5β with α ≥ 2 and β ≥ 1. However, in
case (a) of Theorem 2 we have

52 − 1 6≡ 0 (mod 3α) for α ≥ 2,

which contradicts (4.2). Similarly, for case (b) we have

52 − 1 ≡ 0 (mod 3α−1) and 32 + 1 ≡ 0 (mod 5β)

if and only if α = 2 and β = 1, i.e., n = 45. This, by Lemma 5, completes
the proof of Theorem 2.

Table 1. All odd n ≤ 108 for which A(n) ≡ 0 (mod n)

n factored n factored

525 3 · 52 · 7 4876437 3 · 23 · 29 · 2437
705 3 · 5 · 47 4953165 3 · 5 · 72 · 23 · 293

1725 3 · 52 · 23 5928285 3 · 5 · 11 · 19 · 31 · 61
25935 3 · 5 · 7 · 13 · 19 7739985 3 · 5 · 11 · 61 · 769
50325 3 · 52 · 11 · 61 8019375 3 · 54 · 7 · 13 · 47
61755 3 · 5 · 23 · 179 8224125 3 · 53 · 7 · 13 · 241
72345 3 · 5 · 7 · 13 · 53 18163299 3 · 7 · 11 · 61 · 1289

231735 3 · 5 · 7 · 2207 24088155 3 · 5 · 72 · 13 · 2521
436821 3 · 7 · 11 · 31 · 61 28393365 3 · 5 · 7 · 11 · 13 · 31 · 61
473109 3 · 7 · 13 · 1733 32717685 3 · 5 · 7 · 11 · 13 · 2179

1188525 3 · 52 · 13 · 23 · 53 40981125 3 · 53 · 103 · 1061
2308911 3 · 11 · 31 · 37 · 61 46830225 3 · 52 · 13 · 43 · 1117
3353025 3 · 52 · 13 · 19 · 181 89995191 3 · 11 · 13 · 19 · 61 · 181
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Theorem 2(a) is illustrated by Table 1. In addition to the 26 integers
n ≤ 108, there are 57 more n ≤ 1010 for which A(n) ≡ 0 (mod n). Table 1
also suggests that such n have at least three distinct prime factors. This is
indeed the case:

Corollary 1. If an odd positive integer n satisfies A(n) ≡ 0 (mod n),
then n has at least three distinct prime factors.

Proof. To obtain a contradiction, we assume that n has only two prime
factors. By Theorem 2 it is of the form n = 3pα with p ≥ 5 and α ≥ 1. The
definition (3.2) gives

(4.6) A(n) = p2α
(

1− (−1)(p−1)/2

p2

)
+ 3ϕ(p

α)

(
1 +

1

32

)
.

Since p2 ≡ 1 (mod 3) and ϕ(pα) ≥ 4, we have

(4.7) A(n) ≡ 1− (−1)(p−1)/2 (mod 3).

Next, when α ≥ 2, then (4.6) with Euler’s theorem gives

A(n) ≡ 1 + 3−2 ≡ 3−2 · 10 6≡ 0 (mod pα),

which proves the corollary for α ≥ 2. If α = 1 then (4.6) gives

A(n) ≡ (−1)(p+1)/2 + 1 + 3−2 (mod p).

When p ≡ 1 (mod 4), then this expression cannot vanish modulo p. When
p ≡ 3 (mod 4), we use (4.7) which shows that A(n) 6≡ 0 (mod 3).

5. Vanishing sums modulo n. As mentioned in the Introduction,
sums of the type (1.1) and the corresponding congruences involving Bernoulli
numbers or, as in this case, Euler numbers have been of historical interest
in connection with Fermat’s Last Theorem. In analogy to irregular primes
(see, e.g., [17]), Ernvall and Metsänkylä [9] studied E-irregular primes. In
particular, if the prime p divides the Euler number Ep−3, then (p, p− 3) is
called an “E-irregular pair”. For easier reference we introduce the following
terminology.

Definition 1. An odd prime p will be called an E-prime if p |Ep−3, or
in other words, if (p, p− 3) is an E-irregular pair.

The first such primes, p = 149 and p = 241, were found in [9], and using
PARI [16] and the congruence (1.1), we found three more such primes up
to 50 million. These calculations were verified by D. Staple with a custom
C program, and extended up to 200 million. Finally, independently of this
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paper and using an algorithm due to Peter Montgomery, R. McIntosh [13]
had recently computed three further E-primes up to 3 · 109; see Table 2.

