Adelic equidistribution, characterization of equidistribution, and a general equidistribution theorem in non-archimedean dynamics

by
Yûsuke Okuyama (Kyoto)

1. Introduction. Let K be an algebraically closed field of any characteristic and complete with respect to a non-trivial and possibly nonarchimedean absolute value $|\cdot|$, and let $f \in K(z)$ be a rational function of degree $d>1$ on the projective line $\mathbb{P}^{1}=\mathbb{P}^{1}(K)$ over K. The Berkovich projective line $\mathrm{P}^{1}=\mathrm{P}^{1}(K)$ over K provides a compactification of the classical \mathbb{P}^{1}, containing \mathbb{P}^{1} as a dense subset. Under the assumption that K is algebraically closed, K is archimedean if and only if $K \cong \mathbb{C}$, and then $\mathbb{P}^{1}(\mathbb{C}) \cong \mathbb{P}^{1}(\mathbb{C})$. The action of f on \mathbb{P}^{1} canonically extends to a continuous, open, surjective and fiber-discrete endomorphism on P^{1}, preserving P^{1} and $\mathbf{P}^{1} \backslash \mathbb{P}^{1}$. The exceptional set of (the extended) f is

$$
E(f):=\left\{a \in \mathbb{P}^{1}: \# \bigcup_{n \in \mathbb{N}} f^{-n}(a)<\infty\right\},
$$

which agrees with the set of all superattracting periodic points $a \in \mathbb{P}^{1}$ of f such that $\operatorname{deg}_{f_{j}(a)} f=d$ for any $j \in \mathbb{N}$. The Berkovich Julia set of f is

$$
\mathrm{J}(f):=\left\{\mathcal{S} \in \mathrm{P}^{1}: \bigcap_{U: \text { open in } \mathrm{P}^{1}, \mathcal{S} \in U} \bigcup_{n \in \mathbb{N}} f^{n}(U)=\mathrm{P}^{1} \backslash E(f)\right\}
$$

(cf. [9, Definition 2.8]). Let $\delta_{\mathcal{S}}$ be the Dirac measure on P^{1} at a point $\mathcal{S} \in \mathrm{P}^{1}$. For each rational function $a \in K(z)$, which we will call a possibly moving target, on \mathbb{P}^{1} and each $n \in \mathbb{N}$, let us consider the probability Radon measure

$$
\begin{equation*}
\nu_{n}^{a}=\nu_{f^{n}}^{a}:=\frac{1}{d^{n}+\operatorname{deg} a} \sum_{w \in \mathbb{P}^{1}: f^{n}(w)=a(w)} \delta_{w} \tag{1.1}
\end{equation*}
$$

[^0]on P^{1}. Here the sum takes into account the (algebraic) multiplicity of each root of the equation $f^{n}(\cdot)=a(\cdot)$ in \mathbb{P}^{1}. In Section 2, among other generalities, we recall a variational characterization of the equilibrium (or canonical) measure μ_{f} of f on P^{1} as a unique solution of a Gauss variational problem.

Our principal result determines the conditions on f and a under which the equidistribution property

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \nu_{n}^{a}=\mu_{f} \quad \text { weakly on } \mathrm{P}^{1} \tag{1.2}
\end{equation*}
$$

holds. Let us denote the normalized chordal distance on \mathbb{P}^{1} by $[z, w]$.
Theorem 1. Let K be an algebraically closed field of any characteristic and complete with respect to a non-trivial absolute value. Let $f \in K(z)$ be a rational function on \mathbb{P}^{1} of degree $d>1$, and let $a \in K(z)$ be a rational function on \mathbb{P}^{1}. Then for every sequence $\left(n_{j}\right) \subset \mathbb{N}$ tending to ∞, the following three conditions are equivalent:
(i) The equidistribution property

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \nu_{n_{j}}^{a}=\mu_{f} \quad \text { on } \mathrm{P}^{1} \tag{1.3}
\end{equation*}
$$

holds. Equivalently, for each weak limit ν of a subsequence of $\left(\nu_{n_{j}}^{a}\right)$,

$$
\begin{equation*}
\nu=\mu_{f} \tag{1.3}
\end{equation*}
$$

(ii) each weak limit ν of a subsequence of $\left(\nu_{n_{j}}^{a}\right)$ satisfies

$$
\begin{equation*}
\operatorname{supp} \nu \subset J(f) ; \tag{1.4}
\end{equation*}
$$

(iii) under the additional assumption that K is non-archimedean, on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$ we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}, a\right]_{\mathrm{can}}(\cdot)=0 \tag{1.5}
\end{equation*}
$$

Under these three conditions, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathrm{P}^{1}} \log \left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot) d \mu_{f}=0 \tag{1.6}
\end{equation*}
$$

Moreover, if a is constant, then (1.6) holds without assuming (1.3), (1.4) or (1.5).

Here, the proximity function $\mathcal{S} \mapsto\left[f^{n}, a\right]_{\operatorname{can}}(\mathcal{S})$ of $f^{n}(n \in \mathbb{N})$ and a on P^{1} is the unique continuous extension of $z \mapsto\left[f^{n}(z), a(z)\right]$ on \mathbb{P}^{1} to P^{1}. For its construction, see Proposition 2.9.

In Section 3, we prove Theorem 1 based on the above variational characterization of μ_{f}. Theorem 1 is partly motivated by the following dynamical Diophantine approximation result. For a number field k with a non-trivial absolute value (or place) v, set $K=\mathbb{C}_{v}$ with the extended v (e.g., $K=\mathbb{C}_{p}$ for $k=\mathbb{Q}$ with p-adic norm v) and assume that $f \in k(z)$, i.e., f has its
coefficients in k. Then the dynamical Diophantine approximation theorem due to Silverman [19, Theorem E] and Szpiro-Tucker [21, Proposition 5.3 (in the preprint version, Proposition 4.3)] asserts that for every constant $a \in \mathbb{P}^{1}(\bar{k}) \backslash E(f)$ and every $z \in \mathbb{P}^{1}(\bar{k})$ which is wandering under f, i.e., $\#\left\{f^{n}(z): n \in \mathbb{N}\right\}=\infty$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \left[f^{n}(z), a\right]_{v}=0 \tag{1.7}
\end{equation*}
$$

Here \bar{k} denotes the algebraic closure of k, and the notation $[z, w]_{v}$ emphasizes the dependence of $[z, w]$ on v. Theorem 1 gives a partial generalization of (1.7) to general K for possibly non-constant a.

In Section 4, based on a variational argument and (1.7), we give a purely local proof of the following adelic equidistribution theorem for possibly moving targets, which is a special case of Favre and Rivera-Letelier's [9, Théorèmes A et B] (Theorems 1.1 and 1.2 below) for non-archimedean K of characteristic 0 .

Theorem A. Let k be a number field with a non-trivial absolute value v, and let $f \in k(z)$ be a rational function on $\mathbb{P}^{1}\left(\mathbb{C}_{v}\right)$ of degree $d>1$ whose coefficients are in k. Then for every rational function $a \in \bar{k}(z)$ on $\mathbb{P}^{1}\left(\mathbb{C}_{v}\right)$ which is not identically equal to a value in $E(f)$ and whose coefficients are in $\bar{k}, \lim _{n \rightarrow \infty} \nu_{n}^{a}=\mu_{f, v}$ weakly on $\mathrm{P}^{1}\left(\mathbb{C}_{v}\right)$. Here the notation $\mu_{f, v}$ emphasizes the dependence of μ_{f} on v.

For another application (quantitative equidistribution for non-exceptional algebraic constants) of the dynamical Diophantine approximation (1.7) to adelic dynamics, see [16].

For general K, the equidistribution theorem for constant $a \in \mathbb{P}^{1} \backslash E(f)$ is due to Brolin [6], Lyubich [12], Freire, Lopes and Mañé [10] for archimedean K, and to Favre and Rivera-Letelier [9, Théorème A] for non-archimedean K.

Theorem 1.1. Let K be an algebraically closed field of any characteristic and complete with respect to a non-trivial absolute value. Let $f \in K(z)$ be a rational function on \mathbb{P}^{1} of degree $d>1$, and $a \in K(z)$ be a constant function. Then $\lim _{n \rightarrow \infty} \nu_{n}^{a}=\mu_{f}$ weakly on P^{1} if and only if

$$
\begin{equation*}
a \in \mathbb{P}^{1}(K) \backslash E(f) \tag{1.8}
\end{equation*}
$$

In Section 4 , we give a proof of Theorem 1.1, the fundamental equivalence between (1.2) and (1.8) for constant a, based on a variational argument and on the classification of cyclic Berkovich Fatou components of f (see Theorem 2.17).

For general K of characteristic 0 , the equidistribution theorem for moving targets is due to Lyubich [12, Theorem 3] (see also Tortrat [23, §IV]) for
archimedean K, and to Favre and Rivera-Letelier [9, Théorème B] for nonarchimedean K of characteristic 0 .

TheOrem 1.2. Let K be an algebraically closed field of characteristic 0 and complete with respect to a non-trivial absolute value. Let $f \in K(z)$ be a rational function on \mathbb{P}^{1} of degree $d>1$. Then for every non-constant rational function $a \in K(z)$ on $\mathbb{P}^{1}, \lim _{n \rightarrow \infty} \nu_{n}^{a}=\mu_{f}$ weakly on P^{1}.

In Section 4, we also describe how a variational argument together with the dynamical uniformization on the quasiperiodicity domain \mathcal{E}_{f} (see Theorem4.5 yields Theorem 1.2 . This is foundational in our study of the problem of density of the classical repelling periodic points in the classical Julia set in non-archimedean dynamics [15]. Our proof of Theorem 1.2 complements the original one given in [9, §3.4] (see also Remark 2.10).

In Section 5, we discuss the case where f and a are polynomials, and compute a concrete example.

We conclude this section with an open problem.
Problem. Let K be an algebraically closed field of positive characteristic and complete with respect to a non-trivial absolute value. Let $f \in K(z)$ be a rational function on \mathbb{P}^{1} of degree $d>1$. Determine concretely all rational functions $a \in K(z)$ on \mathbb{P}^{1} which are exceptional for f in that the equidistribution 1.2 does not hold.

We hope condition 1.5 will be helpful for studying this problem.
2. Background. For the foundations of potential theory on P^{1}, see [1, $\S 5$ and $\S 8],[8, \S 7],[11, \S 1-\S 4],[24$, Chapter III]. For a potential-theoretic study of dynamics on P^{1}, see [1, §10], [9, §3], [11, §5], [4, Chapitre VIII]. See also [2, 17] including non-archimedean dynamics.

Let K be an algebraically closed field of any characteristic and complete with respect to a non-trivial absolute value $|\cdot|$. Under the assumption that K is algebraically closed, $|K|:=\{|z|: z \in K\}$ is dense in $\mathbb{R}_{\geq 0}$. We will say that K is non-archimedean if the strong triangle inequality $|z-w| \leq \max \{|z|,|w|\}$ holds for all $z, w \in K$. This in particular implies that the equality $|z-w|=$ $\max \{|z|,|w|\}$ holds if $|z| \neq|w|$. When K is non-archimedean, for every $a, b \in K$ and every $r \geq 0,\{z \in K:|z-a| \leq r\}=\{z \in K:|z-b| \leq r\}$ if $|b-a| \leq r$, and the diameters of these sets with respect to $|\cdot|$ equal r. If K is not non-archimedean, then K is said to be archimedean. Under the assumption that K is algebraically closed, K is archimedean if and only if $K \cong \mathbb{C}$ as valued fields.

Let $\|\cdot\|$ be the maximum norm on K^{2} if K is non-archimedean, and the Euclidean norm on \mathbb{C}^{2} if K is archimedean $(\cong \mathbb{C})$. Put $p \wedge q:=p_{0} q_{1}-p_{1} q_{0}$ for
$p=\left(p_{0}, p_{1}\right), q=\left(q_{0}, q_{1}\right) \in K^{2} ;$ let π be the canonical projection $K^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ $=\mathbb{P}^{1}(K)$, and put $\infty:=\pi(0,1)$. The normalized chordal distance on \mathbb{P}^{1} is

$$
[z, w]:=\frac{|p \wedge q|}{\|p\| \cdot\|q\|} \in[0,1]
$$

where $p \in \pi^{-1}(z), q \in \pi^{-1}(w)$. We usually identify K with $\mathbb{P}^{1} \backslash\{\infty\}$ by the injection $z \mapsto \pi(1, z)$ on K.

For non-archimedean K, the Berkovich projective line $\mathrm{P}^{1}=\mathrm{P}^{1}(K)$ is defined as an analytic space in the sense of Berkovich; see Berkovich's original monograph [3], as well as [1, §1, §2] for P^{1}. For archimedean K, we have $P^{1}=\mathbb{P}^{1}$.

