A note on sumsets of subgroups in \mathbb{Z}_{p}^{*}

by
Derrick Hart (Kansas City, MO)

For subsets A_{1}, \ldots, A_{k} of a group define $A_{1}+\cdots+A_{k}=\left\{a_{1}+\cdots+a_{k}\right.$: $\left.a_{i} \in A_{i}, 1 \leq i \leq k\right\}$. In the case that all the subsets are equal we will denote the k-fold sumset of A by $k A=\left\{x_{1}+\cdots+x_{k}: x_{i} \in A, 1 \leq i \leq k\right\}$.

Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*}. What is the smallest $\alpha>0$ such that $|A| \gg p^{\alpha}$ implies that $2 A$ contains \mathbb{Z}_{p}^{*} ?

Conjecture 0.1. Let $|A|>p^{1 / 2+\epsilon}, \epsilon>0$. Then $2 A$ contains \mathbb{Z}_{p}^{*}.
It is relatively simple, using exponential sum bounds, to show that if $|A|>p^{3 / 4}$ then $2 A \supseteq \mathbb{Z}_{p}^{*}$. Surprisingly, no improvement in the exponent has been made. An alternative approach would be to consider this conjecture from an inverse perspective. Let $|A|>p^{1 / 2+\epsilon}$; what is the smallest k_{0} such that $k_{0} A$ contains \mathbb{Z}_{p}^{*} ? A direct application of classical counting methods using standard exponential sum bounds does not seem to yield any answer to this question. For example, using the fact that $\max _{\lambda \neq 0}\left|\sum_{x \in A} e_{p}(x \lambda)\right| \leq \sqrt{p}$ one may show that if $|A|>p^{1 / 2+1 /(2 k)}$ then $k A$ contains \mathbb{Z}_{p}^{*}.

Using combinatorial methods Glibichuk [1 gave the first answer to this question showing that $8 A \supseteq \mathbb{Z}_{p}^{*}$ for $|A| \geq 2 p^{1 / 2}$. Using an improved exponential sum bound, Schoen and Shkredov [3, Theorem 2.6] showed that $7 A \supseteq \mathbb{Z}_{p}^{*}$ for $|A|>p^{1 / 2}$. There was subsequent improvement to this result by Shkredov and Vyugin [7 followed by Schoen and Shkredov [4. Recently, Shkredov [5] has shown that $6 A \supseteq \mathbb{Z}_{p}^{*}$ if $|A|>p^{55 / 112+\epsilon}=p^{491 \ldots+\epsilon}$.

In this paper we elaborate on the methods in the above-mentioned papers to show that $6 A \supseteq \mathbb{Z}_{p}^{*}$ if $|A|>p^{11 / 23+\epsilon}=p^{478 \ldots+\epsilon}$. In addition, we extend a result of Shkredov [5] to show that $|2 A| \gg|A|^{8 / 5-\epsilon}$ for $|A| \ll p^{5 / 9}$.

1. Statement of main results. Let A and B be subsets of \mathbb{Z}_{p}. Given a set A we will denote the indicator function of A by $A(\cdot)$. Define the convolution of A and B by $(A * B)(z)=\sum_{x+y=z} A(x) B(y)=|A \cap(z-B)|$.

[^0] Key words and phrases: multiplicative subgroups, sumsets, sum-product.

The additive energy between A and B is given by

$$
\begin{aligned}
E(A, B) & =|\{(x, y, z, w) \in A \times B \times A \times B: x+y=z+w\}| \\
& =\sum_{z}(A * B)^{2}(z)=\sum_{z}|A \cap(z-B)|^{2} \\
& =\sum_{z}(A *-A)(z)(B *-B)(z)=\sum_{z}\left|A_{z}\right|\left|B_{z}\right|
\end{aligned}
$$

here and throughout, we let $C_{z}=C \cap(C+z)$ for any subset C of \mathbb{Z}_{p}. In the case that $A=B$ we will write $E(A)=E(A, A)$. Similarly, we will denote the r th additive energy of a subset A by $E_{r}(A)=\sum_{s}\left|A_{s}\right|^{r}$.