Table 2. All E-primes p < 3 · 109

p p2 − (−1)(p−1)/2 factored

149 23 · 3 · 52 · 37
241 25 · 3 · 5 · 112

2946901 23 · 3 · 52 · 7 · 11 · 19 · 37 · 47 · 5689
16467631 2 · 70657 · 1919009233
17613227 2 · 5 · 13 · 37 · 2557 · 25223309

327784727 2 · 5 · 409 · 127637 · 69697 · 2953
426369739 2 · 157 · 757 · 1546057 · 494677

1062232319 2 · 13 · 281 · 397 · 353653 · 1099997

While the E-primes are exactly the prime values n for which S4(n) in
(3.3) vanishes modulo n, we will now extend this question to all odd inte-
gers n. The following result shows that once again the E-primes play an
important role in this.

Corollary 2. Let n be an odd positive integer.

(a) If S4(n) ≡ 0 (mod n), then n = 45, or n is divisible by an E-prime.
(b) If 3 |n and S4(n) ≡ 0 (mod n/3), then n = 3, 15, 45, or n is divisible

by an E-prime.

Proof. We begin by distinguishing between three cases, corresponding
to the cases of Theorem 1. First, if 3 - n, then by Theorem 2(a) we have
A(n) 6≡ 0 (mod n), and consequently by Theorem 1 there must be a prime
p > 3, p |n, such that

(5.1) Eϕ(n)−2 ≡ 0 (mod p).

Next, let n ≡ ±3 (mod 9). If n = 3, then (3.4) holds trivially, and for n = 15,
the factor 40 in (3.4) means that the congruence also holds trivially, both
modulo n/3; this is not the case modulo n. Otherwise we have, again by
Theorem 2(a), A(n/3) 6≡ 0 (mod n/3), and by Theorem 1, as before, there
is a prime p > 3, p |n, that satisfies (5.1). Finally, it is easy to verify that
n = 45 satisfies the congruence in question. However, if 9 |n and n 6= 45,
then by Theorem 2(b) we have A(n) 6≡ 0 (mod n/3), and by Theorem 1
there must once again exist a prime p > 3, p |n, that satisfies (5.1).

Now, if we write n = pαm with p - m, then

(5.2) ϕ(n)− 2 = (p− 1)pα−1ϕ(m)− 2 = (pα−1ϕ(m)− 1)(p− 1) + (p− 3),
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and thus, by Kummer’s congruence (2.1),

(5.3) Eϕ(n)−2 ≡ Ep−3 (mod p),

which vanishes modulo p if and only if p is an E-prime. This, with (5.1),
completes the proof.

Table 3. All odd n ≤ 2 · 107, 3 - n, for which S4(n) ≡ 0 (mod n)

n factored n factored

149 149 897725 52 · 149 · 241
241 241 1328633 37 · 149 · 241
745 5 · 149 1778821 112 · 61 · 241

1205 5 · 241 1974995 5 · 11 · 149 · 241
2651 11 · 241 2618675 52 · 19 · 37 · 149
3725 52 · 149 2946901 2946901

5513 37 · 149 4042775 52 · 11 · 61 · 241
13255 5 · 11 · 241 4344989 112 · 149 · 241
27565 5 · 37 · 149 4488625 53 · 149 · 241
29161 112 · 241 5013041 11 · 31 · 61 · 241
35909 149 · 241 6643165 5 · 37 · 149 · 241

104747 19 · 37 · 149 8894105 5 · 112 · 61 · 241
137825 52 · 37 · 149 9874975 52 · 11 · 149 · 241
145805 5 · 112 · 241 14614963 11 · 37 · 149 · 241
161711 11 · 61 · 241 14734505 5 · 2946901
179545 5 · 149 · 241 16467631 16467631

394999 11 · 149 · 241 17613227 17613227

523735 5 · 19 · 37 · 149 18959207 19 · 37 · 149 · 181
808555 5 · 11 · 61 · 241

This result is illustrated by Tables 3, 4, and 5. The next result provides
explanations for the other prime factors of the solutions n shown in these
tables; in fact, we obtain complete characterizations. On account of the three
different cases in Theorem 1, we need to distinguish between these cases also
here.