FACT 2.1 (Berkovich's classification of points in P^{1}). Suppose that K is non-archimedean. A subset $\mathcal{B}=\{z \in K:|z-a| \leq r\}$ in K for some $a \in K$ and some $r:=\operatorname{diam}(\mathcal{B}) \geq 0$ is called a (K-closed) disk. Any two intersecting disks $\mathcal{B}, \mathcal{B}^{\prime}$ satisfy either $\mathcal{B} \subset \mathcal{B}^{\prime}$ or $\mathcal{B} \supset \mathcal{B}^{\prime}$.

A point \mathcal{S} in the Berkovich projective line P^{1} is either ∞ or a cofinal class (or tail) of non-increasing and nested sequences $\left(\mathcal{B}_{j}\right)$ of disks. Here, two non-increasing and nested sequences $\left(\mathcal{B}_{j}\right),\left(\mathcal{B}_{k}^{\prime}\right)$ of disks are cofinally equivalent either if (i) $\bigcap_{j} \mathcal{B}_{j}=\bigcap_{k} \mathcal{B}_{k}^{\prime} \neq \emptyset$ or if (ii) $\bigcap_{j} \mathcal{B}_{j}=\bigcap_{k} \mathcal{B}_{k}^{\prime}=\emptyset$, for any $j \in \mathbb{N}, \mathcal{B}_{j}$ contains \mathcal{B}_{N}^{\prime} for some $N \in \mathbb{N}$, and for any $k \in \mathbb{N}, \mathcal{B}_{k}^{\prime}$ contains $\mathcal{B}_{N^{\prime}}$ for some $N^{\prime} \in \mathbb{N}$. The cofinal class of a non-increasing and nested sequence of disks $\left(\mathcal{B}_{j}\right)$ is identified with the disk $\mathcal{B}=\bigcap_{j \in \mathbb{N}} \mathcal{B}_{j}$ if it is non-empty. The projective line \mathbb{P}^{1} is regarded as the set of all disks \mathcal{B} with $\operatorname{diam}(\mathcal{B})=0$ and the point $\infty(\mathrm{cf}$. [1, §1], [2, §6.1], [9, §2]).

Let $\Omega_{\text {can }}$ be the Fubini-Study area element on $\mathbb{P}^{1} \cong \mathrm{P}^{1}$ normalized as $\Omega_{\text {can }}\left(\mathbb{P}^{1}\right)=1$ for archimedean $K \cong \mathbb{C}$, and the Dirac measure $\delta_{\mathcal{S}_{\text {can }}}$ on P^{1} at the Gauss (or canonical) point $\mathcal{S}_{\text {can }} \in \mathrm{P}^{1}$ determined by the disk $\{z \in K:|z| \leq 1\}$ for non-archimedean K.

Definition 2.2 (the generalized Hsia kernel). Suppose that K is nonarchimedean. For the cofinal class \mathcal{S} of a non-increasing and nested sequence $\left(\mathcal{B}_{j}\right)$ of disks, set $\operatorname{diam}(\mathcal{S}):=\lim _{j \rightarrow \infty} \operatorname{diam}\left(\mathcal{B}_{j}\right)$. Then the function $\operatorname{diam}(\cdot)$ is continuous on $\mathrm{P}^{1} \backslash\{\infty\}$.

For the cofinal classes $\mathcal{S}, \mathcal{S}^{\prime}$ of non-increasing and nested sequences of disks $\left(\mathcal{B}_{j}\right),\left(\mathcal{B}_{k}^{\prime}\right)$, respectively, let $\mathcal{S} \wedge \mathcal{S}^{\prime} \in \mathrm{P}^{1}$ be the smallest cofinal class of a non-increasing and nested sequence $\left(\mathcal{B}_{\ell}^{\prime \prime}\right)$ of disks such that for every $\ell \in \mathbb{N}, \mathcal{B}_{\ell}^{\prime \prime}$ contains $\mathcal{B}_{N} \cup \mathcal{B}_{N^{\prime}}^{\prime}$ for some $N, N^{\prime} \in \mathbb{N}$. Here the cofinal class of $\left(\mathcal{B}_{\ell}^{\prime \prime}\right)$ is said to be smaller than that of $\left(\mathcal{B}_{m}^{\prime \prime \prime}\right)$ if for every $m \in \mathbb{N}, \mathcal{B}_{m}^{\prime \prime \prime}$ contains $\mathcal{B}_{N^{\prime \prime}}^{\prime \prime}$ for some $N^{\prime \prime} \in \mathbb{N}$.

For each $w \in \mathbb{P}^{1} \backslash\{\infty\}$, the function $|\cdot-w|:=\operatorname{diam}(\cdot \wedge w)$ on $\mathrm{P}^{1} \backslash\{\infty\}$ is a unique continuous extension of $|\cdot-w|$ on $\mathbb{P}^{1} \backslash\{\infty\}$. We denote $|\cdot-0|$ by $|\cdot|$ in the case $w=0$.

The generalized Hsia kernel $\left[\mathcal{S}, \mathcal{S}^{\prime}\right]_{\text {can }}$ on P^{1} with respect to the Gauss point $\mathcal{S}_{\text {can }}$ is defined as

$$
\left[\mathcal{S}, \mathcal{S}^{\prime}\right]_{\text {can }}:=\frac{\operatorname{diam}\left(\mathcal{S} \wedge \mathcal{S}^{\prime}\right)}{\max \{1,|\mathcal{S}|\} \max \left\{1,\left|\mathcal{S}^{\prime}\right|\right\}} \in[0,1]
$$

for $\mathcal{S}, \mathcal{S}^{\prime} \in \mathrm{P}^{1} \backslash\{\infty\},[\mathcal{S}, \infty]_{\text {can }}:=1 / \max \{1,|\mathcal{S}|\}$ for $\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}$, and $[\infty, \infty]_{\text {can }}:=[\infty, \infty]=0$ (see [1, §4], [9, §2.4]).

By convention, for archimedean $K,[z, w]_{\text {can }}$ is defined to be $[z, w]$.
Fact 2.3. The extension $\left[\mathcal{S}, \mathcal{S}^{\prime}\right]_{\text {can }}$ is upper semicontinuous on $\mathrm{P}^{1} \times \mathrm{P}^{1}$, continuous nowhere in the diagonal of $\left(\mathrm{P}^{1} \backslash \mathbb{P}^{1}\right) \times\left(\mathrm{P}^{1} \backslash \mathbb{P}^{1}\right)$ (indeed, $[\mathcal{S}, \mathcal{S}]_{\text {can }}$ is continuous nowhere on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$), but continuous elsewhere on $\mathrm{P}^{1} \times \mathrm{P}^{1}$. On the other hand, $\left[\mathcal{S}, \mathcal{S}^{\prime}\right]_{\text {can }}$ is separately continuous in each variable, and vanishes if and only if $\mathcal{S}=\mathcal{S}^{\prime} \in \mathbb{P}^{1}$ (see [1, Proposition 4.10]).

We normalize the Laplacian Δ on P^{1} so that for every $\mathcal{S} \in \mathrm{P}^{1}$,

$$
\begin{equation*}
\Delta \log [\cdot, \mathcal{S}]_{\mathrm{can}}=\delta_{\mathcal{S}}-\Omega_{\mathrm{can}} \tag{2.1}
\end{equation*}
$$

on P^{1} (for the construction of Δ on P^{1} for non-archimedean K, see [1, §5], [8, §7.7], [22, §3]; in [1] the opposite sign convention on Δ is adopted).

Since we are interested in dynamics of rational functions, we introduce only Berkovich (open or closed) connected affinoids in P^{1}.

Fact 2.4. Suppose that K is non-archimedean. A Berkovich closed disk D is either $\left\{\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}:|\mathcal{S}-w| \leq r\right\}$ or $\left\{\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}:|\mathcal{S}-w| \geq r\right\} \cup\{\infty\}$ for some $w \in \mathbb{P}^{1} \backslash\{\infty\}$ and some $r \geq 0$, and is said to be strict (or rational) if $r \in|K|$. Similarly, a Berkovich open disk is either $\left\{\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}:|\mathcal{S}-w|<r\right\}$ or $\left\{\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}:|\mathcal{S}-w|>r\right\} \cup\{\infty\}$ for some $w \in \mathbb{P}^{1} \backslash\{\infty\}$ and some $r \geq 0$, and is said to be strict (or rational) if $r \in|K|$.

A Berkovich open (resp. closed) connected affinoid U in P^{1} is the intersection of finitely many Berkovich open (resp. closed) disks and P^{1}, and is said to be strict if in addition all the Berkovich open (resp. closed) disks determining U are strict (or rational).

A Berkovich open connected affinoid is also called either a simple domain or an open fundamental domain in P^{1}. The set of all strict Berkovich open connected affinoids generates the topology of P^{1} (cf. [1, § 2.6], [2, § 6], [9, § 2.1]). For non-archimedean K, the relative topology of \mathbb{P}^{1} in P^{1} agrees with the metric topology on \mathbb{P}^{1} induced by the chordal distance on \mathbb{P}^{1}. Both \mathbb{P}^{1} and $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$ are dense in P^{1}.

From rigid analysis, we take the following.
Definition 2.5. For non-archimedean K, a closed (resp. open) connected affinoid in \mathbb{P}^{1} is the intersection of \mathbb{P}^{1} and a Berkovich closed (resp. open) connected affinoid U in P^{1}, and is said to be strict if U is strict. A (K-valued) holomorphic function T on a strict closed connected affinoid
V in \mathbb{P}^{1} is defined by a uniform limit on V (with respect to $[\cdot, \cdot]$) of a sequence of rational functions on \mathbb{P}^{1} with no pole in V. By definition, a holomorphic function T on an open subset D in \mathbb{P}^{1} is a function on D which restricts to a holomorphic function on any strict closed connected affinoid V in D.

FACT 2.6. For non-archimedean K, the modulus $|T|$ of a holomorphic function T on a strict closed connected affinoid V in \mathbb{P}^{1} attains both its maximum and minimum values on V (the maximum modulus principle, cf. [5], §6.2.1, §7.3.4]). If in addition T is non-constant, then it has at most finitely many zeros in V (this follows from the Weierstrass preparation theorem, cf. [2, Theorem 3.5]).

Let $\phi \in K(z)$ be a rational function on \mathbb{P}^{1}. For non-archimedean K, the analytic structure on P^{1} induces the extended action of ϕ on P^{1}. For nonconstant ϕ, the extended action of ϕ on P^{1} is continuous, open, surjective, and fiber-discrete, and preserves \mathbb{P}^{1} and $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$ (see [1, Corollaries 9.9, 9.10], [9, §2.2]).

FACT 2.7. Suppose that K is non-archimedean and ϕ is non-constant. Then ϕ maps a Berkovich disk (resp. Berkovich connected affinoid) onto either P^{1} or a Berkovich disk (resp. Berkovich connected affinoid), preserving their openness, closedness, and strictness. Each component U of $\phi^{-1}(V)$ for any Berkovich connected affinoid V is a Berkovich connected affinoid, and the restriction $\phi: U \rightarrow V$ is proper and surjective ([1, Corollary 9.11 and Lemma 9.12], [2, Proposition 6.13], [17, Proposition 2.6]). The local (algebraic) degree $\operatorname{deg}_{z_{0}} \phi \in \mathbb{N}$ of ϕ at each $z_{0} \in \mathbb{P}^{1}$ also uniquely extends to the function $\operatorname{deg}_{\mathcal{S}} \phi \in \mathbb{N}$ for all $\mathcal{S} \in \mathrm{P}^{1}$ so that for any Berkovich open connected affinoid V and every component U of $\phi^{-1}(V)$, the function

$$
V \ni \mathcal{S}_{0} \mapsto \sum_{\mathcal{S} \in \phi^{-1}\left(\mathcal{S}_{0}\right) \cap U} \operatorname{deg}_{\mathcal{S}} \phi \in \mathbb{N}
$$

is constant $([1, \S 2, \S 9]$ and [9, §2.1, Proposition-Définition 2.1]. See also [2, §6.3], [11, §4]). We denote this constant by $\operatorname{deg}(\phi: U \rightarrow V)$.

If $\operatorname{deg} \phi>0$, then the extended $\phi: \mathrm{P}^{1} \rightarrow \mathrm{P}^{1}$ and the local degree $\operatorname{deg}_{\mathcal{S}} \phi$ of ϕ at each $\mathcal{S} \in \mathrm{P}^{1}$ induce a push-forward ϕ_{*} and pullback ϕ^{*} on the space of continuous functions on P^{1}, on the space of δ-subharmonic functions on P^{1} (functions on P^{1} which can locally be written as the difference of two subharmonic functions), and on the space of Radon measures on P^{1} (see [1, §9.4, §9.5], [9, §2.2]). When $\operatorname{deg} \phi=0$, for a Radon measure μ on P^{1}, we set $\phi^{*} \mu:=0$ by convention. It is fundamental that for each non-constant ϕ, the Laplacian Δ behaves functorially under ϕ^{*} in that for any δ-subharmonic function h on P^{1},

$$
\Delta \phi^{*} h=\phi^{*} \Delta h
$$

on P^{1} (for non-archimedean K, see [1, §9.5], [9, §2.4]).