One may also consider the additive energy in the frequency domain. Taking an exponential sum expansion, we obtain

$$
E(A, B)=p^{-1} \sum_{s}\left|\sum_{x \in A} e_{p}(s x)\right|^{2}\left|\sum_{y \in B} e_{p}(s y)\right|^{2},
$$

where $e_{p}(x)=e^{2 \pi i x / p}$. For a subset A of \mathbb{Z}_{p} we define

$$
\Phi_{A}=\max _{\lambda \neq 0}\left|\sum_{x \in A} e_{p}(\lambda x)\right| .
$$

Heath-Brown and Konyagin employed Stepanov's method in order to give a bound on the additive energy of multiplicative subgroups of \mathbb{Z}_{p}^{*}.

Theorem 1.1 ([2]). Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A| \ll$ $p^{2 / 3}$. Then

$$
E(A) \ll|A|^{5 / 2}
$$

In 5 Shkredov gave the following combinatorial lemma.
Lemma 1.2 ([5, equation (1)]). Let A be a finite subset of an abelian group. Then

$$
\sum_{s} \frac{\left|A_{s}\right|^{2}}{\left|A+A_{s}\right|} \ll|A|^{-2} E_{3}(A) .
$$

Schoen and Shkredov (3) gave an estimate for $E_{3}(A)$.
Lemma 1.3 (3 , Lemma 3.3]). Let A be a multiplicative subgroup A of \mathbb{Z}_{p}^{*} with $|A| \ll p^{2 / 3}$. Then

$$
E_{3}(A) \ll|A|^{3} \log (|A|) .
$$

Combining Lemmas 1.2 and 1.3 and noting that $\left|A+A_{s}\right| \leq\left|(2 A)_{s}\right|$ gives the following lemma.

Lemma 1.4. Let A be a multiplicative subgroup A of \mathbb{Z}_{p}^{*} with $|A| \ll p^{2 / 3}$. Then

$$
\sum_{s} \frac{\left|A_{s}\right|^{2}}{\left|(2 A)_{s}\right|} \ll|A| \log (|A|)
$$

Shkredov used this inequality in [5] to give the following estimate on the additive energy.

Theorem 1.5 ([5, Theorem 30]). Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} such that $|A| \ll p^{2 / 3}$. If $E(A) \ll|A|^{3 / 2} \sqrt{p} \log (|A|)$ then

$$
E(A) \ll|A|^{4 / 3}|2 A|^{2 / 3} \log (|A|)
$$

In addition, using different methods he proved an energy estimate independent of the size of the sumset.

Theorem 1.6 ([5, Theorem 34]). Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} such that $|A| \ll p^{2 / 3}$. Then

$$
E(A) \ll \max \left\{|A|^{22 / 9} \log (|A|),|A|^{3} p^{-1 / 3} \log ^{4 / 3}(|A|)\right\}
$$

Combining Theorems 1.5 and 1.6 and applying the trivial estimate $|2 A|$ $\geq|A|^{4} E^{-1}(A)$ gives the following sumset estimate.

TheOrem 1.7. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A| \ll p^{2 / 3}$. Then

$$
|2 A| \gg \begin{cases}|A|^{8 / 5} \log ^{-3 / 5}(|A|) & \text { if }|A| \ll p^{9 / 17} \\ |A|^{14 / 9} \log ^{-1}(|A|) & \text { if }|A| \ll p^{3 / 5} \log ^{3 / 5}(|A|) \\ |A| p^{1 / 3} \log ^{-4 / 3}(|A|) & \text { if }|A| \gg p^{3 / 5} \log ^{3 / 5}(|A|)\end{cases}
$$

Here we give the following energy estimate.
Theorem 1.8. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A| \ll p^{2 / 3}$. Then

$$
E(A) \ll \max \left\{|A|^{4 / 3}|2 A|^{2 / 3} \log ^{1 / 2}(|A|),|A||2 A|^{2} p^{-1} \log (|A|)\right\}
$$

This allows us to improve Shkredov's sumset result in some ranges.
Theorem 1.9. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A| \ll p^{2 / 3}$. Then

$$
|2 A| \gg \begin{cases}|A|^{8 / 5} \log ^{-3 / 10}(|A|) & \text { if }|A| \ll p^{5 / 9} \log ^{-1 / 18}(|A|) \\ |A| p^{1 / 3} \log ^{-1 / 3}(|A|) & \text { if }|A| \gg p^{5 / 9} \log ^{-1 / 18}(|A|)\end{cases}
$$

