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1. Introduction. Matiyasevich and Guy [15] proved an interesting for-
mula:

lim
n→∞

logF1 · · ·Fn
log lcm(F1, . . . , Fn)

=
π2

6

valid for the Fibonacci numbers defined by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for all n ≥ 0. Since the least common multiple grows due to the
contributions of powers of primitive prime divisors, that is, prime factors
appearing in Fn but not in Fm for any m < n, the point of the proof is
to describe effectively the contribution of these powers. Inspired by this
formula, several generalizations have been discussed in [1, 2, 3, 13] for other
sequences (bn)n≥0 of integers. A clue of these results is the strong divisibility
condition:

(S) (bn, bm) = |bgcd(m,n)|.
The above property ensures that the primitive divisors of bn are essentially
given by the inclusion-exclusion formula∏

d|n

b
µ(d)
n/d ,

and allows us to control the growth of the least common multiple. This
is why strong divisibility and primitive divisors attracted the attention of
many researchers [4, 8, 7, 14, 17]. Especially, a lot of effort was spent on the
primitive divisors of elliptic divisibility sequences [6, 10, 11, 22].

There are few known results of the above type for general sequences with-
out the assumption (S). In this paper, we give several results on subsequences
of Lucas–Lehmer sequences, or Lucas subsequences for short, which do not
satisfy (S). Let (un)n≥0 be the non-degenerate binary linear sequence given
by the recurrence un+2 = Aun+1 +Bun for all n ≥ 0, where u0 = 0, u1 6= 0,
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A and B are fixed non-zero integers. By non-degenerate we mean that the
equation x2−Ax−B = 0 has two non-zero roots α, β such that α/β is not
a root of 1. In this case, the Binet formula holds:

(1) un = u1

(
αn − βn

α− β

)
for all n ≥ 0.

We assume that |α| ≥ |β| and put κ = (log gcd(A2, B))/(2 log |α|). We
compute several cases of (an)n≥0. We adopt the convention that lcm[s ∈ S]
means the least common multiple of the non-zero elements s of S.

Theorem 1. If an = |f(n)| for all n ≥ 1, where f(X) ∈ Z[X] has at
least two distinct roots, then

(2)
log |

∏
1≤k≤n, ak 6=0 uak |

log lcm[ua1 , . . . , uan ]
=

1

1− κ
+O

(
1

log n

)
.

Theorem 2. When f(X) = C(aX + b)m ∈ Z[X] with a > 0 and b
coprime, then

log |
∏

1≤k≤n, ak 6=0 uak |
log lcm[ua1 , . . . , uan ]

=
ζ(m+ 1)

1− κ
∏
p|a

(
1− 1

pm+1

)
+O

(
1

log n

)
.

We also treat cases in which (an)n≥0 is some arithmetic function of n,
such as the Euler function φ(n) and the sum of divisors function σ(n) (see
Theorem 3), as well as the case when (an)n≥0 is a non-degenerate binary
recurrent sequence (see Theorem 4).

Note that when b = 0, uan satisfies (S) and we recover the main term
of [2]. The error term becomes worse because of the generality of our method.
The factor 1/(1−κ) simply comes from the common divisor of all uan and is
not so important. The main terms of the two theorems give a sharp contrast.
We observe some dichotomy: whenever there are distinct factors, the least
common multiple and the product of subsequences become essentially the
same.

Throughout the paper, we use the Landau symbols O and o and the
Vinogradov symbols �,� with their usual meaning. We recall that A =
O(B), A� B and B � A are all equivalent and mean that |A| ≤ cB holds
with some positive constant c, while A = o(B) means that A/B → 0. We
also use c1, c2, . . . for positive computable constants. All constants which
appear depend on our sequences (un)n≥0 and (an)n≥0.

2. Generalities. Clearly, |α| > 1. By Baker’s method, we have

|um| = |α|m|u1| |α− β|−1|1− (β/α)m| = exp
(
m log |α|+O(log(m+ 1))

)
.



Lucas subsequences 329

Evaluating this relation at m = ak for k = 1, . . . , n, taking logarithms and
summing we get

(3) log |ua1 · · ·uan | = log |α|
n∑
k=1

ak +O
( n∑
k=1

log(ak + 1)
)
.

So, in applications, we shall need some information about

(4) A1(n) =
n∑
k=1

ak and E1(n) =
n∑
k=1

log(ak + 1).

To deal with the least common multiple, we start, as many authors do,
by putting T = gcd(A2, B), vn = T−n/2un, A1 = A/

√
T , and B1 = B/T .

Then

vn =
u1√
T

αn1 − βn1
α1 − β1

,

where α1 = α/
√
T , β1 = β/

√
T . Here, A2

1 and B1 are coprime integers and
α1, β1 are the two roots of the equation x2 −A2

1x−B1 = 0. Put

(5) wn =


αn1 − βn1
α1 − β1

if n ≡ 1 (mod 2),

αn1 − βn1
α2
1 − β21

if n ≡ 0 (mod 2),

for the Lehmer numbers of the roots α1, β1. Then

(6) un =

{
u1T

(n−1)/2wn if n ≡ 1 (mod 2),

Au1T
n/2−1wn if n ≡ 0 (mod 2).