To state this result, we use the notation

νp(n) = α if and only if pα ‖n,
where p is a prime. Also, pj will denote an odd prime, and δp,q the Kronecker
delta defined by δp,q = 1 when p = q and 0 otherwise.

Corollary 3. Let n = pα1
1 · · · pαrr pr+1 · · · pr+s, where s ≥ 1 and pr+1, . . .

. . . , pr+s are distinct E-primes.
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(a) If 3 - n, then S4(n) ≡ 0 (mod n) if and only if

(5.4) 1 ≤ αj ≤ νpj
( r+s∏
i=1

(p2i − (−1)(pi−1)/2)
)
, j = 1, . . . , r.

(b) If p1 = 3 and α1 ≥ 2, then S4(n) ≡ 0 (mod n/3) if and only if

(5.5) 1 ≤ αj ≤ νpj
( r+s∏
i=1

(p2i − (−1)(pi−1)/2)
)

+ δ3,pj , j = 1, . . . , r.

(c) If p1 = 3 and α1 = 1, then S4(n) ≡ 0 (mod n/3) if and only if

(5.6) 1 ≤ αj ≤ νpj
( r+s∏
i=2

(p2i − (−1)(pi−1)/2)
)

+ δ5,pj , j = 2, . . . , r.

If r = 0 in (a) or r = 1 in (c), we consider the conditions (5.4), resp. (5.6),
to be vacuously satisfied.

Proof. (a) In order to apply the first part of Theorem 1, we first note
that by (5.2) and (5.3) we have

(5.7) Eϕ(n)−2 ≡ 0 (mod pr+k), k = 1, . . . , s.

Next, by (4.1) and the proof of Lemma 5 we have

(5.8) A(n) ≡ 0 (mod p
αj
j ), j = 1, . . . , r,

if and only if the condition (5.4) holds. The result now follows from the first
congruence in (3.4) and the Chinese Remainder Theorem.

(b) Since Theorem 1, (4.1), and Lemma 5 still hold when 9 |n, the proof
of this part is almost identical to that of part (a), but using the second
congruence in (3.4). Another difference is that for p1 = 3 the congruence
(4.2) holds only modulo 3α1−1, which, however, does not change the assertion
of part (b). Finally, since we are dealing with a congruence modulo n/3, the
power of 3 occurring in n can be 1 higher than given by the factors in
Lemma 5. This accounts for the summand δ3,pj in (5.5).

(c) Here we use the third part of (3.4), and in place of (5.8) we have
A(n/3) ≡ 0 (mod p

αj
j ), j = 2, . . . , r, since Lemma 5 applies just as in

part (a), with n replaced by n/3. Hence the prime p1 = 3 does not occur in
(5.6). On the other hand, special attention must be paid to the prime 5: The
factor 40 in (3.4) provides an extra power of 5, in addition to those coming
from Lemma 5. This accounts for the summand δ5,pj in (5.6).
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Table 4. All odd n ≤ 2 · 107, 9 |n for which S4(n) ≡ 0 (mod n/3)

n factored n factored

45 32 · 5 1312245 32 · 5 · 112 · 241
1341 32 · 149 1455399 32 · 11 · 61 · 241
2169 32 · 241 1615905 32 · 5 · 149 · 241
6705 32 · 5 · 149 1789425 33 · 52 · 11 · 241

10845 32 · 5 · 241 2232765 34 · 5 · 37 · 149
20115 33 · 5 · 149 2828169 33 · 19 · 37 · 149
23859 32 · 11 · 241 3554991 32 · 11 · 149 · 241
32535 33 · 5 · 241 3721275 33 · 52 · 37 · 149
33525 32 · 52 · 149 3936735 33 · 5 · 112 · 241
49617 32 · 37 · 149 4366197 33 · 11 · 61 · 241
54225 32 · 52 · 241 4713615 32 · 5 · 19 · 37 · 149