Using the Plancherel identity or orthogonality one can very quickly prove that $\Phi_{A} \ll \sqrt{p}$ for a multiplicative subgroup A with $|A| \gg p^{1 / 2}$. This is only non-trivial when $|A|>p^{1 / 2}$. Shparlinski [6] improved this result in some ranges with the bound $\Phi_{A} \ll|A|^{7 / 12} p^{1 / 6}$ for $p^{2 / 5} \ll|A| \ll p^{4 / 7}$. HeathBrown and Konyagin [2] used the energy estimate of Theorem 1.1 to obtain the following improvement.

Theorem 1.10. Let A be a multiplicative subgroup. Then

$$
\Phi_{A} \ll \begin{cases}\sqrt{p} & \text { if } p^{2 / 3} \ll|A| \leq p \\ p^{1 / 4}|A|^{-1 / 4} E^{1 / 4}(A) \ll p^{1 / 4}|A|^{3 / 8} & \text { if } p^{1 / 2} \ll|A| \ll p^{2 / 3} \\ p^{1 / 8} E^{1 / 4}(A) \ll p^{1 / 8}|A|^{5 / 8} & \text { if } p^{1 / 3} \ll|A| \ll p^{1 / 2}\end{cases}
$$

Using Shkredov's energy estimate, one may improve this result in some ranges when the sumset is small. Let $|A| \ll p^{1 / 2}$; then

$$
\Phi_{A} \ll p^{1 / 8}|A|^{1 / 3}|2 A|^{1 / 6} \log ^{1 / 4}(|A|)
$$

Using the same methods employed to prove Lemma 1.3 one may obtain $E_{3 / 2}(A) \ll|A|^{9 / 4}$. If the sumset is small we are able to significantly improve this bound.

Lemma 1.11. Let A be a multiplicative subgroup with $|A| \ll p^{1 / 2}$. Then

$$
E_{3 / 2}(A) \ll|A|^{1 / 2}|2 A| \log ^{7 / 4}|A|
$$

This lemma allows us to obtain the following exponential sum bound which is an improvement of the result of Shkredov as long as $|2 A| \ll|A|^{7 / 4-\epsilon}$.

Lemma 1.12. Let A be a multiplicative subgroup with $|A| \ll p^{1 / 2}$. Then

$$
\Phi_{A} \ll p^{1 / 8}|A|^{-1 / 8}|2 A|^{1 / 4} E^{1 / 8}(|A|) \log ^{7 / 16}(|A|)
$$

In particular, applying Theorem 1.8 we have

$$
\Phi_{A} \ll p^{1 / 8}|A|^{1 / 24}|2 A|^{1 / 3} \log ^{1 / 2}(|A|)
$$

With Lemma 1.12 in tow, we may now prove our main result.
TheOrem 1.13. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A| \gg$ $p^{11 / 23} \log ^{12 / 23}(|A|)$. Then

$$
6 A \supseteq \mathbb{Z}_{p}^{*}
$$

Proof. Fix a in \mathbb{Z}_{p}^{*}. We may assume that $|A| \ll p^{1 / 2}$ as the result is already known in the range $|A| \gg p^{1 / 2}$.

Let N be the number of solutions to the equation

$$
x_{1}+x_{2}+y_{1}+y_{2}=a y_{3}
$$

with $x_{1}, x_{2} \in 2 A$ and $y_{1}, y_{2}, y_{3} \in A$. Taking an exponential sum expansion, we obtain

$$
N=\frac{|2 A|^{2}|A|^{3}}{p}+\frac{1}{p} \sum_{\lambda \neq 0}\left(\sum_{x \in 2 A} e_{p}(\lambda x)\right)^{2}\left(\sum_{y \in A} e_{p}(\lambda y)\right)^{2}\left(\sum_{z \in A} e_{p}(-\lambda z a)\right)
$$

which by the Plancherel identity implies $N>0$ as long as $|2 A||A|^{3}>p \Phi_{A}^{3}$. Applying Lemma 1.12 gives the condition