Let S be the set of all primes dividing ATu1, and for a prime p and a
non-zero integer m let µp(m) be the exponent of p in the factorization of m.
Since A2

1 and B1 are coprime, from linear forms in p-adic logarithms, we
have µp(wn) < cp log n, where cp is some constant depending on p. We put

(7) lcm[ua1 , . . . , uan ] =: M1M2,

where M1 is the contribution to the above least common multiple of the
primes from S and M2 is the remaining cofactor. The above comments show
that

logM1 =
log T

2
max{ak}1≤k≤n +O(E1(n)),

logM2 = log lcm[wa1 , . . . , wan ] +O(E1(n)).(8)

Next, we use cyclotomy to write

(9) wn =
∏
d|n

Φd(α1, β1),
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where we put

(10) Φm(α1, β1) =
∏

1≤k≤m
gcd(k,m)=1

(α1 − e2πik/mβ1) for all m ≥ 3,

and Φ1(α1, β1) = Φ2(α1, β1) = 1. It is well-known that Φm(α1, β1) is an
integer which captures the primitive prime factors of the term wm. More
precisely, if we write Ψm(α1, β1) for the largest divisor of Φm(α1, β1) consist-
ing of primes which do not divide Φ`(α1, β1) for any 1 ≤ ` ≤ m, then

(11) Φm(α1, β1) = δmΨm(α1, β1),

where δm is a divisor of m (see [19, Lemmas 6–8]). By Baker’s method again,
we have

|Φm(α1, β1)| =
∏
d|m

|αd1 − βd1 |µ(m/d)(12)

=
∏
d|m

|α1|dµ(m/d)|1− (β1/α1)
d|µ(m/d)

= exp
(
log |α1|φ(m) +O(τ(m) log(m+ 1))

)
.

We evaluate the above relation at m = ak for k = 1, . . . , n and use the fact
that

(13) log

n∏
k=1

δak = O
( n∑
k=1

log(ak + 1)
)

= O(E1(n)),

to conclude that if we put

(14) Dn = {d : d | ak for some 1 ≤ k ≤ n},
then from (9)–(13) we obtain

log lcm[wa1 , . . . , wan ] = log
∏
d∈Dn

|Ψd(α1, β1)|+O
(

log
n∏
k=1

δak

)
(15)

= log |α1|
∑
d∈Dn

φ(d) +O(E1(n))

+O
(∑
d∈Dn

τ(d) log(d+ 1)
)

= log |α1|A2(n) +O(E2(n)),

where we write

(16) A2(n) =
∑
d∈Dn

φ(d) and E2(n) =
n∑
k=1

τ(ak)
2 log(ak + 1).

The last error term in (15) comes from the fact that every ak for k = 1, . . . , n
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contributes at most τ(ak) members d ∈ Dn and for each of them we have

τ(d) log(d+ 1) ≤ τ(ak) log(ak + 1).

All this has been obtained without any arithmetic condition on the sequence
(an)n≥1. Let us see some examples.

3. Examples

3.1. The case of the sequences an = φ(n) and an = σ(n). Both
sequences have almost linear growth, that is, an ≤ n1+o(1) as n → ∞,
therefore both inequalities

E1(n) ≤ n1+o(1) and E2(n) ≤ n1+o(1)

hold as n tends to infinity. Further,

A1(n) = can
2 +O(n log n),

with ca = 3/π2 or π2/12 according to whether an = φ(n) or an = σ(n). As
for Dn, we cut it into two parts:

D1,n = {d ∈ Dn : 1 ≤ d ≤ n/(log n)1/4}.
Here we use the trivial estimate∑

d∈D1,n

φ(d) ≤
∑

d≤n/(logn)1/4
d = O

(
n2

(log n)1/2

)
.

Put D2,n = Dn \ D1,n. If d ∈ D1,n, then d = φ(u)/v, where u ≤ n and
v ≤ (log n)1/4 in the case of ak = φ(k). When ak = σ(k), we have d = σ(u)/v
for some u ≤ n, where v ≤ c1(log n)1/4 log log n for some constant c1. Here,
we use the fact that σ(u) ≤ c1u log log u for all u ≥ 3 with some constant c1.
Each of the sets {φ(u) ≤ n} and {σ(u) ≤ c1n log logn} has O(n/(log n)1−ε)
elements (see [5] or [9, Theorems 1 and 14]), where ε > 0 can be taken to
be as small as we wish and will be fixed later. Thus,

#D2,n = O

(
n log logn

(log n)3/4−ε

)
= O

(
n

(log n)1/2

)
provided that we choose ε = 1/10. Hence,∑

d∈D2,n

φ(d) ≤ n#D2,n = O

(
n2

(log n)1/2

)
,

and we get the estimate

log |ua1 · · ·uan |
log lcm[ua1 , . . . , uan ]

�
√

log n.

In particular,

log lcm[ua1 , . . . , uan ] = o(log |ua1 · · ·uan |) as n→∞,
a phenomenon that does not happen for the sequences dealt with in [2].
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We record this as the following result.

Theorem 3. If an = φ(n) for all n ≥ 1, then

log lcm[ua1 , . . . , uan ] = o(log |ua1 · · ·uan |) as n→∞.
The same conclusion holds when an = σ(n) for all n ≥ 1.

3.2. The case of the sequences an = |bn| with (bn)n≥1 binary
recurrent. Since we are working very generally, we shall assume that

bn+2 = Cbn+1 +Dbn,

where C and D are non-zero integers such that the equation λ2−Cλ−D = 0
has two distinct roots γ, δ with γ/δ not a root of 1. Then

bn = ηγn + ζδn,

with some non-zero algebraic numbers η, ζ in K = Q(γ). We assume that
|γ| ≥ |δ|. Thus,

A1(n) =
n∑
k=1

|bn|.