Definition 2.8. A lift $F_{\phi}=\left(\left(F_{\phi}\right)_{0},\left(F_{\phi}\right)_{1}\right): K^{2} \rightarrow K^{2}$ of ϕ is a homogeneous polynomial endomorphism of K^{2} such that

$$
\pi \circ F_{\phi}=\phi \circ \pi
$$

and that $F_{\phi}^{-1}(0)=\{0\}$ if $\operatorname{deg} \phi>0$. Such an F_{ϕ} is unique up to scaling by an element of $K^{*}=K \backslash\{0\}$, and $\operatorname{deg} F_{\phi}=\operatorname{deg} \phi$. The function

$$
\log \left\|F_{\phi}\right\|-(\operatorname{deg} \phi) \log \|\cdot\|
$$

on $K^{2} \backslash\{0\}$ descends to one on \mathbb{P}^{1}, which in turn extends continuously to a function $T_{F_{\phi}}: \mathrm{P}^{1} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\Delta T_{F_{\phi}}=\phi^{*} \Omega_{\mathrm{can}}-(\operatorname{deg} \phi) \Omega_{\mathrm{can}} \tag{2.2}
\end{equation*}
$$

on P^{1}; indeed, for each $w \in \mathbb{P}^{1} \backslash\{\infty\}$, since $|\cdot-w|=[\cdot, w]_{\text {can }}[\cdot, \infty]_{\text {can }}^{-1}[w, \infty]^{-1}$ on P^{1}, we have $\Delta \log |\cdot-w|=\delta_{w}-\delta_{\infty}$ on P^{1}. The homogeneous polynomial $\left(F_{\phi}\right)_{0}\left(p_{0}, p_{1}\right) \in K\left[p_{0}, p_{1}\right]$ factors into $\operatorname{deg} \phi$ homogeneous linear factors in $K\left[p_{0}, p_{1}\right]$. Hence the function $\log \left|\left(F_{\phi}\right)_{0}\left(p_{0}, p_{1}\right)\right|-(\operatorname{deg} \phi) \log \left|p_{0}\right|$ on $K^{2} \backslash\{0\}$ descends to one on \mathbb{P}^{1}, which in turn extends to a δ-subharmonic function $S_{F_{\phi}}$ on P^{1} satisfying $\Delta S_{F_{\phi}}=\phi^{*} \delta_{\infty}-(\operatorname{deg} \phi) \delta_{\infty}$ on P^{1}. This yields 2.2) since $T_{F_{\phi}}=S_{F_{\phi}}-\log [\phi(\cdot), \infty]_{\text {can }}+(\operatorname{deg} \phi) \log [\cdot, \infty]_{\text {can }}$ on P^{1}.

Let $\phi_{i} \in K(z), i \in\{1,2\}$, be rational functions on \mathbb{P}^{1} of degree d_{i}. We call the following extension $\left[\phi_{1}, \phi_{2}\right]_{\text {can }}$ to P^{1} of the function $z \mapsto\left[\phi_{1}(z), \phi_{2}(z)\right]$ on \mathbb{P}^{1} the proximity function of ϕ_{1} and ϕ_{2} on P^{1}.

Proposition 2.9. For each $n \in \mathbb{N}$, the function $\left[\phi_{1}(\cdot), \phi_{2}(\cdot)\right]$ on \mathbb{P}^{1} extends continuously to a function $\left[\phi_{1}, \phi_{2}\right]_{\text {can }}(\cdot)$ on P^{1} which takes its values in $[0,1]$ and, if $\phi_{1} \not \equiv \phi_{2}$ and $\max \left\{d_{1}, d_{2}\right\}>0$, satisfies

$$
\begin{equation*}
\Delta \log \left[\phi_{1}, \phi_{2}\right]_{\mathrm{can}}(\cdot)=\sum_{w \in \mathbb{P}^{1}: \phi_{1}(w)=\phi_{2}(w)} \delta_{w}-\phi_{1}^{*} \Omega_{\mathrm{can}}-\phi_{2}^{*} \Omega_{\mathrm{can}} \tag{2.3}
\end{equation*}
$$

Here the sum $\sum_{w \in \mathbb{P}^{1}: \phi_{1}(w)=\phi_{2}(w)} \delta_{w}$ takes into account the multiplicity of each root of $\phi_{1}=\phi_{2}$ in \mathbb{P}^{1}.

Proof. Let F_{1} and F_{2} be lifts of ϕ_{1} and ϕ_{2}, respectively. Then there are points $q_{j}=q_{j}^{F_{1}, F_{2}} \in K^{2} \backslash\{0\}\left(j=1, \ldots, d_{1}+d_{2}\right)$ such that

$$
F_{1}(p) \wedge F_{2}(p)=\prod_{j=1}^{d_{1}+d_{2}}\left(p \wedge q_{j}\right)
$$

on K^{2}. Here, $\pi\left(q_{j}\right)$ is a root of $\phi_{1}=\phi_{2}$ in \mathbb{P}^{1} for each $j \in\left\{1, \ldots, d_{1}+d_{2}\right\}$. On \mathbb{P}^{1},

$$
\begin{equation*}
\log \left[\phi_{1}(\cdot), \phi_{2}(\cdot)\right]=\sum_{j=1}^{d_{1}+d_{2}}\left(\log \left[\cdot, \pi\left(q_{j}\right)\right]+\log \left\|q_{j}\right\|\right)-T_{F_{1}}\left|\mathbb{P}^{1}-T_{F_{2}}\right| \mathbb{P}^{1} \tag{2.4}
\end{equation*}
$$

where $T_{F_{i}}=\log \left\|F_{i}\right\|-d_{i} \log \|\cdot\|$ (extended continuously to $\left.\mathrm{P}^{1}\right), i \in\{1,2\}$, is the function introduced in Definition 2.8. The right hand side of (2.4) extends $\left[\phi_{1}(\cdot), \phi_{2}(\cdot)\right]$ on \mathbb{P}^{1} to $\left[\phi_{1}, \phi_{2}\right]_{\text {can }}(\cdot)$ on P^{1} continuously so that

$$
\log \left[\phi_{1}, \phi_{2}\right]_{\mathrm{can}}(\cdot)=\sum_{j=1}^{d_{1}+d_{2}}\left(\log \left[\cdot, \pi\left(q_{j}\right)\right]_{\mathrm{can}}+\log \left\|q_{j}\right\|\right)-T_{F_{1}}-T_{F_{2}}
$$

on P^{1} (see Fact 2.3), and satisfies (2.3) in view of 2.1) and 2.2 . The density of \mathbb{P}^{1} in P^{1} implies that $\left[\phi_{1}, \phi_{2}\right]_{\text {can }}(\cdot) \in[0,1]$ on P^{1}. -

REMARK 2.10 (discontinuity of $\left[\phi_{1}(\cdot), \phi_{2}(\cdot)\right]_{\text {can }}$). If $\phi_{2} \equiv a \in \mathbb{P}^{1}$ on \mathbb{P}^{1}, then $\left[\phi_{1}(\cdot), a\right]_{\text {can }}$ coincides with $\left[\phi_{1}, a\right]_{\text {can }}(\cdot)$ since they are continuous on P^{1} and identical on the dense subset \mathbb{P}^{1} in P^{1}. We point out that if K is non-archimedean and both ϕ_{1} and ϕ_{2} are non-constant, then $\left[\phi_{1}(\cdot), \phi_{2}(\cdot)\right]_{\text {can }}$, which is the evaluation of $\left[\mathcal{S}_{1}, \mathcal{S}_{2}\right]_{\text {can }}$ at $\mathcal{S}_{1}=\phi_{1}(\cdot)$ and $\mathcal{S}_{2}=\phi_{2}(\cdot)$ in P^{1}, is not always continuous on P^{1}, so is not always identical with $\left[\phi_{1}, \phi_{2}\right]_{\text {can }}(\cdot)$. This discrepancy seems to have been overlooked in the proof of Theorem 1.2 in [9, §3.4].

An example is $\phi_{1}=\phi_{2}=\operatorname{Id}_{\mathbb{P}^{1}}$; see Fact 2.3. More generally, let ϕ_{1} and ϕ_{2} be non-constant polynomials such that $\phi_{1}(0)=\phi_{2}(0)=0$ and $\phi_{1}^{\prime}(0)=$ $\phi_{2}^{\prime}(0) \neq 0$. Fix $r>0$ small enough that on $\{z \in K:|z|<2 r\}$,

$$
\left[\phi_{1}(z), \phi_{2}(z)\right]_{\mathrm{can}}=\left[\phi_{1}(z), \phi_{2}(z)\right]=\left|\phi_{1}(z)-\phi_{2}(z)\right| \leq \frac{1}{2}\left|\phi_{1}^{\prime}(0)\right| r
$$

and that for the point $\mathcal{S}_{r} \in \mathrm{P}^{1} \backslash \mathbb{P}^{1}$ determined by the disk $\{z \in K:|z| \leq r\}$,

$$
\left[\phi_{1}\left(\mathcal{S}_{r}\right), \phi_{2}\left(\mathcal{S}_{r}\right)\right]_{\text {can }}=\operatorname{diam}\left(\phi_{1}\left(\mathcal{S}_{r}\right) \wedge \phi_{2}\left(\mathcal{S}_{r}\right)\right)=\left|\phi_{1}\left(\mathcal{S}_{r}\right)\right|=\left|\phi_{1}^{\prime}(0)\right| r>0
$$

Since any open neighborhood of \mathcal{S}_{r} in P^{1} intersects $\{z \in K:|z|<2 r\}$, we have $\liminf _{\mathcal{S} \rightarrow \mathcal{S}_{r}}\left[\phi_{1}(\mathcal{S}), \phi_{2}(\mathcal{S})\right]_{\text {can }} \leq\left|\phi_{1}^{\prime}(0)\right| r / 2<\left[\phi_{1}\left(\mathcal{S}_{r}\right), \phi_{2}\left(\mathcal{S}_{r}\right)\right]_{\text {can }}$. Hence the function $\left[\phi_{1}(\cdot), \phi_{2}(\cdot)\right]_{\text {can }}$ on P^{1} is not continuous at \mathcal{S}_{r}.

Let $f \in K(z)$ be a rational function on \mathbb{P}^{1} of degree $d>1$, and let F be a lift of f.

Definition 2.11. The dynamical Green function of F on P^{1} is

$$
\begin{equation*}
g_{F}:=\sum_{n=0}^{\infty} \frac{1}{d^{n}}\left(f^{n}\right)^{*}\left(\frac{1}{d} T_{F}\right)=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} T_{F^{n}} \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

which converges uniformly on $\mathrm{P}^{1}([1, \S 10.1],[9, \S 3.1])$.
The function g_{F} is continuous on P^{1}. For every $n \in \mathbb{N}$, we have $g_{F^{n}}=g_{F}$. For an arbitrary lift of f, given by $c F$ for some $c \in K^{*}$, we have $g_{c F}=$ $g_{F}+(\log |c|) /(d-1)$.

Definition 2.12. The probability Radon measure

$$
\begin{equation*}
\mu_{f}:=\Delta g_{F}+\Omega_{\mathrm{can}}=\lim _{n \rightarrow \infty} \frac{1}{d^{n}}\left(f^{n}\right)^{*} \Omega_{\mathrm{can}} \tag{2.6}
\end{equation*}
$$

on P^{1} is called the equilibrium measure of f on P^{1}. Here the last limit is a weak one on P^{1}.