$$
|2 A||A|^{3} \gg p^{11 / 8}|2 A||A|^{1 / 8} \log ^{3 / 2}(|A|)
$$

which in turn leads to

$$
|A| \gg p^{11 / 23} \log ^{12 / 23}(|A|)
$$

2. A few preliminary lemmas. We begin with a lemma of Shkredov and Vyugin [7, Corollary 5.1] which is a generalization of a result of HeathBrown and Konyagin [2]. We say that a subset $S \neq\{0\}$ is A-invariant if $S A=\{s a: s \in S, a \in A\}=S$, that is, S is a union of cosets of A and possibly $\{0\}$.

Lemma 2.1 (Shkredov and Vyugin [7, Corollary 5.1]). Let A be a multiplicative subgroup of \mathbb{Z}_{p} and let S_{1}, S_{2}, S_{3} be A-invariant sets such that $\left|S_{1} \backslash\{0\}\right|\left|S_{2} \backslash\{0\}\right|\left|S_{3} \backslash\{0\}\right| \ll \min \left\{|A|^{5}, p^{3}|A|^{-1}\right\}$. Then

$$
\sum_{z \in S_{3}}\left(S_{1} * S_{2}\right)(z) \ll|A|^{-1 / 3}\left(\left|S_{1}\right|\left|S_{2}\right|\left|S_{3}\right|\right)^{2 / 3}
$$

Remark. The above lemma has been modified slightly from its original form in order to allow S_{1}, S_{2}, S_{3} to contain the zero element. One may check that the additional terms in $\sum_{z \in S_{3}}\left(S_{1} * S_{2}\right)(z)$ allowing S_{1}, S_{2} to contain the zero element only affect the implied constant.

We can now give a variant of a result of Shkredov [5].
Lemma 2.2 ([5, Corollary 18]). Let $k \gg 1$ and S_{1}, S_{2} be A-invariant sets and let M be any A-invariant subset of the set $\left\{z:\left(S_{1} * S_{2}\right)(z) \geq k\right\}$. If $\left|S_{1}\right|\left|S_{2}\right||M||A| \ll \min \left\{|A|^{6}, p^{3}\right\}$ then

$$
\begin{aligned}
& \sum_{z \in M}\left(S_{1} * S_{2}\right)^{r}(z) \ll\left|S_{1}\right|^{2}\left|S_{2}\right|^{2}|A|^{-1} k^{r-3} \quad \text { for } 1 \leq r<3 \\
& \sum_{z \in M}\left(S_{1} * S_{2}\right)^{3}(z) \ll\left|S_{1}\right|^{2}\left|S_{2}\right|^{2}|A|^{-1} \log \left(\left|S_{1}\right|^{2}\left|S_{2}\right|^{2}|A|^{-2} k^{-3}\right)
\end{aligned}
$$

Proof. Let $l_{i}=\left(S_{1} * S_{2}\right)\left(z_{i}\right), z_{i} \neq 0$, where $l_{1} \geq l_{2} \geq \cdots$ are arranged in decreasing order. For each z in the coset $a A=\left\{a a^{\prime}: a^{\prime} \in A\right\}, a \in \mathbb{Z}_{p}$, note that $\left(S_{1} * S_{2}\right)(z)=\left(S_{1} * S_{2}\right)(a)$. By the coset $a_{i} A$ we will mean the coset on which $l_{i}=\left(S_{1} * S_{2}\right)\left(a_{i}\right)$. Let M be any A-invariant subset of the set $\left\{z:\left(S_{1} * S_{2}\right)(z) \geq k\right\}$ and $M_{i}=\bigcup_{j=1}^{i} a_{j} A \subseteq M$. From Lemma 2.1 we have

$$
l_{i}|A| i \leq \sum_{j=1}^{i}|A| l_{j} \leq \sum_{z \in M_{i}}\left(S_{1} * S_{2}\right)(z) \ll i^{2 / 3}|A|^{1 / 3}\left|S_{1}\right|^{2 / 3}\left|S_{2}\right|^{2 / 3}
$$