We also assume that we work only with the numbers k = 1, . . . , n such that
bk 6= 0. It is easy to see that if there exists such a k with bk = 0, then
it is unique. Indeed, if not, then say bk1 = bk2 = 0 for integers k1 < k2.
Regarding these two equations as a degenerate homogeneous linear system
in the unknowns η, ζ whose coefficient matrix is(

γk1 δk1

γk2 δk2

)
,

we find that (γ/δ)k2−k1 = 1, which is not allowed because γ/δ is not a root
of unity. By Baker’s bound,

(17) A1(n) ≥ |bn| = exp(n log |γ|+O(log n)).

This gives us the main term for log |ua1 · · · aan |. It remains to study
log lcm[ua1 , . . . , uan ]. Clearly,

E1(n) = exp(o(n)) and E2(n) = exp(o(n)) as n→∞.
To get A2(n), we put T1 = gcd(C2, D), γ1 = γ2/T1, δ1 = δ2/T1 and

bn = T
bn/2c
1 zn,

where

zn = η1γ
bn/2c
1 + ζ1δ

bn/2c
1 with (η1, ζ1) =

{
(η, ζ) if n ≡ 0 (mod 2),

(ηγ, ζδ) if n ≡ 1 (mod 2).

Let T be the finite set of primes sitting above some prime ideal π from
OK which appears with non-zero exponent in the factorization of one of the
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principal fractional ideals generated by γ, δ, η, ζ, γ−δ in K. We split Dn into
three subsets as follows. We take

D1,n = {d ∈ Dn : d ≤ |γ|n/2}.

Since d | ak for some k = 1, . . . , n and since each ak has a
o(1)
k = exp(o(n))

divisors as n→∞, we get

(18)
∑

d∈D1,n

φ(d) = O
(
n|γ|n/2 exp(o(n))

)
≤ |γ|(1/2+o(1))n as n→∞.

Next we take

D2,n = {d ∈ Dn \ D1,n : d | ai and d | aj for some i < j ∈ {1, . . . , n}}.
Since d > |γ|n/2 and ak = O(|γ|k) for both k = i and j, it follows that
i ≥ n/2 +O(1), therefore

j − i ≤ n/2 +O(1).

Now write d = d1d2, where d1 is the contribution to d from primes coming
from T and d2 is the contribution from the remaining primes. Since γ1
and δ1 are coprime, it follows, again by the theory of linear forms in p-
adic logarithms, that µp(cm) < c(p) log(m + 1) for all primes p, with some
constant cp depending on p. This shows that

log d1 =
log T1

2
n+O(log(n+ 1)).

As for d2, we have d2 | zi and d2 | zj . Since η and δ are invertible modulo d2,
we get (

γ

δ

)i
≡ −ζ

η
(mod z2) and

(
γ

δ

)j
≡ −ζ

η
(mod z2),

from which we deduce that(
γ

ζ

)j−i
≡ 1 (mod z2).

Thus, z2 divides the sth term of the Lucas sequence (γs − δs)/(γ − δ) with
s = j − i ≤ n/2 + O(1). Each such term has exp(o(n)) divisors as n → ∞,
and there are only O(n) possibilities for s. Hence,

(19)
∑

d∈D2,n

φ(d) ≤ n|γ|n/2 exp(o(n)) = |γ|(1/2+o(1))n as n→∞.

Finally, look at numbers d ∈ D3,n = Dn \ (D1,n ∪ D2,n). Each of these
numbers divides a unique ak = kd and they are all > |γ|n/2. Further, each
number d > |γ|n/2 which divides ak for some k is either in D3,n or in D2,n.
Using the formula

m =
∑
d|m

φ(d)
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and adding into our sums also all the divisors d ≤ |γ|n/2 of all the numbers
ak for k ∈ {1, . . . , n} (at most n values for k, at most exp(o(n)) as n → ∞
values for d for each k, and none exceeding |γ|n/2), we easily get∑

d∈D3,n

φ(d) =
n∑
k=1

ak +O
(
n|γ|n/2+o(n) exp(o(n))

)
(20)

= A1(n) +O(|γ|n/2+o(n)).
Putting (18)–(20) together and using also (17), we get

A2(n) =

3∑
k=1

∑
d∈Dk,n

φ(d) = A1(n) +O(|γ|n/2+o(n)) = (1 + o(1))A1(n),

which leads to quite the opposite conclusion to the one in the previous case,
namely

log lcm[ua1 , . . . , uan ] = (1 + o(1)) log |ua1 · · ·uan | as n→∞.
Further, note that the expression for A1(n) can be simplified when |γ| > |δ|
(that is, when both γ and δ are real), since then

|an| = |η| |γ|n +O(|δ|n) for all n ≥ 1,

therefore

A1(n) =
|ηγ|
|γ| − 1

|γ|n +O(|γ|c2n),

where c2 is any constant satisfying log |δ|/log |γ| < c2 < 1.

We record the following result.

Theorem 4. If an = |bn|, where (bn)n≥1 is a non-degenerate binary
recurrence, then

log lcm[ua1 , . . . , uan ] = (1 + o(1)) log |ua1 · · ·uan | as n→∞.

3.3. The case of the Lucas sequence of the second kind. Jones
and Kiss [12] studied the least common multiple of the sequence umn/un
for m > 0. For completeness, we study the case for m = 2 directly by our
method which will give us a good comparison. Thus (un)n≥1 is replaced by
(Ln)n≥1 given by L0 = 2, L1 = A. In this case, the analog of formula (1) is

Ln = αn + βn.