FACT 2.13. By the continuity of g_{F}, the measure μ_{f} has no atoms in \mathbb{P}^{1}. Moreover, μ_{f} is both balanced and invariant under f in the sense that

$$
\begin{equation*}
f^{*} \mu_{f}=(\operatorname{deg} f) \mu_{f} \quad \text { and } \quad f_{*} \mu_{f}=\mu_{f}, \tag{2.7}
\end{equation*}
$$

respectively (see [1, §10], [7, §2], [9, §3.1] for non-archimedean K).
We define the F-kernel on P^{1} to be

$$
\Phi_{F}\left(\mathcal{S}, \mathcal{S}^{\prime}\right):=\log \left[\mathcal{S}, \mathcal{S}^{\prime}\right]_{\text {can }}-g_{F}(\mathcal{S})-g_{F}\left(\mathcal{S}^{\prime}\right)
$$

for $\mathcal{S}, \mathcal{S}^{\prime} \in \mathrm{P}^{1}$. The function Φ_{F} is upper semicontinuous on $\mathrm{P}^{1} \times \mathrm{P}^{1}$, and for each $\mathcal{S} \in \mathrm{P}^{1} \backslash \mathbb{P}^{1}, \Phi_{F}(\mathcal{S}, \cdot)$ is continuous on P^{1} (see Fact 2.3). We have

$$
\sup _{\left(\mathcal{S}, \mathcal{S}^{\prime}\right) \in \mathrm{P}^{1} \times \mathrm{P}^{1}}\left|\Phi_{F}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)-\log \left[\mathcal{S}, \mathcal{S}^{\prime}\right]_{\mathrm{can}}\right| \leq 2 \sup _{\mathrm{P}^{1}} g_{F}<\infty,
$$

and from (2.1) and (2.6), $\Delta \Phi_{F}(\cdot, \mathcal{S})=\delta_{\mathcal{S}}-\mu_{f}$ for each $\mathcal{S} \in \mathrm{P}^{1}$. For a Radon measure μ on \mathbf{P}^{1}, the F-potential on P^{1} and the F-energy of μ are

$$
U_{F, \mu}(\cdot):=\int_{\mathrm{P}^{1}} \Phi_{F}\left(\cdot, \mathcal{S}^{\prime}\right) d \mu\left(\mathcal{S}^{\prime}\right), \quad I_{F}(\mu):=\int_{\mathrm{P}^{1}} U_{F, \mu} d \mu,
$$

respectively (see also [1, §8.10], [9, §2.4]). The function $U_{F, \mu}$ is upper semicontinuous on P^{1} and has the following continuity property: for every $z_{0} \in$ $\mathbb{P}^{1} \backslash\{\infty\}$ and every $r \geq 0$, if $\mathcal{S}_{r}\left(z_{0}\right)$ is the point in P^{1} corresponding to the disk $\mathcal{B}_{r}\left(z_{0}\right):=\left\{z \in K:\left|z-z_{0}\right| \leq r\right\}$, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0} U_{F, \mu}\left(\mathcal{S}_{r}\left(z_{0}\right)\right)=U_{F, \mu}\left(z_{0}\right) \tag{2.8}
\end{equation*}
$$

(see [1, Proposition 6.12]). By Fubini's theorem,

$$
\Delta U_{F, \mu}=\mu-\mu\left(\mathrm{P}^{1}\right) \mu_{f} .
$$

A probability Radon measure μ on P^{1} is called an F-equilibrium mass distribution on P^{1} if the F-energy $I_{F}(\mu)$ of this μ equals

$$
V_{F}:=\sup \left\{I_{F}(\nu): \nu \text { is a probability Radon measure on } \mathrm{P}^{1}\right\},
$$

which is $>-\infty$ since $I_{F}\left(\Omega_{\text {can }}\right)>-\infty$.
We recall Baker and Rumely's characterization of μ_{f} as the unique solution of a Gauss variational problem; see [1, Theorem 8.67 and Proposition 8.70] for non-archimedean K. For a discussion of the Gauss variational problem, see e.g. [18].

Lemma 2.14. There is a unique F-equilibrium mass distribution on P^{1}, which coincides with the equilibrium measure μ_{f} of f. Indeed, on P^{1},

$$
\begin{equation*}
U_{F, \mu_{f}} \equiv V_{F} . \tag{2.9}
\end{equation*}
$$

The functions $\Phi_{F}, U_{F, \mu}$ and g_{F} depend on the lift F of f. We will now introduce more canonical functions Φ_{f}, U_{μ}, and g_{f}, which do not depend on the choice of the lift F. The f-kernel on P^{1} (the negative of the Arakelov Green function for f in [1, §10.2]) is

$$
\Phi_{f}:=\Phi_{F}-V_{F} .
$$

It is independent of the choice of F. For each Radon measure μ on P^{1}, we define the f-potential

$$
U_{\mu}:=\int_{\mathrm{P}^{1}} \Phi_{f}\left(\cdot, \mathcal{S}^{\prime}\right) d \mu\left(\mathcal{S}^{\prime}\right)
$$

on P^{1}. We still have $\Delta U_{\mu}=\mu-\mu\left(\mathrm{P}^{1}\right) \mu_{f}$. From Lemma 2.14 we obtain
Lemma 2.15. For each Radon measure μ on P^{1}, we have $U_{\mu} \geq 0$ on supp μ if and only if $\mu=\mu_{f}$. Moreover, $U_{\mu_{f}} \equiv 0$ on P^{1}.

The dynamical Green function g_{f} of f (a canonical version of g_{F}) is defined as

$$
g_{f}(\mathcal{S}):=g_{F}(\mathcal{S})+\frac{1}{2} V_{F}=\frac{1}{2}\left(\log [\mathcal{S}, \mathcal{S}]_{\mathrm{can}}-\Phi_{f}(\mathcal{S}, \mathcal{S})\right),
$$

which is independent of the choice of F and still satisfies

$$
\begin{equation*}
\Delta g_{f}=\mu_{f}-\Omega_{\text {can }} \tag{2.10}
\end{equation*}
$$

For every $\left(\mathcal{S}, \mathcal{S}^{\prime}\right) \in \mathrm{P}^{1} \times \mathrm{P}^{1}$,

$$
\Phi_{f}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\log \left[\mathcal{S}, \mathcal{S}^{\prime}\right]_{\mathrm{can}}-g_{f}(\mathcal{S})-g_{f}\left(\mathcal{S}^{\prime}\right) .
$$

Our definition (2.6) of μ_{f} agrees with Favre and Rivera-Letelier's (9, Proposition-Définition 3.2]:

Lemma 2.16. For every $\mathcal{S} \in \mathrm{P}^{1} \backslash \mathbb{P}^{1}$, weakly on P^{1},

$$
\lim _{k \rightarrow \infty} \frac{\left(f^{n}\right)^{*} \delta_{\mathcal{S}}}{d^{n}}=\mu_{f} .
$$

Proof. For every $\mathcal{S} \in \mathrm{P}^{1}$ and every $n \in \mathbb{N}$, from the balanced property $f^{*} \mu_{f}=d \cdot \mu_{f}$,

$$
\Delta \Phi_{f}\left(f^{n}(\cdot), \mathcal{S}\right)=\left(f^{n}\right)^{*}\left(\delta_{\mathcal{S}}-\mu_{f}\right)=\left(f^{n}\right)^{*} \delta_{\mathcal{S}}-d^{n} \mu_{f}
$$

on P^{1}. Suppose that $\mathcal{S} \in \mathrm{P}^{1} \backslash \mathbb{P}^{1}$. Then since $[\mathcal{S}, \mathcal{S}]_{\text {can }}>0$,

$$
\sup _{\mathcal{S}^{\prime} \in \mathrm{P}^{1}}\left|\Phi_{f}\left(f^{n}\left(\mathcal{S}^{\prime}\right), \mathcal{S}\right)\right| \leq\left|\log [\mathcal{S}, \mathcal{S}]_{\mathrm{can}}\right|+2 \sup _{\mathrm{P}^{1}} g_{f}<\infty,
$$

so $\lim _{n \rightarrow \infty} \Phi_{f}\left(f^{n}(\cdot), \mathcal{S}\right) / d^{n}=0$ uniformly on P^{1}. By the continuity of Δ on uniformly convergent sequences of δ-subharmonic functions (for nonarchimedean K, see [1, Corollary 5.39], [9, Proposition 2.17]), as $n \rightarrow \infty$,

$$
\frac{\left(f^{n}\right)^{*} \delta_{\mathcal{S}}}{d^{n}}-\mu_{f}=\Delta \frac{1}{d^{n}} \Phi_{f}\left(f^{n}(\cdot), \mathcal{S}\right) \rightarrow 0
$$

weakly on P^{1}.

The Berkovich Fatou set $\mathrm{F}(f)$ of f is by definition $\mathrm{P}^{1} \backslash \mathrm{~J}(f)$, which is open in P^{1}. A Berkovich Fatou component W of f is a component of $\mathrm{F}(f)$. Given such a $W, f(W)$ is also a Berkovich Fatou component of f, and so is each component of $f^{-1}(W)$. We call W a cyclic Berkovich Fatou component of f if $f^{p}(W)=W$ for some $p \in \mathbb{N}$.

For archimedean K, the classification of cyclic Fatou components (immediate (super)attractive basins of attracting cycles, immediate attractive basins of parabolic cycles, Siegel disks, and Herman rings) of f is essentially due to Fatou (cf. [14, Theorem 5.2]). The following is its non-archimedean counterpart due to Rivera-Letelier; see [9, Proposition 2.16] and its esquisse de démonstration, and also [2, Remark 7.10].

Theorem 2.17. Suppose that K is non-archimedean. Then for each cyclic Berkovich Fatou component W of f, either W contains an attracting periodic point of f in $W \cap \mathbb{P}^{1}$ (attracting case), or $\operatorname{deg}\left(f^{p}: W \rightarrow W\right)=1$ for some $p \in \mathbb{N}$ satisfying $f^{p}(W)=W$. Moreover, only one case occurs. In the former case, W is called an immediate (super) attractive basin of f, and in the latter case, W is called a singular domain of f.

All of $E(f), \mathrm{J}(f), \mathrm{F}(f)$, and supp μ_{f} are completely invariant under f. Here, a subset E in P^{1} is said to be completely invariant under f if $f(E) \subset E$ and $f^{-1}(E) \subset E$. The following equality is fundamental.

Theorem 2.18. $\mathrm{J}(f)=\operatorname{supp} \mu_{f}$. Moreover, for each $a \in E(f)$, no weak limit point of $\left(\nu_{n}^{a}\right)$ on P^{1} equals μ_{f}.

Proof. Since μ_{f} has no atoms in \mathbb{P}^{1} and $E(f)$ is a countable subset in $\mathbb{P}^{1}, \operatorname{supp} \mu_{f} \not \subset E(f)$. Then $\mathrm{J}(f) \subset \overline{\bigcup_{n \in \mathbb{N}} f^{-n}\left(\left(\operatorname{supp} \mu_{f}\right) \backslash E(f)\right)}$, which is contained in supp μ_{f}. Hence $J(f) \subset \operatorname{supp} \mu_{f}$.

For archimedean K, $\Omega_{\text {can }}$ is the normalized Fubini-Study metric on $\mathrm{P}^{1}=\mathbb{P}^{1}$. By Marty's theorem [13, Théorème 5], which is an infinitesimal version of Montel's theorem, $\mathrm{F}(f)$ coincides with the maximal open subset in \mathbb{P}^{1} where the family of chordal derivatives of $f^{n}, n \in \mathbb{N}$,

$$
\left\{\mathbb{P}^{1} \ni z \mapsto \sqrt{\frac{\left(f^{n}\right)^{*} \Omega_{\mathrm{can}}}{\Omega_{\mathrm{can}}}(z)}=\lim _{w \rightarrow z} \frac{\left[f^{n}(z), f^{n}(w)\right]}{[z, w]} \in[0, \infty): n \in \mathbb{N}\right\}
$$

is locally uniformly bounded. Hence by the definition (2.6) of μ_{f}, we have $\mathrm{F}(f) \subset \mathrm{P}^{1} \backslash \operatorname{supp} \mu_{f}$, i.e., $\operatorname{supp} \mu_{f} \subset \mathrm{~J}(f)$.

Suppose that K is non-archimedean. If $\mathrm{J}(f) \subset \mathbb{P}^{1}$, then $\mathrm{F}(f)$ is itself the unique Berkovich Fatou component of f, which is completely invariant under f. Since $\operatorname{deg}(f: F(f) \rightarrow F(f))=\operatorname{deg} f>1$, by Theorem 2.17, $\mathrm{F}(f)$ is the immediate attractive basin of an attracting fixed point $a \in \mathbb{P}^{1}$. Since $\mathcal{S}_{\text {can }} \in \mathrm{P}^{1} \backslash \mathbb{P}^{1} \subset \mathrm{~F}(f) \backslash\{a\}$, we have $\bigcap_{N \in \mathbb{N}} \overline{\bigcup_{n \geq N} f^{-n}\left(\mathcal{S}_{\text {can }}\right)} \subset \partial \mathrm{F}(f)=\mathrm{J}(f)$. Moreover, since $\Omega_{\text {can }}=\delta_{\mathcal{S}_{\text {can }}}$ in this case, by the definition 2.6) of μ_{f},
$\operatorname{supp} \mu_{f} \subset \bigcap_{N \in \mathbb{N}} \overline{\bigcup_{n \geq N} f^{-n}\left(\mathcal{S}_{\text {can }}\right)}$. Hence $\operatorname{supp} \mu_{f} \subset J(f)$. Finally, if $\mathrm{J}(f) \not \subset \mathbb{P}^{1}$, then by Lemma 2.16, we have supp $\mu_{f} \subset \overline{\bigcup_{n \in \mathbb{N}} f^{-n}\left(\mathrm{~J}(f) \backslash \mathbb{P}^{1}\right)}$, which is contained in $\mathrm{J}(f)$.

Hence we have supp $\mu_{f} \subset J(f)$ in both archimedean and non-archimedean cases, and the proof of the former assertion is complete.