100575 33 · 52 · 149 4847715 33 · 5 · 149 · 241
119295 32 · 5 · 11 · 241 6202125 32 · 53 · 37 · 149
148851 33 · 37 · 149 6561225 32 · 52 · 112 · 241
162675 33 · 52 · 241 6698295 35 · 5 · 37 · 149
167625 32 · 53 · 149 7276995 32 · 5 · 11 · 61 · 241
248085 32 · 5 · 37 · 149 8079525 32 · 52 · 149 · 241
262449 32 · 112 · 241 8484507 34 · 19 · 37 · 149
323181 32 · 149 · 241 10664973 33 · 11 · 149 · 241
357885 33 · 5 · 11 · 241 11163825 34 · 52 · 37 · 149
446553 34 · 37 · 149 11957697 32 · 37 · 149 · 241
502875 33 · 53 · 149 14140845 33 · 5 · 19 · 37 · 149
596475 32 · 52 · 11 · 241 14543145 34 · 5 · 149 · 241
744255 33 · 5 · 37 · 149 16009389 32 · 112 · 61 · 241
942723 32 · 19 · 37 · 149 17774955 32 · 5 · 11 · 149 · 241
969543 33 · 149 · 241 18606375 33 · 53 · 37 · 149

1240425 32 · 52 · 37 · 149 19683675 33 · 52 · 112 · 241

Examples. (1) Consider the smallest E-prime 149, and note that

1492 − 1 = 23 · 3 · 52 · 37, 372 − 1 = 23 · 32 · 19, 192 + 1 = 2 · 181.

If we set n = 149 · 37 · 19 · 181, then Corollary 3(a) shows that S4(n) ≡ 0
(mod n). In particular, this example shows that the largest prime factor of
such an n may not be an E-prime; see the final entry in Table 3.

(2) If we further note that 1812−1 = 23·32·5·7·13, as well as 52−1 = 23·3,
72 + 1 = 2 · 52, and 132 − 1 = 23 · 3 · 7, then Corollary 3(a) shows that

n = 149 · 37 · 19 · 181 · 13 · 72 · 53 = 1 509 626 857 375
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is the largest odd integer n, not divisible by 3 and having n = 149 as sole
E-prime factor, which satisfies S4(n) ≡ 0 (mod n).

(3) Since 2412 − 1 = 25 · 3 · 5 · 112, 32 + 1 = 2 · 5, and 52 − 1 = 23 · 3,
Corollary 3(b) shows that for

n = 3α · 5β · 241, 2 ≤ α ≤ 3, 1 ≤ β ≤ 2,

we have S4(n) ≡ 0 (mod n/3). Furthermore, β = 0 forces α = 2 for the
congruence to hold. These are all possibilities for α and β in this case; see
also Table 4.

(4) Given the factorizations in Table 2, Corollary 3(c) shows that for

n = 3 · 5β · 149 · 241, 0 ≤ β ≤ 4,

we have S4(n) ≡ 0 (mod n/3), and this congruence holds for no larger β.
Although the prime p1 = 3 does not contribute to the “allowable” powers
of 5, the Kronecker delta in (5.6) does add to it, giving a maximum of β = 4.

Table 5. All odd n ≤ 2 · 107, n ≡ ±3 (mod 9), with S4(n) ≡ 0 (mod n/3)

n factored n factored

3 3 485133 3 · 11 · 61 · 241
15 3 · 5 538635 3 · 5 · 149 · 241

447 3 · 149 1184997 3 · 11 · 149 · 241
723 3 · 241 1571205 3 · 5 · 19 · 37 · 149

2235 3 · 5 · 149 2067375 3 · 53 · 37 · 149
3615 3 · 5 · 241 2187075 3 · 52 · 112 · 241
7953 3 · 11 · 241 2425665 3 · 5 · 11 · 61 · 241

11175 3 · 52 · 149 2693175 3 · 52 · 149 · 241
16539 3 · 37 · 149 3985899 3 · 37 · 149 · 241
18075 3 · 52 · 241 5336463 3 · 112 · 61 · 241
39765 3 · 5 · 11 · 241 5924985 3 · 5 · 11 · 149 · 241
55875 3 · 53 · 149 7856025 3 · 52 · 19 · 37 · 149
82695 3 · 5 · 37 · 149 8840703 3 · 2946901
87483 3 · 112 · 241 12128325 3 · 52 · 11 · 61 · 241

107727 3 · 149 · 241 13034967 3 · 112 · 149 · 241
198825 3 · 52 · 11 · 241 13465875 3 · 53 · 149 · 241
314241 3 · 19 · 37 · 149 15039123 3 · 11 · 31 · 61 · 241
413475 3 · 52 · 37 · 149 19929495 3 · 5 · 37 · 149 · 241
437415 3 · 5 · 112 · 241

6. Even moduli n. In this section we consider the sum S4(n), defined
in (3.3), for even integers n. As we shall see, the cases n ≡ 0 (mod 4) and
n ≡ 2 (mod 4) are fundamentally different. We begin with the first case.
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Theorem 3. Let n = 4m, where m is a positive integer.