By Baker’s method, we have again

|Lm| = exp
(
m log |α|+O(log(m+ 1))

)
,

so formula (3) holds for this case also:

(21) log |La1 · · ·Lan | = log |α|A1(n) +O(E1(n)).
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It remains to estimate the least common multiple. The analogue of formula
(6) is

(22) Ln =

{
T (n−1)/2Aw2n/wn if n ≡ 1 (mod 2),

Au1T
n/2w2n/wn if n ≡ 0 (mod 2).

We now see that the analogues of formulas (7) and (8) are

(23) lcm[La1 , . . . , Lan ] =: M1M2,

where again M1 is the contribution to the above least common multiple of
the primes from S and M2 is the contribution of the remaining primes, then
we have

logM1 =
log T

2
max{ak}1≤k≤n +O(E1(n)),

logM2 = log lcm[w2a1/wa1 , . . . , w2an/wan ] +O(E1(n)).(24)

Now observe that by cyclotomicity, we have
w2m

wm
= δ2mδ

−1
m

∏
d|2m
d-m

Ψd(α1, β1),

and now the previous argument shows that if we put

D′n = {d : d | 2ak but d - ak for some k ∈ {1, . . . , n}},
then in fact

log lcm[w2a1/wa1 , . . . , w2an/wan ] = log |α1|A3(n) +O(E2(n)),

where

A3(n) =
∑
d∈D′

n

φ(d).

As a concluding example, take ak = k. Then

A1(n) =
∑
k≤n

k = n2/2 +O(n).

Clearly,

E1(n) ≤
∑
k≤n

log(k + 1) = O(n log n).

Next

logM1 =
T

2
n+O(E1(n)) = O(n log n),

logM2 = log |α1|A3(n) +O(E2(n)),

where

A3(n) =
∑
d∈D′

n

φ(d) with D′n = {2, 4, . . . , 2n}.



336 S. Akiyama and F. Luca

Observe that D′n is the set of even numbers less than or equal to 2n. So,

A3(n) =
∑

d≡0 (mod 2)
d≤2n

φ(d) =
∑
d≤2n

φ(d)−
∑

1≤k≤n
φ(2k − 1) := S1 + S2.

Clearly,

S1 =
(2n)2

2ζ(2)
+O(n log n) =

2n2

ζ(2)
+O(n log n).

It is well-known that if f(x) ∈ Z[x] is a polynomial of degree h with leading
coefficient ah, then∑

k≤n
φ(f(k)) = cfah(h+ 1)−1nh+1 +O(nh log n)

with

cf =
∞∑
k=1

µ(k)ρf (k)

k2
,

where ρf (n) is the number of solutions x (mod k) of the congruence f(x) ≡
0 (mod k) (see [18]). For the particular case of the polynomial f(x) = 2x−1,
we have ρf (k) = 1 if k is odd and ρf (k) = 0 if k is even, so

cf =
∑

k≡1 (mod 2)

µ(k)

k2
=
∏
p≥3

(
1− 1

p2

)
=

4

3ζ(2)
,

so since h = 1, ah = 2, we have

S2 =
4n2

3ζ(2)
+O(n log n),

leading to

A3(n) =

(
2− 4

3

)
n2

ζ(2)
+O(n log n) =

2n2

3ζ(2)
+O(n log n).

Unfortunately, given that our method is so general, the error terms are not
very good, and are worse than the ones obtained in [1] and [2], for example.
That is, for our particular case, we have

E2(n) ≤
∑
d≤2n

τ(d)2 log(d+ 1) = O(n(log n)5),

so that

log lcm[L1, . . . , Ln] = logM1 + logM2 =

(
2 log |α1|

3ζ(2)

)
n2 +O(n(log n)5).
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We find that the analogue of (2) for the Lucas sequence of the second kind
is

log |L1 · · ·Ln|
log lcm[L1, . . . , Ln]

=
(log |α|)/2

(2 log |α1|)/(3ζ(2))
+O

(
(log n)5

n

)
=

3ζ(2)

4(1− κ)
+O

(
(log n)5

n

)
.

We record this as follows.

Theorem 5. We have

log |L1 · · ·Ln|
log lcm[L1, . . . , Ln]

=
3ζ(2)

4(1− κ)
+O

(
(log n)5

n

)
.

Here, the error term is slightly worse than in [12] because of our general
approach.

3.4. The case when ak = |f(k)| with a polynomial f(X) ∈ Z[X].
In this section, we treat the case when ak = |f(k)| with f(X) ∈ Z[X]. Say

f(X) = C0X
m + C1X

m−1 + · · ·+ Cm ∈ Z[X]

has degree m ≥ 1. We assume that C0 > 0. As in the previous cases, we only
work with numbers k such that f(k) 6= 0. Clearly, the equation f(k) = 0
has at most m solutions k. We have

A1(n) =
∑

1≤k≤n
|f(k)| = C0

m+ 1
nm+1 +O(nm),

E1(n) =
∑

1≤k≤n
log(|f(k)|+ 1) = O(n log n),

so, by (3), we have

(25) log
∣∣∣ ∏
1≤k≤n
ak 6=0

uak

∣∣∣ =
C0 log |α|
m+ 1

nm+1 +O(nm log n).

To get A2(n), first we put C = gcd(C0, . . . , Cm) and write f(X) = Cg(X).
Further, putting α0 = αC , β0 = βC and

vk =
αk0 − βk0
α0 − β0

for k ≥ 0,

we have

uak =
αf(k) − βf(k)

α− β
=
α
g(k)
0 − βg(k)0

α0 − β0
uC = vg(k)uC .