as long as $i|A|\left|S_{1}\right|\left|S_{2}\right| \ll|M|\left|S_{1}\right|\left|S_{2}\right| \ll \min \left\{|A|^{5}, p^{3}|A|^{-1}\right\}$. Now,

$$
\begin{aligned}
\sum_{z \in M}\left(S_{1} * S_{2}\right)^{r}(z) & \leq|A| \sum_{i \ll\left|S_{1}\right|^{2}\left|S_{2}\right|^{2}|A|^{-2} k^{-3}} l_{i}^{r} \\
& \ll|A| \sum_{i \ll\left|S_{1}\right|^{2}\left|S_{2}\right|^{2}|A|^{-2} k^{-3}}\left(i^{-1 / 3}|A|^{-2 / 3}\left|S_{1}\right|^{2 / 3}\left|S_{2}\right|^{2 / 3}\right)^{r}
\end{aligned}
$$

3. Additive energy bound: Proof of Theorem 1.8. We may assume that

$$
E(A) \gg \max \left\{|A|^{4 / 3}|2 A|^{2 / 3} \log ^{1 / 2}(|A|),|A||2 A|^{2} p^{-1} \log (|A|)\right\}
$$

Combining this with the energy estimate from Theorem 1.1 we may also assume that

$$
|2 A| \ll \max \left\{|A|^{7 / 4} \log ^{-3 / 4}(|A|),|A|^{3 / 4} p^{1 / 2} \log ^{-1 / 2}(|A|)\right\}
$$

Write

$$
E(A)=\sum_{s}\left|A_{s}\right|^{2} \ll \sum_{s \in M_{1}}\left|A_{s}\right|^{2}
$$

where $M_{1}=\left\{s:\left|A_{s}\right| \gg k_{1}:=|A|^{-2} E(A)\right\}$. Note that we have the trivial estimate $\left|M_{1}\right| \ll|A|^{2} k_{1}^{-1}=|A|^{4} E^{-1}(|A|)$. Now Lemma 1.4 gives

$$
E(A)=\sum_{s}\left|A_{s}\right|^{2} \ll \frac{E(A)}{|A| \log (A)} \sum_{s \in M_{2}^{c}} \frac{\left|A_{s}\right|^{2}}{\left|(2 A)_{s}\right|}+\sum_{s \in M_{2}}\left|A_{s}\right|^{2} \lll \sum_{s \in M_{2}}\left|A_{s}\right|^{2}
$$

where $M_{2}=\left\{s: s \in M_{1},\left|(2 A)_{s}\right| \gg k_{2}:=|A|^{-1} \log ^{-1}(|A|) E(A)\right\}$.
By Lemma 2.1 we have $k_{2}\left|M_{2}\right| \ll|A|^{-1 / 3}|2 A|^{4 / 3}\left|M_{2}\right|^{2 / 3}$, yielding $\left|M_{2}\right| \ll$ $|2 A|^{4}|A|^{-1} k_{2}^{-3}$ as long as $|2 A|^{2}\left|M_{2}\right| \ll \min \left\{|A|^{5}, p^{3}|A|^{-1}\right\}$. In order to see that the first bound holds, one may note that $\left|M_{2}\right| \ll\left|M_{1}\right|$ combined with our assumptions on the size of energy and sumset. To show that $|2 A|^{2}\left|M_{2}\right| \ll$ $p^{3}|A|^{-1}$ we use an exponential sum expansion,

$$
\left|M_{2}\right| k_{2} \ll \sum_{s \in M}\left|(2 A)_{s}\right| \ll \frac{1}{p} \sum_{m}\left|\sum_{x \in 2 A} e_{p}(x m)\right|^{2}\left(\sum_{x \in M_{2}} e_{p}(x m)\right)
$$

together with the bound $\max _{m \neq 0}\left|\sum_{x \in M_{2}} e_{p}(x m)\right| \ll p^{1 / 2}\left|M_{2}\right|^{1 / 2}|A|^{-1 / 2}$, to deduce

$$
\left|M_{2}\right| k_{2} \ll \max \left\{p^{-1}|2 A|^{2}\left|M_{2}\right|, p^{1 / 2}|2 A|\left|M_{2}\right|^{1 / 2}|A|^{-1 / 2}\right\} .
$$

If the first of these two bounds holds then $E(A) \ll|A||2 A|^{2} p^{-1} \log (|A|)$. We may then assume that $\left|M_{2}\right| \ll p|2 A|^{2}|A|^{-1} k_{2}^{-2}$, which implies that $|2 A|^{2}\left|M_{2}\right| \ll p|2 A|^{4}|A| \log ^{2}(|A|) E^{-2}(A) \ll p^{3}|A|^{-1}$.