(a) If 3 - n and n 6= 2α, then S4(n) ≡ 0 (mod N1), where N1 ∈
{m, 2m, 4m}. In particular, if m is odd and 8 |ϕ(m), then S4(n) ≡ 0
(mod n).

(b) If 3 |n, then S4(n) ≡ 0 (mod N2), where N2 ∈ {m/3, 2m/3, 4m/3,
m, 2m, 4m}. In particular, if m is odd, has a prime divisor p ≡ 1
(mod 6), and 8 |ϕ(m), then S4(n) ≡ 0 (mod n).

(c) If n = 2α, α ≥ 3, then S4(n) ≡ 0 (mod n/8).

The smallest example for the special case in (b) is n = 4 · 39; note that
13 ≡ 1 (mod 6) and ϕ(39) = 24 ≡ 0 (mod 8).

For the proof of Theorem 3 we require Lemma 4 in Section 3 above, as
well as the following lemma which also uses the sum S1(n) defined in (3.7).

Lemma 7. Let m ≥ 2 be an integer. Then

S4(4m) ≡
{
S1(m) (mod m) when m is even,
7
8S1(m) (mod m) when m is odd,

(6.1)

and

S4(4m) ≡
{
ϕ(m) (mod 4) when m is even,
1
2ϕ(m) (mod 4) when m is odd.

(6.2)

Proof. If m is even, then an integer j satisfies (j, 4m) = 1 if and only
if (j,m) = 1. Hence by comparing the definitions of the sums S4(4m) and
S1(m) in (3.3) and (3.7), respectively, we see that S4(4m) = S1(m). This
immediately gives the first part of (6.1). If we note that for all odd j we
have 1/j2 ≡ 1 (mod 4), we see, again by the definition of S1(m), that
S1(m) ≡ ϕ(m) (mod 4). This proves the first part of (6.2).

Now let m be odd. Then

(6.3) S4(4m) =

m∑
j=1

(j,4m)=1

1

j2
=

m∑
j=1

(j,m)=1

1

j2
−

m∑
j=1

(j,m)=1
j even

1

j2
= S1(m)− 1

4

bm/2c∑
j=1

(j,m)=1

1

j2
.

It is straightforward to show by a symmetry argument (see also identity (10)
in [1]) that

(6.4)

bm/2c∑
j=1

(j,m)=1

1

j2
≡ 1

2

m∑
j=1

(j,m)=1

1

j2
=

1

2
S1(m) (mod m),

and this, with (6.3), gives the second part of (6.1).

Finally, since for each fixed k = 1, 2, 3 we have (km + j, 4m) = 1
for exactly those j for which (j, 4m) = 1, the definition of S4(n) implies
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that S4(4m) ≡ 1
4ϕ(4m) = 1

2ϕ(m) (mod 4), which proves the second part
of (6.2).

Proof of Theorem 3. (a) Suppose that 3 - n, and that n is not a power
of 2. Then by (6.1) and Lemma 4 we have S4(4m) ≡ 0 (mod m), while by
(6.2), S4(4m) may be odd, or it may be congruent to 0 modulo 2 or 4, which
proves the first part of (a).

If m is odd and 8 |ϕ(m), then S4(4m) ≡ 0 (mod 4) by (6.2), and then by
(6.1), Lemma 4, and the Chinese Remainder Theorem we have S4(4m) ≡ 0
(mod 4m), which proves the second part of (a).

(b) If 3 |n, then by (6.1) and Lemma 4 we have S4(4m) ≡ 0 (mod m/3),
while by (6.2), as before, we may have S4(4m) ≡ 0 (mod j) with j ∈ {1, 2, 4}.
This gives the possible values m/3, 2m/3, 4m/3 for N2. Now, if m has a
prime divisor p ≡ 1 (mod 6) (see the Remark following Lemma 4) then
S4(4m) ≡ 0 (mod m) after all. Just like in part (a) this gives the possible
values m, 2m, 4m for N2, and also the second part of (b).