Thus, instead of working with the sequences {un}n≥1 and ak = |f(k)| for
1 ≤ k ≤ n, we can work with {uCvn}n≥1 and bk = |g(k)| for 1 ≤ k ≤ n. The
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characteristic equation for the sequence {uCvn}n≥1 is

X2 −A0X −B0 = 0,

where A0 = αC + βC = u2C/uC and B0 = −(αβ)C = (−1)C−1BC . The
Lehmer sequence {wn}n≥0 associated to {vn}n≥0 is given by formula (5)
with the roots α1 = α0/

√
T0, β1 = β0/

√
T0, where T0 = gcd(A2

0, B0). The
arguments from the beginning of Section 2 show that

lcm[ua1 , . . . , uan ] = M1M2,

where

M1 =
log T0

2
max{|g(k)|}1≤k≤n +O(E1(n)),

M2 = log lcm[wb1 , . . . , wbk ] +O(E1(n)).

Clearly,

M1 = O(nm log n).

By formula (15), we have

M2 = log |α1|A2(n) +O(E2(n)),

where

A2(n) =
∑
d∈Dn

φ(d) and E2(n) =
∑
k≤n

τ(bk)
2 log(bk + 1),

and

Dn = {d : d | g(k) for some k ∈ [1, n] with g(k) 6= 0}.

By a result of van der Corput (see [20]), we have

(26)
∑

1≤k≤n
g(k)6=0

τ(|g(k)|)i = O(n(log n)c(i))

for all positive integers i, where c(i) is some constant depending on i and g.
We put c1 = max{c(1),m} and c2 = c(2). In particular, from the above
estimate (26) with i = 2 we get

E2(n) = O
(

log n
∑

1≤k≤n
g(k) 6=0

τ(|g(k)|)2
)

= O(n(log n)c2+1).

It remains to understand A2(n). For this, we split the set Dn into three
subsets according to whether d is small, or k is small, or both are large.

We put

D1,n = {d ∈ Dn : d ≤ nm/(log n)c1+1}.
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Then

(27)
∑

d∈D1,n

φ(d) ≤ nm#Dn
(log n)c1+1

≤ nm

(log n)c1+1

∑
1≤k≤n
g(k)6=0

τ(|g(k)|) = O

(
nm+1

log n

)
.

Next, let

D2,n = {d : d | g(k) for some k ≤ n/(log n)c1+1 with g(k) 6= 0}.
Then

(28)
∑

d∈D2,n

φ(d) ≤ max{|g(k)|}k≤n/(logn)c1+1#Dn = O

(
nm+1

log n

)
.

We now look at the numbers d ∈ Dn \ (D1,n ∪ D2,n). Since |g(k)| ≤ c3k
m

for all k ≥ 1 with some constant c3, we may write d = |g(k)|/e, where
n/(log n)c1+1 ≤ k ≤ n and 1 ≤ e ≤ c3(log n)c1+1. Furthermore, since C0 > 0
and k > n/(log n)c1+1, it follows that for large enough n, the number g(k)
is positive. So, from now on we shall simply write g(k) for such k instead of
|g(k)|. Put Kn = [n/(log n)c1+1, n] and En = [1, c3(log n)c1+1].

It turns out that from here on the argument (and indeed, the answer),
splits into two cases according to whether or not g(X) (or f(X)) has at least
two distinct roots.

3.4.1. Proof of Theorem 1. We start with a preliminary result about
polynomials satisfying a certain functional equation.

Lemma 1. Let f(X) ∈ C[X] of degree m and let r 6= 0, s, η be complex
numbers with r not a root of unity such that

(29) f(rX + s) = ηf(X).

Then f(X) = (aX + b)m for some complex numbers a and b such that
as = b(r − 1).

Proof. Identifying the leading coefficient in (29), we get η = rm. We
prove the lemma by induction on m. For m = 1, f(X) = aX + b, so the
relation f(rX+s) = f(X) gives a(rX+s)+b = r(aX+b), so as = b(r−1), as
desired. Assume now thatm ≥ 2 and that the claim is true for polynomials of
degree smaller than m, and let f(X) be a polynomial of degree m such that
f(rX + s) = rmf(X). Taking derivatives, we get f ′(rX + s) = rm−1f ′(X),
so, by the induction hypothesis, f ′(X) = (aX + b)m−1 where as = b(r− 1).
Thus, f(X) = 1

m(aX + b)m + d for some number d. But then (29) becomes

1

m
(a(rX + s) + b)m + d =

rm

m
(aX + b)m + rmd.

Since a(rX + s) + b = arX + as + b = r(aX + b), it follows that we must
have d = rmd, i.e. d(rm − 1) = 0, so d = 0 because r is not a root of unity.
We thus get f(X) = (a1X + b1)

m, where a1 = a/m1/m, b1 = b/m1/m.
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We next have the following lemma.

Lemma 2. There exists a constant c4 such that for n > n0 the number
of solutions (k1, k2, e1, e2) ∈ K2

n × E2n with k1 6= k2 of the equation

(30)
g(k1)

e1
=
g(k2)

e2

is at most (log n)c4.

Proof. Observe first that if e1 = e2, then g(k1) = g(k2). However, for
large n, g′(k) is positive for all k > n/(log n)c1+1, and in particular g(k)
is increasing for k ∈ Kn, so the above equation implies k1 = k2, which is
not allowed. Thus, for large n, any solution (k1, k2, e1, e2) will have e1 6= e2.
Write

g(X) = C ′0X
m+C ′1X

m−1 + · · ·+C ′m, where C ′i = Ci/C (i = 0, . . . ,m).