Recall that for any $a \in E(f)$, the backward orbit $\bigcup_{n \in \mathbb{N}} f^{-n}(a)$ is finite and contained in $\mathrm{F}(f)$. Hence any weak limit point $\nu=\lim _{j \rightarrow \infty} \nu_{n_{j}}^{a}$ has its support in $\mathbf{F}(f)$, so $\nu \neq \mu_{f}$ by the former assertion.

Finally, for a rational function $f \in K(z)$ on \mathbb{P}^{1} of degree $d>1$ and a rational function $a \in K(z)$ on \mathbb{P}^{1}, we introduce the (logarithmic) proximity function $\log \left[f^{n}, a\right]_{\text {can }}(\cdot)$ of $f^{n}(\cdot)$ and $a(\cdot)$ weighted by g_{f} :

$$
\Phi\left(f^{n}, a\right)_{f}(\cdot):=\log \left[f^{n}, a\right]_{\text {can }}(\cdot)-g_{f} \circ f^{n}-g_{f} \circ a .
$$

The function $\Phi\left(f^{n}, a\right)_{f}(\cdot)$ extends the function $z \mapsto \Phi_{f}\left(f^{n}(z), a(z)\right)$ on \mathbb{P}^{1} continuously to P^{1} and plays a crucial role in the rest of the paper. It agrees with $\Phi_{f}\left(f^{n}(\cdot), a\right)$ when a is constant. For each $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\sup _{\mathbf{P}^{1}}\left|\Phi\left(f^{n}, a\right)_{f}(\cdot)-\log \left[f^{n}, a\right]_{\text {can }}(\cdot)\right| \leq \sup _{\mathbf{P}^{1}}\left|2 g_{f}\right|<\infty . \tag{2.11}
\end{equation*}
$$

Lemma 2.19 (cf. [20, (1.4)]). For every $n \in \mathbb{N}$,

$$
\begin{equation*}
\frac{1}{d^{n}} \Phi\left(f^{n}, a\right)_{f}(\cdot)=U_{\left(1+(\operatorname{deg} a) / d^{n}\right) \nu_{n}^{a}}-\frac{1}{d^{n}} U_{a^{*} \mu_{f}}+\frac{1}{d^{n}} \int_{\mathrm{P}^{1}} \Phi\left(f^{n}, a\right)_{f}(\cdot) d \mu_{f} \tag{2.12}
\end{equation*}
$$

on P^{1}. Similarly, the function $U_{a^{*} \mu_{f}}=a^{*} g_{f}+U_{a^{*} \Omega_{\mathrm{can}}}-\int_{\mathrm{P}^{1}}\left(a^{*} g_{f}\right) d \mu_{f}$ is continuous (hence bounded) on P^{1}.

Proof. For each $n \in \mathbb{N}$, from (2.3) and (2.10,

$$
\Delta \Phi\left(f^{n}, a\right)_{f}(\cdot)=\left(d^{n}+\operatorname{deg} a\right) \nu_{n}^{a}-\left(f^{n}\right)^{*} \mu_{f}-a^{*} \mu_{f}
$$

and using the balanced property $f^{*} \mu_{f}=d \cdot \mu_{f}$, we have

$$
\Delta \Phi\left(f^{n}, a\right)_{f}(\cdot)=\Delta\left(U_{\left(d^{n}+\operatorname{deg} a\right) \nu_{n}^{a}}-U_{a^{*} \mu_{f}}\right) .
$$

Hence the function

$$
\frac{1}{d^{n}} \Phi\left(f^{n}, a\right)_{f}(\cdot)-\left(U_{\left(1+(\operatorname{deg} a) / d^{n}\right) \nu_{n}^{a}}(\cdot)-\frac{1}{d^{n}} U_{a^{*} \mu_{f}}(\cdot)\right)
$$

is constant on P^{1} (for non-archimedean K, this holds on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$ by a basic property of Δ (see [1, Lemma 5.24], [9, §2.4]) and indeed on P^{1} by continuity (2.8). We determine the constant by integrating this against $d \mu_{f}$ on P^{1} : by Fubini's theorem and the fact that $U_{\mu_{f}} \equiv 0$, the integrals of the second and third terms in $d \mu_{f}$ vanish. Hence (2.12) holds.

Similarly, from $\Delta U_{a^{*} \mu_{f}}=a^{*} \mu_{f}-(\operatorname{deg} a) \mu_{f}=\Delta\left(a^{*} g_{f}+U_{a^{*} \Omega_{\text {can }}}\right)$, the function $U_{a^{*} \mu_{f}}-\left(a^{*} g_{f}+U_{a^{*} \Omega_{\text {can }}}\right)$ is constant on P^{1}. The constant is determined by integrating this function against $d \mu_{f}$ on P^{1}.
3. Proof of Theorem 1. Let K be an algebraically closed field of any characteristic and complete with respect to a non-trivial absolute value. Let $f \in K(z)$ be a rational function on $\mathbb{P}^{1}=\mathbb{P}^{1}(K)$ of degree $d>1$, and $a \in K(z)$ a rational function on \mathbb{P}^{1}. Let $\left(n_{j}\right)$ be a sequence in \mathbb{N} tending to ∞, and ν be any weak limit of a subsequence of $\left(\nu_{n_{j}}^{a}\right)$ on $\mathrm{P}^{1}=\mathrm{P}^{1}(K)$. This is a probability Radon measure on P^{1}, and the equidistribution property (1.3) is equivalent to

$$
\begin{equation*}
\nu=\mu_{f} . \tag{1.3}
\end{equation*}
$$

Taking a subsequence of $\left(n_{j}\right)$ if necessary, we can assume that $\nu=\lim _{j \rightarrow \infty} \nu_{n_{j}}^{a}$ weakly on P^{1} and that the limit

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathrm{P}^{1}} \Phi\left(f^{n_{j}}, a\right)_{f} d \mu_{f} \tag{3.1}
\end{equation*}
$$

exists in $[-\infty, 0]$.
Lemma 3.1. On P^{1},

$$
\begin{align*}
& \limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot)=\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \Phi\left(f^{n_{j}}, a\right)_{f}(\cdot) \tag{3.2}\\
& \quad \leq U_{\nu}+\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathrm{P}^{1}} \Phi\left(f^{n_{j}}, a\right)_{f} d \mu_{f} \leq \min \left\{U_{\nu}, 0\right\} .
\end{align*}
$$

Moreover, on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot)=U_{\nu}+\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathrm{P}^{1}} \Phi\left(f^{n_{j}}, a\right)_{f} d \mu_{f} \tag{3.3}
\end{equation*}
$$

Proof. By a cut-off argument, on P^{1},

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} U_{\nu_{n_{j}}^{a}} \leq U_{\nu} \tag{3.4}
\end{equation*}
$$

indeed, for every $N \in \mathbb{N}, U_{\nu_{n_{j}}} \leq \int_{\mathrm{P}^{1}} \max \left\{-N, \Phi_{f}\left(\cdot, \mathcal{S}^{\prime}\right)\right\} d \nu_{n_{j}}^{a}\left(\mathcal{S}^{\prime}\right)$ on P^{1}, and since for every $\mathcal{S} \in \mathrm{P}^{1}$ the function $\mathcal{S}^{\prime} \mapsto \max \left\{-N, \Phi_{f}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)\right\}$ is continuous on P^{1}, we have

$$
\limsup _{j \rightarrow \infty} U_{\nu_{n_{j}}^{a}} \leq \int_{\mathrm{P}^{1}} \max \left\{-N, \Phi_{f}\left(\cdot, \mathcal{S}^{\prime}\right)\right\} d \nu\left(\mathcal{S}^{\prime}\right)
$$

on P^{1}. Taking $N \rightarrow \infty$, we obtain (3.4) by the monotone convergence theorem.

On the other hand, for every $\mathcal{S} \in \mathrm{P}^{1} \backslash \mathbb{P}^{1}$, the function $\mathcal{S}^{\prime} \mapsto \Phi_{f}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$ is continuous on P^{1}, so we have $\lim _{j \rightarrow \infty} U_{\nu_{n_{j}}^{a}}=U_{\nu}$ on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$.

By the comparison 2.11) and $\left[f^{n}, a\right]_{\mathrm{can}} \leq 1$,

$$
\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \Phi\left(f^{n_{j}}, a\right)_{f}(\cdot)=\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot) \leq 0
$$

on P^{1}. Now taking $\lim \sup _{j \rightarrow \infty}$ of $(\sqrt{2.12})$ for $\left.n=n_{j}\right)$, we have (3.2) on P^{1}, and also (3.3) on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$.

If a is constant, then by convention, we identify a with its value in \mathbb{P}^{1}.
Lemma 3.2. If a is constant, then $\int_{\mathrm{P}^{1}} \Phi_{f}\left(f^{n}(\cdot), a\right) d \mu_{f}=0$ for every $n \in \mathbb{N}$, and $U_{\nu} \geq 0$ on $\mathrm{J}(f)$.

Proof. Let $a \in \mathbb{P}^{1}$. Then for every $n \in \mathbb{N}$, by the invariance $f_{*} \mu_{f}=\mu_{f}$ and the fact that $U_{\mu_{f}} \equiv 0$ on P^{1}, we have

$$
\int_{\mathrm{P}^{1}} \Phi_{f}\left(f^{n}(\cdot), a\right) d \mu_{f}=U_{\left(f^{n}\right)_{*} \mu_{f}}(a)=U_{\mu_{f}}(a)=0 .
$$

Hence by Fatou's lemma and (3.2), this implies that

$$
\begin{aligned}
0 & =\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathrm{P}^{1}} \Phi_{f}\left(f^{n_{j}}(\cdot), a\right) d \mu_{f} \\
& \leq \int_{\mathrm{P}^{1}} \limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \Phi_{f}\left(f^{n_{j}}(\cdot), a\right) d \mu_{f} \leq \int_{\left\{U_{\nu}<0\right\} \cap J(f)} U_{\nu} d \mu_{f} .
\end{aligned}
$$

Since $\boldsymbol{J}(f) \subset \operatorname{supp} \mu_{f}$ (by Theorem 2.18), $\left\{U_{\nu}<0\right\} \cap J(f)=\emptyset$.
We show the following counterpart of Lemma 3.2 for non-constant a.
Lemma 3.3. If a is non-constant, then $U_{\nu} \geq 0$ on $\mathrm{J}(f)$.
Proof. Assume that $\left\{U_{\nu}<0\right\} \cap J(f) \neq \emptyset$. Then since $\left\{U_{f}<0\right\}$ is open,

$$
\bigcup_{n \in \mathbb{N}} f^{n}\left(\left\{U_{\nu}<0\right\} \cap \mathbb{P}^{1}\right)=\left(\bigcup_{n \in \mathbb{N}} f^{n}\left(\left\{U_{\nu}<0\right\}\right)\right) \cap \mathbb{P}^{1} \supset \mathbb{P}^{1} \backslash E(f) .
$$

If there exists $z_{1} \in E(f)$, then $\bigcup_{n \in \mathbb{N}} f^{n}\left(\left\{U_{\nu}<0\right\} \cap \mathbb{P}^{1}\right)$ intersects the immediate attractive basin of z_{1}, so by (3.2), $a \equiv z_{1}$. This contradicts that a is non-constant, and so we have $E(f)=\emptyset$.

Let z_{0} be a fixed point of f in $\mathbb{P}^{1}=\mathbb{P}^{1} \backslash E(f)$. Then by the assumption $\left\{U_{\nu}<0\right\} \cap \mathrm{J}(f) \neq \emptyset$ and the definition of $\mathrm{J}(f), \mathrm{J}(f) \cap\left\{U_{\nu}<0\right\} \subset$ $\left(\bigcap_{\ell \in \mathbb{N}} \overline{\bigcup_{j \geq \ell} f^{-n}\left(z_{0}\right)}\right) \cap\left\{U_{\nu}<0\right\}$. Hence if $\#\left(\bigcup_{n \in \mathbb{N}} f^{-n}\left(z_{0}\right) \cap\left\{U_{\nu}<0\right\}\right)$ $<\infty$, then $\mathrm{J}(f) \cap\left\{U_{\nu}<0\right\}$ is a non-empty and finite subset in \mathbb{P}^{1}. Since $\mathrm{J}(f) \subset \operatorname{supp} \mu_{f}$ (by Theorem 2.18), this contradicts that μ_{f} has no atoms in \mathbb{P}^{1}.