Therefore, for $|A| \ll p^{2 / 3}$, we have $\left|M_{2}\right| \ll|2 A|^{4}|A|^{-1} k_{2}^{-3}$. Using this fact we may again reduce the number of terms:

$$
E(A)=\sum_{s}\left|A_{s}\right|^{2} \ll k_{3}^{2}\left|M_{2}\right|+\sum_{s \in M_{3}}\left|A_{s}\right|^{2} \lll \sum_{s \in M_{3}}\left|A_{s}\right|^{2}
$$

where $M_{3}=\left\{s: s \in M_{2},\left|A_{s}\right| \gg k_{3}:=|2 A|^{-2}|A|^{-1} \log ^{-3 / 2}(|A|) E^{2}(A)\right\}$.
Finally, applying Lemma 2.2 we have

$$
E(A) \ll|A|^{4}|2 A|^{2} \log ^{3 / 2}(|A|) E^{-2}(|A|),
$$

as long as $|A|^{2}\left|M_{3}\right| \ll|2 A|^{2}\left|M_{2}\right| \ll \min \left\{|A|^{5}, p^{3}|A|^{-1}\right\}$.
4. $E_{3 / 2}(A)$: Proof of Lemma 1.11. Let $l_{i}=\left|A_{z_{i}}\right|, z_{i} \neq 0$, where $l_{1} \geq l_{2} \geq \cdots$ are arranged in decreasing order. For each z in the coset $a A=\left\{a a^{\prime}: a^{\prime} \in A\right\}, a \in \mathbb{Z}_{p}$, note that $\left|A_{z}\right|=\left|A_{a}\right|$. By the coset $a_{i} A$ we will mean the coset on which $l_{i}=\left|A_{a_{i}}\right|$. Let M be any A-invariant subset of the set $\left\{z:\left|A_{z}\right| \geq k\right\}$, and $M_{i}=\bigcup_{j=1}^{i} a_{j} A \subseteq M$. Set $k=|2 A|^{2}|A|^{-3}$.

We have

$$
l_{i}|A| i \leq \sum_{j=1}^{i}|A| l_{j} \leq \sum_{z \in M_{i}}\left|A_{z}\right|
$$

Now

$$
\sum_{z \in M_{i}}\left|A_{z}\right|=\sum_{z \in M_{i}} \frac{\left|A_{z}\right|}{\left|(2 A)_{z}\right|^{1 / 2}}\left|(2 A)_{z}\right|^{1 / 2} \leq\left(\sum_{z} \frac{\left|A_{z}\right|^{2}}{\left|2 A_{z}\right|}\right)^{1 / 2}\left(\sum_{z \in M_{i}}\left|2 A_{z}\right|\right)^{1 / 2}
$$

Therefore, by Lemma 1.4 ,

$$
l_{i}^{2}|A|^{2} i^{2} \ll|A| \log (|A|) \sum_{z \in M_{i}}\left|2 A_{z}\right| .
$$

Noting that $\left|M_{i}\right| \ll|A|^{2} k^{-1}$ we have $\left|M_{i}\right||2 A|^{2} \ll|A|^{5}$. Hence we can apply Lemma 2.1 to get

$$
l_{i}^{2}|A|^{2} i^{2} \ll|2 A|^{4 / 3} i^{2 / 3}|A|^{4 / 3} \log |A| .
$$

This implies

$$
l_{i} \ll|2 A|^{2 / 3} i^{-2 / 3}|A|^{-1 / 3} \log ^{1 / 2}|A|
$$

for $i \ll|A-A||A|^{-1} \leq|A|$. Finally

$$
\begin{aligned}
\sum_{z}\left|A_{z}\right|^{3 / 2} & \ll k^{1 / 2}|A|^{2}+|A| \sum_{i \ll|A|}\left|l_{i}\right|^{3 / 2} \\
& \ll k^{1 / 2}|A|^{2}+|A|^{1 / 2}|2 A| \log ^{7 / 4}(|A|)
\end{aligned}
$$