Observe that

C ′m−10 mmg(X) = (C ′0mX + C ′1)
m + h(X),

where h(X) ∈ Z[X] is of degree at most m− 2. Thus, from (30) we get

C ′m−10 mm(e2g(k1)− e1g(k2))

= e2(C
′
0mk1 + C ′1)

m − e1(C ′0mk2 + C ′1)
m + e2h(k1)− e1h(k2) = 0,

therefore if we put `(X) = C ′0mX + C ′1 and `i = `(ki) for i = 1, 2, then

(31) |e2`m1 − e1`m2 | = O(e1k
m−2
2 + e2k

m−2
1 ) = O(nm−2(log n)c1+1).

The left-hand side above equals

(32)
∏
ζm=1

|e1/m1 `1 − ζe1/m2 `2|,

where e
1/m
1 and e

1/m
2 stand for the real positive roots of order m of e1 and

e2 respectively. If ζ is a complex non-real root of unity of order m, then

(33) |e1/m1 `1 − ζe1/m2 `2| ≥ |Im(ζ)|e1/m2 `2 �
n

(log n)c1+1
,

and a similar inequality holds when ζ = −1 and m is even. Thus, using
inequality (33) to bound from below all factors of the product (32) except
for the one corresponding to ζ = 1, and comparing the inequality obtained
in this way with (31), we get

|e1/m1 `1 − e1/m2 `2| �
(log n)c5

n
,

where c5 = mc1 +m. In particular,∣∣∣∣α(e1, e2)−
`2
`1

∣∣∣∣� (log n)c5

`21
,
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where α(e1, e2) = (e1/e2)
1/m. Write δ = gcd(`1, `2), `1 = δm1, `2 = δm2.

We then get

(34)

∣∣∣∣α(e1, e2)−
m2

m1

∣∣∣∣ < c6(log n)c5

δ2m2
1

,

where c6 is some positive constant.

Suppose first that δ2 < 2c6(log n)c5 . Then δ can take only O((log n)c5/2)
positive integer values. By a result of Worley [21], inequality (34) implies
that

m1

m2
=
apk + bpk−1
aqk + bqk−1

or
apk+1 + bpk−1
aqk+1 + bqk−1

for some integers k ≥ 1, a ≥ 1 and b with a|b| < 2c6(log n)c5 , where
{pk/qk}k≥0 is the kth convergent to α(e1, e2). Since max{m1,m2} ≤ n, we
have k = O(log n) uniformly in e1 and e2. Since there are O((log n)2c1+2)
choices for the pair (e1, e2); next, for the number α(e1, e2), O((log n)c5/2)
choices for δ; and then O((log n)2c5+1) choices for the triple (a, b, k), we get
a totality of O((log n)2c1+2.5c5+3) choices for (`1, `2), hence, for (k1, k2), in
this instance.

Assume next that δ2 > 2c6(log n)c5 . We then have∣∣∣∣α(e1, e2)−
m2

m1

∣∣∣∣ < 1

2m2
1

.

Either α(e1, e2) = m2/m1 is rational, so the expression on the left above
is 0, or α(e1, e2) is irrational and m2/m1 = pk/qk is a convergent to α(e1, e2)
by a criterion of Legendre. Here, as before, k = O(log n). Fix e1, e2,m1,m2.
Then

m1

m2
=
`1
`2

=
C ′0mk1 + C ′1
C ′0mk2 + C ′1

,

so

k2 = rk1 + s, where r =
m2

m1
and s =

C ′1(m2 −m1)

C ′0mm1
.

Note that r 6= 1, because if not, then m1 = m2 = 1, so k2 = k1, which is
not allowed. Since r is also positive, it follows that r is not a root of unity.
Going back to (30), we get

g(rk1 + s)

g(k1)
= η with η =

e2
e1
.

Since r, s, η are fixed, the above is a polynomial relation in k1, so it has at
most m roots, unless the rational function g(rX + s)/g(X) is constant η,
which is not the case by Lemma 1 and the fact that g(X) has at least
two distinct zeros. Thus, when e1, e2,m1,m2 are fixed, there are at most
m possibilities for k1, and then k2 is uniquely determined. This shows that
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the number of solutions of equation (30) in this case is O((log n)2c1+3). The
lemma now follows with c4 = 2c1 + 2.5c5 + 4 = (2.5m+ 2)c1 + 2.5m+ 4.

For each d ∈ Dn \ (D1,n∪D2,n) let r(d) be the number of representations
of d in the form d = g(k)/e for some k ∈ Kn and e ∈ En. Lemma 2 shows
that if we put

D3,n = {d ∈ Dn \ (D1,n ∪ D2,n) : r(d) > 1},

then

(35) #D3,n = O((log n)c4).

We now use the relation

m =
∑
d|m

φ(d)

with m = g(k) in the following way:

(36) g(k) =
∑
e|g(k)
e∈En

φ

(
g(k)

e

)
+O

(
g(k)

∑
e|g(k)

e>c3(logn)c1+1

1

e

)
,

which we rewrite as

(37) g(k) =
∑
e|g(k)
e∈En

φ

(
g(k)

e

)
+O

(
nm

∑
e|g(k)

e>c3(logn)c1+1

1

e

)
.