Hence there is an $N \in \mathbb{N}$ such that $f^{-N}\left(z_{0}\right) \cap\left\{U_{\nu}<0\right\} \not \subset a^{-1}\left(z_{0}\right)$ since $\#\left(\bigcup_{n \in \mathbb{N}} f^{-n}\left(z_{0}\right) \cap\left\{U_{\nu}<0\right\}\right)=\infty$ and $\# a^{-1}\left(z_{0}\right)<\infty$. Let $z_{-N} \in$ $\left(f^{-N}\left(z_{0}\right) \cap\left\{U_{\nu}<0\right\}\right) \backslash a^{-1}\left(z_{0}\right)$. Then

$$
\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}\left(z_{-N}\right), a\left(z_{-N}\right)\right]=\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[z_{0}, a\left(z_{-N}\right)\right]=0
$$

which contradicts (3.2) at z_{-N} since $U_{\nu}\left(z_{-N}\right)<0$.
Hence $\left\{U_{\nu}<0\right\} \cap \mathrm{J}(f)=\emptyset$, and the proof is complete.
Lemma 3.4. If 1.3 holds, then

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathbf{P}^{1}} \Phi\left(f^{n_{j}}, a\right)_{f}(\cdot) d \mu_{f}=0 \tag{3.5}
\end{equation*}
$$

Indeed, (3.5) holds for every $a \in \mathbb{P}^{1}$ without assuming (1.3).
Proof. If a is constant, then this follows from the former assertion in Lemma 3.2 without assuming (1.3).

Suppose that a is non-constant. If 1.3 holds but (3.5 does not hold, then by (3.2) and $U_{\nu}=U_{\mu_{f}} \equiv 0$,

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot) \leq U_{\nu}+\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathrm{P}^{1}} \Phi\left(f^{n_{j}}, a\right)_{f} d \mu_{f}<0 \tag{3.6}
\end{equation*}
$$

on P^{1}. If there exists $z_{1} \in E(f)$, then (3.6) holds on the immediate attractive basin of z_{1}, so $a \equiv z_{1}$. This is a contradiction, and we have $E(f)=\emptyset$.

Let $z_{0} \in \mathbb{P}^{1}=\mathbb{P}^{1} \backslash E(f)$ be a fixed point of f. Then $\infty>\# a^{-1}\left(z_{0}\right)<$ $\# \bigcup_{n \in \mathbb{N}} f^{-n}\left(z_{0}\right)=\infty$, so there is an $N \in \mathbb{N}$ such that $f^{-N}\left(z_{0}\right) \not \subset a^{-1}\left(z_{0}\right)$. Let $z_{-N} \in f^{-N}\left(z_{0}\right) \backslash a^{-1}\left(z_{0}\right)$. Then

$$
\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}\left(z_{-N}\right), a\left(z_{-N}\right)\right]=\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[z_{0}, a\left(z_{-N}\right)\right]=0
$$

which contradicts (3.6) at z_{-N}.
We can now complete the proof of Theorem 1 . If 1.4 holds, then by the latter assertion in Lemma 3.2, Lemma 3.3, and Lemma 2.15, the condition (1.3] holds. The reverse implication follows by Theorem 2.18 .

Suppose now that K is non-archimedean. If 1.3 holds, then $U_{\nu}=$ $U_{\mu_{f}} \equiv 0$ on P^{1}, and by (3.3) and Lemma 3.4, we have

$$
\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot)=U_{\nu}+\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \int_{\mathrm{P}^{1}} \Phi\left(f^{n_{j}}, a\right)_{f} d \mu_{f}=0
$$

i.e., 1.5 , on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$. Conversely, if 1.5 holds on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$, then by $\sqrt{3.2}$, we have $\left\{U_{\nu}<0\right\} \backslash \mathbb{P}^{1}=\emptyset$, so $\left\{U_{\nu}<0\right\}=\emptyset$. Hence by Lemma 2.15 , (1.3 holds. If one (so ultimately all) of (1.3), (1.4) and (1.5) holds, then by Lemma 3.4
and 2.11 , the final (1.6) holds; indeed, 1.6 holds for every $a \in \mathbb{P}^{1}$ without assuming (1.3), 1.4) or (1.5).

This completes the proof of Theorem 1.
4. Proof of Theorems A, 1.1 and $\mathbf{1 . 2}$, We give some addenda to our argument in Section 3. Let K be an algebraically closed field of arbitrary characteristic, and complete with respect to a non-trivial absolute value. Let $f \in K(z)$ be a rational function on \mathbb{P}^{1} of degree $d>1$, and $a \in K(z)$ a rational function on \mathbb{P}^{1}. If a is constant, we identify a with its value in \mathbb{P}^{1}. Let $\nu=\lim _{j \rightarrow \infty} \nu_{n_{j}}^{a}$ be the weak limit of a subsequence $\left(\nu_{n_{j}}^{a}\right)$ of $\left(\nu_{n}^{a}\right)$ on $\mathrm{P}^{1}=\mathrm{P}^{1}(K)$. Taking a subsequence of $\left(n_{j}\right)$ if necessary, we can assume that the limit (3.1) exists in $[-\infty, 0]$.

We first give a purely local proof of Theorem A based on (1.7) and Lemma 2.15 .

Proof of Theorem A. Under the assumption in Theorem A, we set $K=\mathbb{C}_{v}$. The set of all points in $\mathbb{P}^{1}(\bar{k})$ which are wandering under f and, if in addition a is non-constant, do not belong to $a^{-1}(E(f))$, is dense in P^{1}. Since U_{ν} is upper semicontinuous, the inequality 3.2 , combined with the dynamical Diophantine approximation result (1.7), implies that $U_{\nu} \geq 0$ on P^{1}. Hence by Lemma 2.15, 1.3 holds.

Next, we prove Theorem 1.1.
Proof of Theorem 1.1. We will show that $(\operatorname{supp} \nu) \cap\left\{U_{\nu}<0\right\}=\emptyset$. This means that, by Lemma 2.15, (1.3) will hold.

Suppose first that $a \in J(f) \cap \mathbb{P}^{1}$. Then as $f^{-1}(\mathrm{~J}(f))=\mathrm{J}(f)$, we have $\operatorname{supp} \nu \subset J(f)$. Hence by Lemma 3.2, $(\operatorname{supp} \nu) \cap\left\{U_{\nu}<0\right\}=\emptyset$.

Suppose that $a \in\left(\mathrm{~F}(f) \cap \mathbb{P}^{1}\right) \backslash E(f)$. By the upper semicontinuity of U_{ν}, $\left\{U_{\nu}<0\right\}$ is open. From 3.2),

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left[f^{n_{j}}(\cdot), a\right]_{\text {can }} \leq U_{\nu}(\cdot)<0 \tag{4.1}
\end{equation*}
$$

on $\left\{U_{\nu}<0\right\}$. This implies that $\lim _{j \rightarrow \infty} f^{n_{j}}=a$ on $\left\{U_{\nu}<0\right\} \cap \mathbb{P}^{1}$, so $\left\{U_{\nu}<0\right\} \cap \mathbb{P}^{1} \subset \mathrm{~F}(f)$, and that the Berkovich Fatou component W of f containing a is cyclic under f, i.e., $f^{p}(W)=W$ for some $p \in \mathbb{N}$. Then from the classification of cyclic (Berkovich) Fatou components (see Theorem 2.17 for non-archimedean K), it follows that either a is the unique attracting fixed point of f^{p} in W (attracting case), or $\operatorname{deg}\left(f^{p}: W \rightarrow W\right)=1$ (singular case). In the attracting case, by (4.1), a is the superattracting fixed point of f^{p} in W satisfying $\operatorname{deg}_{a} f^{p}=d^{p}$. This contradicts the assumption $a \in \mathbb{P}^{1} \backslash E(f)$.

Hence the singular case occurs. Let U be a component of $\left\{U_{\nu}<0\right\}$ and put $N:=\min \left\{n \in \mathbb{N} \cup\{0\}: f^{n}(U) \subset W\right\}$. Then for every $n>N$, there is
at most one root of $f^{n-N}(\cdot)=a$ in W, which is simple if it exists. Hence

$$
0 \leq \nu(U) \leq \underset{j \rightarrow \infty}{\limsup } \frac{1 \cdot d^{N}}{d^{n_{j}}}=0
$$

This implies that $(\operatorname{supp} \nu) \cap\left\{U_{\nu}<0\right\}=\emptyset$.
Remark 4.1. For a purely potential-theoretical proof of Theorem 1.1 for non-archimedean K, see [11, §5].

An application of Theorem 1.1 is the following.
Lemma 4.2. The Berkovich Julia set $\mathrm{J}(f)$ of f coincides with

$$
\begin{equation*}
\left\{\mathcal{S} \in \mathrm{P}^{1}: \bigcap_{\left(n_{j}\right) \subset \mathbb{N}:} \text { infinite } \bigcap_{U: \text { open in } \mathrm{P}^{1}, \mathcal{S} \in U} \bigcup_{j \in \mathbb{N}} f^{n_{j}}(U)=\mathrm{P}^{1} \backslash E(f)\right\}, \tag{4.2}
\end{equation*}
$$

which is a priori contained in $\mathrm{J}(f)$.
Proof. By Theorem 2.18, $\mathrm{J}(f) \subset \operatorname{supp} \mu_{f}$. By Theorems 1.1 and 2.16 , $\operatorname{supp} \mu_{f}$ is contained in (4.2). Clearly, (4.2) is contained in $\mathrm{J}(f)$.

Suppose now that a is non-constant.
Proof of Theorem 1.2 for archimedean $K \cong \mathbb{C}$. We will show that $U_{\nu} \geq 0$ on $\operatorname{supp} \nu$. Then by Lemma 2.15, (1.3] will hold.

By the upper semicontinuity of $U_{\nu},\left\{U_{\nu}<0\right\}$ is open. Let U be a component of $\left\{U_{\nu}<0\right\}$. By Lemma 3.3, $U \subset F(f)$. From (3.2), we have $\lim _{j \rightarrow \infty} f^{n_{j}}=a$ on U. Since a is non-constant, this implies that there are an $N \in \mathbb{N}$ and a cyclic Fatou component Y of f such that Y is a Siegel disk or a Herman ring of f, and that for every $j \geq N, f^{n_{j}}(U) \subset Y$. Then $a(U) \subset Y$. For some $k_{0} \in \mathbb{N}$, we have $f^{k_{0}}(Y)=Y$, and for every $j \geq N$, we have $k_{0} \mid\left(n_{j}-n_{N}\right)$.

Let $h: Y \rightarrow \mathbb{C}$ be a holomorphic injection (a linearization map) such that for some $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, setting $\lambda=e^{2 i \pi \alpha}$, we have $h \circ f^{k_{0}}=\lambda \cdot h$ on Y. Taking a subsequence of $\left(n_{j}\right)$ if necessary, $\lambda_{0}:=\lim _{j \rightarrow \infty} \lambda^{\left(n_{j}-n_{N}\right) / k_{0}} \in \mathbb{C}$ exists and

$$
h \circ a=\lim _{j \rightarrow \infty} h \circ f^{n_{j}}=\lambda_{0} \cdot\left(h \circ f^{n_{N}}\right)
$$

on U. Moreover, for every $j \in \mathbb{N}$ large enough, $\lambda^{\left(n_{j}-n_{N}\right) / k_{0}} \neq \lambda_{0}$ and

$$
h \circ f^{n_{j}}-h \circ a=\left(\lambda^{\left(n_{j}-n_{N}\right) / k_{0}}-\lambda_{0}\right) \cdot\left(h \circ f^{n_{N}}\right)
$$

on U. Since h has at most one zero in Y, which is simple if it exists, we have

$$
0 \leq \nu(U) \leq \limsup _{j \rightarrow \infty} \frac{1 \cdot d^{n_{N}}}{d^{n_{j}}+\operatorname{deg} a}=0
$$

This implies that $\left\{U_{\nu}<0\right\} \cap(\operatorname{supp} \nu)=\emptyset$.

Suppose now that K is non-archimedean. In the following definition, \mathcal{E}_{f} is a Berkovich version of Rivera-Letelier's quasiperiodicity domain of f.

Definition 4.3. Let \mathcal{E}_{f} be the set of points in P^{1} having a neighborhood U such that for some $\left(n_{j}\right) \subset \mathbb{N}$ tending to ∞,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \sup _{U \cap \mathbb{P}^{1}}\left[f^{n_{j}}, \operatorname{Id}_{\mathbb{P}^{1}}\right]=0 . \tag{4.3}
\end{equation*}
$$

Lemma 4.4. \mathcal{E}_{f} is open, $f\left(\mathcal{E}_{f}\right) \subset \mathcal{E}_{f}$, and \mathcal{E}_{f} is covered by singular domains of f. In particular, $\mathcal{E}_{f} \cap \mathbb{P}^{1} \neq \mathbb{P}^{1}$.

Proof. From the definition, \mathcal{E}_{f} is open in P^{1}. For every open subset U in $\mathrm{P}^{1},\left[f^{n_{j}}, \mathrm{Id}\right] \circ f=\left[f^{n_{j}+1}, f\right] \leq L\left[f^{n_{j}}, \mathrm{Id}\right]$ on $U \cap \mathbb{P}^{1}$, where $L>0$ is a Lipschitz constant of $f \mid \mathbb{P}^{1}$ with respect to the chordal distance. Hence if (4.3) holds on U, then $\lim _{j \rightarrow \infty} \sup _{f(U) \cap \mathbb{P}^{1}}\left[f^{n_{j}}, \operatorname{Id}_{\mathbb{P}^{1}}\right]=0$, so $f\left(\mathcal{E}_{f}\right) \subset \mathcal{E}_{f}$.