giving the desired result.
5. Exponential sum bound: Proof of Lemma 1.12. We begin by expanding the sum below and performing a basic substitution:

$$
\begin{aligned}
|A|\left|\sum_{x \in A} e_{p}(\lambda x)\right|^{2} & =\sum_{y \in A}\left|\sum_{x \in A} e_{p}(\lambda y x)\right|^{2} \\
& =\sum_{x_{1}, x_{2} \in A} \sum_{y \in A} e_{p}\left(\lambda y\left(x_{1}-x_{2}\right)\right)=\sum_{s}\left|A_{s}\right| \sum_{y \in A} e_{p}(\lambda y s) .
\end{aligned}
$$

Now we may take absolute values and estimate from above:

$$
|A| \Phi_{A}^{2} \leq \sum_{s}\left|A_{s}\right|\left|\sum_{y \in A} e_{p}(\lambda y s)\right|
$$

Applying Hölder's inequality we have

$$
|A| \Phi_{A}^{2} \ll\left(\sum_{s}\left|A_{s}\right|^{4 / 3}\right)^{3 / 4}\left(\sum_{s}\left|\sum_{y \in A} e_{p}(\lambda y s)\right|^{4}\right)^{1 / 4}
$$

which by the Plancherel identity gives

$$
\begin{equation*}
|A| \Phi_{A}^{2} \ll\left(\sum_{s}\left|A_{s}\right|^{4 / 3}\right)^{3 / 4} p^{1 / 4} E^{1 / 4}(A) \tag{5.1}
\end{equation*}
$$

Another application of Hölder's inequality shows that

$$
\sum_{s}\left|A_{s}\right|^{4 / 3}=\sum_{s}\left|A_{s}\right|\left|A_{s}\right|^{1 / 3} \ll\left(\sum_{s}\left|A_{s}\right|^{3 / 2}\right)^{2 / 3}|A|^{2 / 3}
$$

and by Lemma 1.11 ,

$$
\sum_{s}\left|A_{s}\right|^{4 / 3} \ll|A|^{2 / 3}\left(|A|^{1 / 2}|2 A| \log ^{7 / 4}(|A|)\right)^{2 / 3} \ll|A||2 A|^{2 / 3} \log ^{7 / 6}(|A|)
$$

Putting this estimate into (5.1) gives the stated result.
Acknowledgements. This research was partly supported by NSF (grant no. 1242660).

References

[1] A. A. Glibichuk, Combinational properties of sets of residues modulo a prime and the Erdős-Graham problem, Mat. Zametki 79 (2006), 384-395 (in Russian); English transl.: Math. Notes 79 (2006), 356-365.
[2] D. R. Heath-Brown and S. V. Konyagin, New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum, Quart. J. Math. 51 (2000), 221-235.
[3] T. Schoen and I. D. Shkredov, Additive properties of multiplicative subgroups of \mathbb{F}_{p}, Quart. J. Math. 63 (2012), 713-722.
[4] T. Schoen and I. D. Shkredov, Higher moments of convolutions, J. Number Theory 133 (2013), 1693-1737.
[5] I. D. Shkredov, Some new inequalities in additive combinatorics, arXiv:1208.2344v3 (2012).
[6] I. E. Shparlinskiĭ, Estimates of Gaussian sums, Mat. Zametki 50 (1991), no. 1, 122130 (in Russian); English transl.: Math. Notes 50 (1991), 740-746.
[7] I. V. Vyugin and I. D. Shkredov, On additive shifts of multiplicative subgroups, Mat. Sb. 203 (2012), no. 6, 81-100 (in Russian); English transl.: Sb. Math. 203 (2012), 844-863.

Derrick Hart

Department of Mathematics
Rockhurst University
Kansas City, MO 64110, U.S.A.
E-mail: derrick.hart@rockhurst.edu

Received on 19.3.2013
and in revised form on 4.9.2013

[^0]: 2010 Mathematics Subject Classification: Primary 11B30; Secondary 11B13.