We sum up the above relation for all k ∈ Kn getting∑
k∈Kn

g(k) =
∑

d∈Dn\(D1,n∪D2,n)

φ(d) +O(nm(#D3,n)2)(38)

+O

(
nm

∑
e>c3(logn)c1+1

1

e

∑
k∈Kn

g(k)≡0 (mod e)

1

)
.

The term on the left in (38) is obviously∑
k∈Kn

(C ′0k
m +O(km−1)) =

C ′0n
m+1

m+ 1
+O

(
nm+1

log n

)
.

The first term on the right in (38) is

A2(n)−
∑

d∈D1,n∪D2,n

φ(d) = A2(n) +O

(
nm+1

log n

)
,

by estimates (27) and (28). The second term on the right in (38) is of order
O(nm(log n)2c4) by (35). For the last term on the right in (38), we use the
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fact that∑
k∈Kn

g(k)≡0 (mod e)

1 = ρg(e)

⌊
#Kn
e

⌋
+O(ρg(e))�

{
nρg(e)/e if e ≤ n,
ρg(e) if e > n,

where ρg has the same meaning as in Section 3.3. Consequently, the last
term on the right in (38) is of order

nm+1
∑

c3(logn)c1+1<e≤n

ρg(e)

e2
+ nm

∑
n<e

e|g(k) for some k∈Kn

ρg(e)

e
=: S1 + S2.

From the Ore–Nagell theorem (see [16]), we have ρg(e)� mω(e). Thus,

S1 =
nm+1

(log n)c1+1

∑
e≤n

ρg(e)

e
� nm+1

(log n)c1+1

∑
e≤n

mω(e)

e

=
nm+1

(log n)c1+1

∏
p≤n

(
1 +

m

p
+
m

p2
+ · · ·

)

� nm+1

(log n)m+1
exp

(∑
p≤n

m

p
+O(1)

)

� nm+1

(log n)c1+1
exp(m log log n+O(1))

� nm+1

(log n)c1+1−m = O

(
nm+1

log n

)
.

Here, we used the fact that c1 ≥ m.

For S2, we use the estimate ω(e) = o(log e) as e → ∞ to conclude that
ρg(e) ≤ mo(log e) = eo(1) as e → ∞. In particular, ρ(e) < e1/2 for all e > n
and n sufficiently large. Thus,

S2 � nm
∑
n<e

e|g(k) for some k∈Kn

1√
e
� nm−1/2

∑
1≤k≤n

τ(|g(k)|)

� nm+1/2(log n)c1+1 = O

(
nm+1

log n

)
.

So, the last term on the right in (38) is S1+S2 = O(nm+1/log n). From (38),
we now get

A2(n) =
C ′0n

m+1

m+ 1
+O

(
nm+1

log n

)
.
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Hence

log lcm[ua1 , . . . , uan ] =
C ′0 log |α1|
m+ 1

nm+1 +O

(
nm+1

log n

)
.

Since α1 = α0/
√
T0 = αC/

√
T0, and

log
∣∣∣ ∏
1≤k≤n
ak 6=0

uak

∣∣∣ =
log |α|C0

m+ 1
nm+1 +O

(
nm+1

log n

)

(see (25)), we get

log |
∏

1≤k≤n, ak 6=0 uak |
log lcm[ua1 , . . . , uan ]

=
1

1− κ0
+O

(
1

log n

)
,

where

κ0 =
gcd(A2

0, B0)

2 log |α0|
=

gcd((u2C/uC)2, BC)

2 log |α|C
.

It is easy to show using (5) that κ0 does not depend on C, so in particular
κ0 = κ. The proof of Theorem 1 is finished.

3.4.2. Proof of Theorem 2. We start with the following lemma.

Lemma 3. We have g(X) = (aX+ b)m for some coprime integers a > 0
and b.

Proof. We can clearly write g(X) = (aX+b)m for some complex numbers
a and b. Identifying the first two coefficients we get C ′0 = am, C ′1 = mam−1b,
so b/a = C ′1/(mC

′
0) ∈ Q. Further, am = C ′0 > 0, so we may assume, up to

replacing (a, b) by (aζ, bζ), where ζ is some root of order m of unity, that
a = a1ρ

1/m, where a1 > 0 is an integer and ρ > 0 is an integer which is mth
power free. Since b/a ∈ Q and bm = C ′m, it follows that b = b1ρ

1/m for some
integer b1. Thus, g(X) = ρ(a1X + b1)

m, so ρ divides all the coefficients of
g(X), therefore ρ = 1.

When g(X) had at least two roots, we found a suitable set of large
numbers d = g(k)/e for which r(d) = 1, namely all numbers in Dn \ (D1,n ∪
D2,n) minus D3,n. In the present case, we replace this by the following.

Lemma 4. Every d = g(k)/e ∈ Dn \ (D1,n ∪D2,n) can be uniquely repre-
sented as d = g(k)/e for some e which is mth power free.

Proof. This is trivial since if g(k1)/e1 = g(k2)/e2, then, by Lemma 3,
we have e1/e2 = ((ak1 + b)/(ak2 + b))m, and the number on the left is mth
power free, while the number on the right is an mth power. Thus, both are
equal to 1, so e1 = e2 and k1 = k2.

We also need the following easy fact about multiplicative functions.
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Lemma 5. We have

nm
∏
p|n

(
1− 1

pm

)
=

∑
e|nm

e mth power free

φ

(
nm

e

)
.