By Lemma 4.2 and 4.3), $\mathcal{E}_{f} \cap \mathbb{P}^{1} \subset \mathrm{~F}(f)$. Moreover, by (4.3), \mathcal{E}_{f} is indeed covered by some cyclic Berkovich Fatou components W of f, and by Theorem 2.17 and (4.3), each W is a singular domain.

Since \mathcal{E}_{f} is covered by singular domains of f, f has no critical points in $\mathcal{E}_{f} \cap \mathbb{P}^{1}$, so from $\operatorname{deg} f>1$, we have $\mathcal{E}_{f} \cap \mathbb{P}^{1} \neq \mathbb{P}^{1}$.

For non-archimedean K of characteristic 0 , a non-archimedean counterpart of the uniformization of a Siegel disk or a Herman ring of f is given by Rivera-Letelier's iterative logarithm of f on \mathcal{E}_{f}.

Theorem 4.5 ([17, §3.2, §4.2]; see also [9, Théorème 2.15]). Suppose that K has characteristic 0 and residual characteristic p. Let $f \in K(z)$ be a rational function on \mathbb{P}^{1} of degree >1 and suppose that $\mathcal{E}_{f} \neq \emptyset$, which implies $p>0$ by [9, Lemme 2.14]. Then for every component Y of \mathcal{E}_{f} not containing ∞, there are a $k_{0} \in \mathbb{N}$, a continuous action $T: \mathbb{Z}_{p} \times(Y \cap K) \ni$ $(\omega, y) \mapsto T^{\omega}(y) \in Y \cap K$ and a non-constant K-valued holomorphic function T_{*} on $Y \cap K$ such that for every $m \in \mathbb{Z}$, $\left(f^{k_{0}}\right)^{m}=T^{m}$ on $Y \cap K$, that for each $\omega \in \mathbb{Z}_{p}, T^{\omega}$ is a biholomorphism on $Y \cap K$ and that for every $\omega_{0} \in \mathbb{Z}_{p}$,

$$
\begin{equation*}
\lim _{\mathbb{Z}_{p} \ni \omega \rightarrow \omega_{0}} \frac{T^{\omega}-T^{\omega_{0}}}{\omega-\omega_{0}}=T_{*} \circ T^{\omega_{0}} \tag{4.4}
\end{equation*}
$$

locally uniformly in $Y \cap K$.
We also need the following.
Lemma 4.6. For every compact subset C in $\left\{U_{\nu}<0\right\}$,

$$
\lim _{j \rightarrow \infty} \sup _{C}\left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot)=0 .
$$

Proof. By a lemma of Hartogs (cf. [9, Proposition 2.18], [1, Proposition 8.57]) and (3.4), for every compact subset C in P^{1},

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \sup _{C} U_{\nu_{n_{j}}^{a}} \leq \sup _{C} U_{\nu} . \tag{4.5}
\end{equation*}
$$

By Lemma 2.19

$$
\begin{aligned}
& \sup _{C} \frac{1}{d^{n_{j}}} \Phi\left(f^{n_{j}}, a\right)_{f}(\cdot) \\
& \quad=\sup _{C} U_{\left(1+(\operatorname{deg} a) / d^{n_{j}}\right) \nu_{n_{j}}^{a}}+\frac{1}{d^{n_{j}}} \sup _{C}\left|U_{a^{*} \mu_{f}}\right|+\frac{1}{d^{n_{j}}} \int_{\mathbf{P}^{1}} \Phi\left(f^{n_{j}}, a\right)_{f} d \mu_{f} .
\end{aligned}
$$

Let us take $\lim \sup _{j \rightarrow \infty}$ of both sides. Then by (2.11), the estimate 4.5), and the boundedness of $U_{a^{*} \mu_{f}}$, we have

$$
\limsup _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \sup _{C}\left[f^{n_{j}}, a\right]_{\text {can }}(\cdot) \leq \sup _{C} U_{\nu}
$$

If $C \subset\left\{U_{\nu}<0\right\}$, then by the upper semicontinuity of $U_{\nu}, \sup _{C} U_{\nu}<0$. This completes the proof.

Suppose now that K is non-archimedean and of characteristic zero. By Lemma 4.4, we can assume $\infty \notin \mathcal{E}_{f}$ without loss of generality.

Proof of Theorem 1.2 for non-archimedean K of characteristic zero. We will show that $U_{\nu} \geq 0$ on $\operatorname{supp} \nu$. Then by Lemma 2.15, 1.3 will hold.

By the upper semicontinuity of $U_{\nu},\left\{U_{\nu}<0\right\}$ is open. Let U be a component of $\left\{U_{\nu}<0\right\}$. For every compact subset C in $\left\{U_{\nu}<0\right\}$, $\sup _{C} U_{\nu}<0$.

Lemma 4.7. $a(U) \subset \mathcal{E}_{f}$.
Proof. Fix $z_{0} \in U \cap \mathbb{P}^{1}$. By Lemma 4.6, there is a Berkovich open disk D relatively compact in U and containing z_{0} such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \sup _{\mathrm{D}}\left[f^{n_{j}}, a\right]_{\operatorname{can}}(\cdot)=0 \tag{4.6}
\end{equation*}
$$

and without loss of generality, we can assume that D is so small that $a(D)$ is a Berkovich open disc (see Fact 2.7). Fix a Berkovich open disk D' relatively compact in $a(\mathrm{D})$ and containing $a\left(z_{0}\right)$. Then by 4.6 , for every $j \in \mathbb{N}$ large enough, $f^{n_{j}}(\mathrm{D})$ is a Berkovich open disk intersecting $a(\mathrm{D})$, and moreover containing D^{\prime}. Hence, since $\left[f^{n_{j+1}-n_{j}}, \mathrm{Id}\right] \circ f^{n_{j}}=\left[f^{n_{j+1}}, f^{n_{j}}\right] \leq\left[f^{n_{j+1}}, a\right](\cdot)+$ $\left[f^{n_{j}}, a\right](\cdot)$ on \mathbb{P}^{1}, we have

$$
\sup _{\mathrm{D}^{\prime} \cap \mathbb{P}^{1}}\left[f^{n_{j+1}-n_{j}}, \mathrm{Id}\right] \leq \sup _{\mathrm{D} \cap \mathbb{P}^{1}}\left[f^{n_{j+1}}, a\right](\cdot)+\sup _{\mathrm{D} \cap \mathbb{P}^{1}}\left[f^{n_{j}}, a\right](\cdot),
$$

so by (4.6), $\limsup _{j \rightarrow \infty} \sup _{\mathrm{D}^{\prime} \cap \mathbb{P}^{1}}\left[f^{n_{j+1}-n_{j}}, \mathrm{Id}\right]=0$. This implies $a(U) \subset \mathcal{E}_{f}$.
Let Y be the component of \mathcal{E}_{f} containing $a(U)$. Let $p>0, k_{0} \in \mathbb{N}, T$, T_{*} be as in Theorem 4.5 associated to this Y.

For any Berkovich closed connected affinoid V in U, by Lemma 4.6, $\lim _{j \rightarrow \infty} \sup _{V}\left[f^{n_{j}}, a\right]_{\text {can }}(\cdot)=0$. Then there exists an $N \in \mathbb{N}$ such that for every $j \geq N$, the Berkovich closed connected affinoid $f^{n_{j}}(V)$ is contained in Y, and $k_{0} \mid\left(n_{j}-n_{N}\right)$.

For every $j \geq N, f^{n_{j}}=T^{\left(n_{j}-n_{N}\right) / k_{0}} \circ f^{n_{N}}$ on $V \cap \mathbb{P}^{1}$. Taking a subsequence of $\left(n_{j}\right)$ if necessary, the limit

$$
\lim _{j \rightarrow \infty} \frac{n_{j}-n_{N}}{k_{0}}=: \omega_{0}
$$

exists in \mathbb{Z}_{p}, and $a=\lim _{j \rightarrow \infty} f^{n_{j}}=\lim _{j \rightarrow \infty} T^{\left(n_{j}-n_{N}\right) / k_{0}} \circ f^{n_{N}}=T^{\omega_{0}} \circ f^{n_{N}}$ on $V \cap \mathbb{P}^{1}$. For every $j \geq N$,

$$
\begin{equation*}
f^{n_{j}}-a=\left(T^{\left(n_{j}-n_{N}\right) / k_{0}}-T^{\omega_{0}}\right) \circ f^{n_{N}} \tag{4.7}
\end{equation*}
$$

on $V \cap \mathbb{P}^{1}$. Increasing N if necessary, we also have $\left(n_{j}-n_{N}\right) / k_{0} \neq \omega_{0}$.
Let Z_{*} be the set of all zeros in the closed connected affinoid $f^{n_{N}}(V) \cap K$ of the non-constant holomorphic function $T_{*} \circ T^{\omega_{0}}$ on $Y \cap K$. Then $\# Z_{*}<\infty$ (see Fact 2.6). Hence $\# f^{-n_{N}}\left(Z_{*}\right)<\infty$, and we can assume that $f^{-n_{N}}\left(Z_{*}\right)$ $\subset K$ without loss of generality.

Now we also assume that the Berkovich closed connected affinoid V is strict.

LEmmA 4.8. $(\operatorname{supp} \nu) \cap\left((\operatorname{int} V) \backslash f^{-n_{N}}\left(Z_{*}\right)\right)=\emptyset$.
Proof. For each $\epsilon>0$ in $\left|K^{*}\right|$, set

$$
V_{\epsilon}:=V \backslash \bigcup_{w \in f^{-n_{N}}\left(Z_{*}\right)}\left\{\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}:|\mathcal{S}-w|<\epsilon\right\}
$$

which is a strict Berkovich closed connected affinoid. Then $f^{n_{N}}\left(V_{\epsilon}\right)$ is a strict Berkovich closed connected affinoid in Y. Hence by the maximum modulus principle, the minimum

$$
\min \left\{\left|T_{*} \circ T^{\omega_{0}}(z)\right|: z \in f^{n_{N}}\left(V_{\epsilon}\right) \cap K\right\}>0
$$

exists (see Fact 2.7) and is positive by the choice of V_{ϵ}. Then from the uniform convergence 4.4) on $f^{n_{N}}\left(V_{\epsilon}\right) \cap K$, for every $j \in \mathbb{N}$ large enough,

$$
\left|T^{\left(n_{j}-n_{N}\right) / k_{0}}-T^{\omega_{0}}\right|>0
$$

on $f^{n_{N}}\left(V_{\epsilon}\right) \cap K$, which together with 4.7) implies that there is no root of $f^{n_{j}}=a$ in $V_{\epsilon} \cap \mathbb{P}^{1}$. Hence $(\operatorname{supp} \nu) \cap \operatorname{int} V_{\epsilon}=\emptyset$, which implies that $(\operatorname{supp} \nu) \cap\left((\operatorname{int} V) \backslash f^{-n_{N}}\left(Z_{*}\right)\right)=\emptyset$.

Lemma 4.9. $(\operatorname{supp} \nu) \cap\left((\operatorname{int} V) \cap f^{-n_{N}}\left(Z_{*}\right)\right)=\emptyset$.
Proof. Let $z_{0} \in(\operatorname{int} V) \cap f^{-n_{N}}\left(Z_{*}\right)$. If z_{0} is a root of $f^{n_{j}}=a$, then by (4.7) and the uniform convergence (4.4) on V, the multiplicity of z_{0} as a root of $f^{n_{j}}=a$ is bounded from above by

$$
\begin{equation*}
\left(\operatorname{deg}_{f^{n_{N}}\left(z_{0}\right)}\left(T_{*} \circ T^{\omega_{0}}\right)\right) \cdot d^{n_{N}}-1 \tag{4.8}
\end{equation*}
$$

For any Berkovich open disk D in V containing z_{0} and satisfying the condi-
tion $\overline{\mathrm{D}} \cap f^{-n_{N}}\left(Z_{*}\right)=\left\{z_{0}\right\}$, from the upper bound 4.8) and Lemma 4.8,

$$
\begin{aligned}
0 & \leq \limsup _{j \rightarrow \infty} \nu_{n_{j}}^{a}(\mathrm{D}) \leq \underset{j \rightarrow \infty}{\limsup } \nu_{n_{j}}^{a}\left(\left\{z_{0}\right\}\right)+\underset{j \rightarrow \infty}{\limsup } \nu_{n_{j}}^{a}\left(\mathrm{D} \backslash\left\{z_{0}\right\}\right) \\
& \leq \limsup _{j \rightarrow \infty} \frac{\left(\operatorname{deg}_{f^{n_{N}\left(z_{0}\right)}}\left(T_{*} \circ T^{\omega_{0}}\right)\right) \cdot d^{n_{N}}}{d^{n_{j}}}+\nu\left((\operatorname{int} V) \backslash f^{-n_{N}}\left(Z_{*}\right)\right)=0 .
\end{aligned}
$$

Hence $\nu(\mathrm{D})=0$ if D is small enough, so $z_{0} \notin \operatorname{supp} \nu$.
From Lemmas 4.8 and $4.9,(\operatorname{int} V) \cap(\operatorname{supp} \nu)=\emptyset$. This implies that $U \cap(\operatorname{supp} \nu)=\emptyset$, so $\left\{U_{\nu}<0\right\} \cap(\operatorname{supp} \nu)=\emptyset$.