(c) If n = 2α, α ≥ 3, then (6.1) and Lemma 4, together with (6.2) and
the Chinese Remainder Theorem, give the desired result.

Remark. A more detailed study might give an exact characterization
of the occurrences of the different values of N1 and N2 in parts (a) and (b).
Also, based on computations we believe that m can be eliminated from the
set of values for N2. However, this would go beyond the scope of this paper.

As mentioned at the beginning of this section, the case n ≡ 2 (mod 4)
is very different from the first case. In fact, it can be easily reduced to the
situation of Theorem 2.

Theorem 4. Let m be an odd positive integer. Then

(6.5) S4(2m) ≡

{
−1

4S4(m) (mod m) when 3 - m,
−1

4S4(m) (mod m/3) when 3 | m.

Proof. Similar to the situation in (6.3), we have

S4(2m) =

bm/2c∑
j=1

(j,2m)=1

1

j2
=

bm/2c∑
j=1

(j,m)=1

1

j2
−
bm/2c∑
j=1

(j,m)=1
j even

1

j2

≡ 1

2
S1(m)− 1

4

bm/4c∑
j=1

(j,m)=1

1

j2
=

1

2
S1(m)− 1

4
S4(m) (mod m),

where we have used the congruence (6.4). Now, by Lemma 4 the term S1(m)
vanishes modulo m or modulo m/3, according as 3 - m or 3 |m, respectively.
This proves both cases of (6.5).
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7. A further consequence of Theorem 1. Many congruences
for sums of reciprocals involve the Fermat quotient qp(a), defined for odd
primes p by

(7.1) qp(a) :=
ap−1 − 1

p
,

with base a ≥ 2 an integer with p - a. For instance, Lerch [12] proved that
for primes p ≥ 5,

(7.2)

bp/4c∑
j=1

1

j
≡ −3qp(2) (mod p).

This was extended to a congruence modulo p2 by Z.-H. Sun [18, Corol-
lary 3.3], namely

(7.3)

bp/4c∑
j=1

1

j
≡ −3qp(2) +

3

2
pqp(2)2 − (−1)(p−1)/2pEp−3 (mod p2),

and an extension to odd composite moduli is a consequence of the following
results of Cai, Fu and Zhang [2], and (independently) Cao and Pan [3]: For
any positive integer n with (n, 6) = 1 we have

(7.4)

bn/4c∑
j=1

(j,n)=1

1

n− 4j
≡ 3

4
qn(2)− 3

8
nqn(2)2 (mod n2),

where qn(a) is the Euler quotient of n with base a, defined by

qn(a) :=
aϕ(n) − 1

n
, (a, n) = 1,

for positive integers a, n with n > 1; this obviously generalizes the Fermat
quotient defined by (7.1). Taking this modulo n, we obtain

(7.5)

bn/4c∑
j=1

(j,n)=1

1

j
≡ −3qn(2) (mod n),

again for (n, 6) = 1.

While the congruence (7.4) alone is not sufficient to prove a modulo n2

extension of (7.5), in this brief section we will see that Theorem 1 will enable
us to do so. Following the example of a congruence modulo p2 in [11, p. 359],
we expand, for odd positive n and (j, n) = 1,

1

n− 4j
=
−1

4j

(
1

1− n/4j

)
≡ −1

4j

(
1 +

n

4j

)
=
−1

4j
− n

16j2
(mod n2),
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and thus

(7.6)
1

j
≡ − 4

n− 4j
− n

4

1

j2
(mod n2).

We are now ready to state the desired extension of the congruence (7.5).
For the sake of simplicity we restrict our attention to the main case where
3 - n.

Corollary 4. For any positive integer with (n, 6) = 1 we have

(7.7)

bn/4c∑
j=1

(j,n)=1

1

j
≡ −3qn(2)+

3

2
nqn(2)2−(−1)(n−1)/2nA(n)Eϕ(n)−2 (mod n2).

This follows immediately from (7.6), with Theorem 1 and with (7.4). By
appealing to the second and third parts of Theorem 1, and to results in [7],
this corollary can easily be extended to all odd integers.
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