Proof. Both functions above are multiplicative, the one on the left for
obvious reasons, while the one on the right because it is the convolution of
the multiplicative function n 7→ φ(nm) with the characteristic function of
the set of mth power free numbers. If n = pα for some prime p and integer
exponent α ≥ 1, then the formula becomes

p(α−1)m(pm − 1) =
m−1∑
f=0

φ(pαm−f )

=
m−1∑
f=0

(p− 1)pmα−f−1

= (p− 1)p(α−1)m(1 + p+ · · ·+ pm−1)

= (p− 1)p(α−1)m
(
pm − 1

p− 1

)
= p(α−1)m(pm − 1),

which is what we wanted.

We now continue our argument. Instead of (36) which leads immediately
to (37), we use Lemma 5 to deduce that the relation analogous to (37) in
this case is ∑

e|ak+b
µ(e)2=1

µ(e)

(
ak + b

e

)m
=

∑
e|g(k)

e<c3(logn)c1+1

e mth power free

φ

(
(ak + b)m

e

)

+O

(
nm

∑
e|g(k)

e>c3(logn)c1+1

1

e

)
.

We now sum up the above relation over all k ∈ Kn getting∑
k∈Kn

∑
e|ak+b
µ(e)2=1

µ(e)

(
ak + b

e

)m
=
∑
k∈Kn

∑
e|g(k)

e<c3(logn)c1+1

e mth power free

φ

(
(ak + b)m

e

)
(39)

+O

(
nm

∑
k∈Kn

∑
e|g(k)

e>c3(logn)c1+1

1

e

)
.
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The issue of overcounting elements in Dn no longer appears by Lemma 4, so
the right-hand side of (39) above is equal to A2(n) + O(nm+1/log n). Note
that if e | ak+ b for some k ∈ Kn, then e and a are coprime and e ≤ an+ b.
We change the order of summation on the left hand side of (39):

(40)
∑

1≤e≤an+b
(e,a)=1
µ(e)2=1

µ(e)

em

∑
k∈Kn

ak+b≡0 (mod e)

(amkm +O(nm−1))

= am
∑

1≤e≤an+b
µ(e)2=1

µ(e)

em

∑
k∈Kn

ak+b≡0 (mod e)

km +O

(
nm−1#Kn

∑
e≤an+b

1

e

)

= am
∑

1≤e≤an+b
(e,a)=1
µ(e)2=1

µ(e)

em

( ∑
1≤k≤n

ak+b≡0 (mod e)

km −
∑

1≤k≤n/(logn)c1+1

ak+b≡0 (mod e)

km
)

+O(nm log n)

= am
∑

1≤e≤an+b
(e,a)=1
µ(e)2=1

µ(e)

em

∑
1≤k≤n

ak+b≡0 (mod e)

km +O(nm log n)

+O

(
nm+1

(log n)(m+1)(c1+1)

∑
e≤an+|b|

1

e

)

= am
∑

1≤e≤an+b
(e,a)=1
µ(e)2=1

µ(e)

em

∑
1≤k≤n

ak+b≡0 (mod e)

km +O

(
nm+1

log n

)
.

For the inner sum, we use Abel’s summation formula together with the
fact that the counting function of the set of k ≤ n such that ak + b ≡
0 (mod e) is n/e+O(1). We get∑

1≤k≤n
ak+b≡0 (mod e)

km =

(
n

e
+O(1)

)
nm −m

n�

1

(
t

e
+O(1)

)
tm−1 dt

=
nm+1

e
+O(nm)−m

n�

1

tm

e
dt+O

(n�
1

tm−1 dt
)

=
nm+1

e
−
(
mtm+1

m+ 1

∣∣∣∣t=n
t=1

)
+O(nm) =

nm+1

(m+ 1)e
+O(nm).

Inserting this into (40), we get
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A2(n) = am
∑

1≤e≤an+b
(e,a)=1
µ(e)2=1

µ(e)

em

(
nm+1

(m+ 1)e
+O(nm)

)
+O

(
nm+1

log n

)

=
amnm+1

m+ 1

∑
1≤e≤an+b
(e,a)=1
µ(e)2=1

µ(e)

em+1
+O

(
nm

∑
e≤an+b

1

e
+
nm+1

log n

)

=
amnm+1

m+ 1

( ∑
e≥1

(e,a)=1
µ(e)2=1

µ(e)

em+1
−

∑
e>an+b
(e,a)=1
µ(e)2=1

µ(e)

em+1

)
+O

(
nm+1

log n

)

=
amnm+1

m+ 1

∏
p-a

(
1− 1

pm+1

)
+O

(
nm+1

∑
e>an+b

1

e2
+
nm+1

log n

)

=

(
amζ(m+ 1)−1

m+ 1

∏
p|a

(
1− 1

pm+1

)−1)
nm+1 +O

(
nm+1

log n

)

=

(
C ′0ζ(m+ 1)−1

m+ 1

∏
p|a

(
1− 1

pm+1

)−1)
nm+1 +O

(
nm+1

log n

)
.

So, we conclude that

log
∣∣∣ ∏
1≤k≤n
ak 6=0

uak

∣∣∣ =
log |α|C0

m+ 1
nm+1 +O

(
nm+1

log n

)
,

while

log lcm[ua1 , . . . , uan ] =

(
log |α1|C ′0

(m+ 1)ζ(m+ 1)

∏
p|a

(
1− 1

pm+1

)−1)
nm+1

+O

(
nm+1

log n

)
,

This leads to

log |
∏

1≤k≤n, ak 6=0 uak |
log lcm[ua1 , . . . , uan ]

=
ζ(m+ 1)

1− κ
∏
p|a

(
1− 1

pm+1

)
+O

(
1

log n

)
.

Thus, we obtained Theorem 2.
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