Now the proof of Theorem 1.2 is complete.
5. The case of polynomials. Let K be an algebraically closed field of any characteristic and complete with respect to a non-trivial absolute value.

For every polynomial $\phi \in K[z]$ on \mathbb{P}^{1}, the factorization of ϕ extends $|\phi|$ continuously to $\mathrm{P}^{1} \backslash\{\infty\}$ using the extended $|\cdot-w|$ on $\mathrm{P}^{1} \backslash\{\infty\}$ for each $w \in \mathbb{P}^{1} \backslash\{\infty\}$. For polynomials $\phi_{i} \in K[z](i \in\{1,2\}), \phi_{1}-\phi_{2}$ is also a polynomial. Hence the continuous extension $\mathcal{S} \mapsto\left|\phi_{1}-\phi_{2}\right|_{\text {can }}(\mathcal{S})$ to $\mathrm{P}^{1} \backslash\{\infty\}$ of the function $z \mapsto\left|\phi_{1}(z)-\phi_{2}(z)\right|$ on $\mathbb{P}^{1} \backslash\{\infty\}$ exists so that on $\mathrm{P}^{1} \backslash\{\infty\}$,

$$
\begin{equation*}
\left|\phi_{1}-\phi_{2}\right|_{\operatorname{can}}(\cdot)=\left[\phi_{1}, \phi_{2}\right]_{\operatorname{can}}(\cdot) \max \left\{1,\left|\phi_{1}(\cdot)\right|\right\} \max \left\{1,\left|\phi_{2}(\cdot)\right|\right\} . \tag{5.1}
\end{equation*}
$$

Let $f \in K[z]$ be a polynomial on \mathbb{P}^{1} of degree $d>1$. The Berkovich filled-in Julia set of f is

$$
\mathrm{K}(f):=\left\{\mathcal{S} \in \mathrm{P}^{1}: \lim _{n \rightarrow \infty} f^{n}(\mathcal{S}) \neq \infty\right\} .
$$

Noting that $f(\infty)=\infty \in E(f)$, let $\mathrm{A}_{\infty}=\mathrm{A}_{\infty}(f)$ be the fixed immediate attractive basin of f containing ∞. Then $f^{-1}\left(\mathrm{~A}_{\infty}\right)=\mathrm{A}_{\infty}$ since $\operatorname{deg}(f$: $\left.\mathrm{A}_{\infty} \rightarrow \mathrm{A}_{\infty}\right)=\operatorname{deg}_{\infty} f=d$. Hence A_{∞} is completely invariant under f, and $\mathrm{K}(f)=\mathrm{P}^{1} \backslash \mathrm{~A}_{\infty}$. Moreover, $\partial \mathrm{A}_{\infty}=\partial \mathrm{K}(f)=\mathrm{J}(f)$. Indeed, by Theorem 2.18, $\mathcal{J}(f) \subset \operatorname{supp} \mu_{f}$. Fix $\mathcal{S} \in \mathrm{A}_{\infty} \cap \mathbb{P}^{1}$. Then by Theorem 1.1, $\operatorname{supp} \mu_{f} \subset \bigcap_{N \in \mathbb{N}} \overline{\bigcup_{n \geq N} f^{-n}(\mathcal{S})}$, which is contained in $\partial \mathrm{A}_{\infty} \subset \mathrm{J}(f)$.

For each $R>0$ in $\left|K^{*}\right|$, let $\mathrm{D}_{R}^{*}:=\left\{\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}:|\mathcal{S}|>R\right\}$ and $\mathrm{D}_{R}:=$ $D_{R}^{*} \cup\{\infty\}$. If $R>0$ is large enough, then since ∞ is a (super)attracting fixed point of f, we have $\inf _{z \in \mathrm{D}_{R}^{*} \cap \mathbb{P}^{1}}|f(z)|>R$. Hence by the continuity of $|f(\cdot)|, \inf _{\mathrm{D}_{R}^{*}}|f(\cdot)|>R$. This implies that $\mathrm{D}_{R} \in f^{-1}\left(\mathrm{D}_{R}\right)$. Since $\mathrm{A}_{\infty}=$ $\bigcup_{n \in \mathbb{N}} f^{-n}\left(\mathrm{D}_{R}\right)$, for every Berkovich closed disk D in $\mathrm{A}_{\infty} \backslash\{\infty\}$ we have $\liminf _{n \rightarrow \infty} \inf _{\mathrm{D}}\left|f^{n}(\cdot)\right|>R$. Hence

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \inf _{\mathrm{D}}\left|f^{n}(\cdot)\right|=\infty \tag{5.2}
\end{equation*}
$$

Lemma 5.1. Suppose that K is non-archimedean. For every polynomial $f \in K[z]$ on \mathbb{P}^{1} of degree $d>1$ and every polynomial $a \in K[z]$ on \mathbb{P}^{1}, the
condition 1.5 holds on $\mathrm{A}_{\infty}(f) \backslash\{\infty\}$, and on $\mathrm{K}(f)$,

$$
\sup _{n \in \mathbb{N}}\left|\log \left[f^{n}, a\right]_{\operatorname{can}}(\cdot)-\log \right| f^{n}-\left.a\right|_{\operatorname{can}}(\cdot) \mid<\infty
$$

In particular, (1.5) holds on $\mathrm{P}^{1} \backslash \mathbb{P}^{1}$ if and only if the condition

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{d^{n_{j}}} \log \left|f^{n_{j}}-a\right|_{\operatorname{can}}(\cdot)=0 \tag{1.5}
\end{equation*}
$$

holds on $\mathrm{K}(f) \backslash \mathbb{P}^{1}$.
Proof. For every Berkovich closed disk D in $\mathrm{A}_{\infty} \backslash\{\infty\}$, fix an $R>0$ in $\left|K^{*}\right|$ so large that $R>\max \left\{1, \sup _{\mathrm{D}}|a(\cdot)|\right\}$. By (5.1) and (5.2), for every $n \in \mathbb{N}$ large enough, on $\mathrm{D} \cap \mathbb{P}^{1}$,

$$
\log \left[f^{n}(\cdot), a(\cdot)\right]=\log \left|f^{n}(\cdot)\right|-\log \left|f^{n}(\cdot)\right|-\log \max \{1,|a(\cdot)|\} \geq-\log R
$$

Hence $\log \left[f^{n}, a\right]_{\text {can }}(\cdot) \geq-\log R$ on D since both sides are continuous. This implies that 1.5 holds on $\mathrm{A}_{\infty}(f) \backslash\{\infty\}$.

Next, fix an $R>0$ in $\left|K^{*}\right|$ so large that $\mathrm{D}_{R} \subset \mathrm{~A}_{\infty}$. Then $\bigcup_{n \in \mathbb{N}} f^{n}(\mathrm{~K}(f))$ $\subset \mathrm{P}^{1} \backslash \mathrm{D}_{R}$. Hence by (5.1),

$$
\begin{aligned}
\sup _{n \in \mathbb{N}}\left|\log \left[f^{n}, a\right]_{\operatorname{can}}(\cdot)-\log \right| & f^{n}-\left.a\right|_{\operatorname{can}}(\cdot) \mid \\
& \leq \log \max \{1, R\}+\log \max \{1,|a(\cdot)|\}<\infty
\end{aligned}
$$

on $\mathrm{K}(f)$.
We conclude this section with an example. Suppose that K has characteristic $p>0$, and set $f(z)=z+z^{p}$ and $a=\operatorname{Id}$. Then $\mathrm{K}(f)=$ $\left\{\mathcal{S} \in \mathrm{P}^{1} \backslash\{\infty\}:|\mathcal{S}| \leq 1\right\}$. For each $j \in \mathbb{N}, f^{p^{j}}(z)=z+z^{p^{p^{j}}}$ and the equality

$$
\log \left|f^{p^{j}}-\mathrm{Id}\right|_{\text {can }}=p^{p^{j}} \log |\cdot|
$$

holds on $\mathbb{P}^{1} \backslash\{\infty\}$. By the continuity of both sides, this extends to $\mathrm{P}^{1} \backslash\{\infty\}$. In particular, 1.5 does not hold on $\mathrm{K}(f) \backslash \mathbb{P}^{1}$. Hence the equidistribution property 1.2 for $f(z)=z+z^{p}$ and $a=$ Id does not hold.

Of course, this could be more directly seen since

$$
\lim _{j \rightarrow \infty} \nu_{p^{j}}^{a}=\lim _{j \rightarrow \infty} \frac{1}{p^{p^{j}}+1}\left(p^{p^{j}} \delta_{0}+\delta_{\infty}\right)=\delta_{0}
$$

weakly on P^{1}, but $\operatorname{supp} \mu_{f}=\mathrm{J}(f)=\partial \mathrm{K}(f)=\left\{\mathcal{S}_{\text {can }}\right\}$.
Acknowledgements. The author thanks Professors Charles Favre and Juan Rivera-Letelier for invaluable comments, Professors Mattias Jonsson and William Gignac for a stimulating discussion on the Problem, and the referee for very careful scrutiny and pertinent comments. This research was partially supported by JSPS Grant-in-Aid for Young Scientists (B), 21740096.

References

[1] M. Baker and R. Rumely, Potential Theory and Dynamics on the Berkovich Projective Line, Math. Surveys Monogr. 159, Amer. Math. Soc., Providence, RI, 2010.
[2] R. Benedetto, Non-archimedean dynamics in dimension one: lecture notes, http: //math.arizona.edu/~swc/aws 87 (2010).
[3] V. G. Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Math. Surveys Monogr. 33, Amer. Math. Soc., Providence, RI, 1990.
[4] F. Berteloot et V. Mayer, Rudiments de dynamique holomorphe, Cours Spécialisés 7, Soc. Math. France, Paris, 2001.
[5] S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean Analysis, Grundlehren Math. Wiss. 261, Springer, Berlin, 1984.
[6] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144.
[7] A. Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215-235.
[8] C. Favre and M. Jonsson, The Valuative Tree, Lecture Notes in Math. 1853, Springer, Berlin, 2004.
[9] C. Favre et J. Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un corps ultramétrique, Proc. London Math. Soc. (3) 100 (2010), 116-154.
[10] A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62.
[11] M. Jonsson, Dynamics on Berkovich spaces in low dimensions, arXiv:1201.1944.
[12] M. J. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385.
[13] F. Marty, Recherches sur la répartition des valeurs d'une fonction méromorphe, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3) 23 (1931), 183-261.
[14] J. Milnor, Dynamics in One Complex Variable, 3rd ed., Ann. of Math. Stud. 160, Princeton Univ. Press, Princeton, NJ, 2006.
[15] Y. Okuyama, Repelling periodic points and logarithmic equidistribution in nonarchimedean dynamics, Acta Arith. 152 (2012), 267-277.
[16] Y. Okuyama, Fekete configuration, quantitative equidistribution and wandering critical orbits in non-archimedean dynamics, Math. Z. 273 (2013), 811-837.
[17] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, in: Geometric Methods in Dynamics. II, Astérisque 287 (2003), xv, 147-230.
[18] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss. 316, Springer, Berlin, 1997.
[19] J. H. Silverman, Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), 793-829.
[20] M. Sodin, Value distribution of sequences of rational functions, in: Entire and Subharmonic Functions, Adv. Soviet Math. 11, Amer. Math. Soc., Providence, RI, 1992, 7-20.
[21] L. Szpiro and T. J. Tucker, Equidistribution and generalized Mahler measures, in: Number Theory, Analysis and Geometry: In Memory of Serge Lang, Springer, 2012, 609-638; preprint available at arXiv:math/0510404.
[22] A. Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d'Arakelov, PhD thesis, Univ. Rennes 1, 2005.
[23] P. Tortrat, Aspects potentialistes de l'itération des polynômes, in: Séminaire de Théorie du Potentiel, Paris, No. 8, Lecture Notes in Math. 1235, Springer, Berlin, 1987, 195-209.
[24] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publ., New York, 1975 (reprint of the 1959 original).

Yûsuke Okuyama
Division of Mathematics
Kyoto Institute of Technology
Sakyo-ku, Kyoto 606-8585, Japan
E-mail: okuyama@kit.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 37P50; Secondary 11S82.
 Key words and phrases: characterization of equidistribution, adelic equidistribution, Diophantine approximation, equidistribution theorem, non-archimedean dynamics, complex dynamics.

