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1. Introduction. Let [ be an integer or a half-integer, and let F' be
a modular form of weight [ for the congruence subgroup Fém)(N ) of the
symplectic group Sp,,(Z). Then the Koecher—-Maass series L(s, F) of F is
defined as
cr(A)

Lls, F) = EA: e(A)(det A)*

where A runs over a complete set of representatives for the SL,,(Z)-equiva-
lence classes of positive definite half-integral matrices of degree m, cp(A) is
the Ath Fourier coefficient of F, and e(A) denotes the order of the special
orthogonal group of A. We note that L(s, F') can also be obtained by the
Mellin transform of F, and thus its analytic properties are relatively known.
(For this, see Maass [19] and Arakawa [1-3].)

Now we are interested in an explicit form of the Koecher—-Maass series for
a specific choice of F'. In particular, whenever F' is a certain lift of an elliptic
modular form h of either integral or half-integral weight, we may hope to
express L(s, F') in terms of certain Dirichlet series related to h. Indeed, this
is realized in the case where F' is a lift of A such that the weight [ is an
integer (cf. [8-10]). In this paper, we discuss a similar problem for lifts of
elliptic modular forms to half-integral weight Siegel modular forms.

Let us explain our main result briefly. Let k£ and n be positive even
integers. For a cuspidal Hecke eigenform h in the Kohnen plus space of weight
k—n/2+1/2 for I'y(4), let f be the primitive form of weight 2k—n for SLo(Z)
corresponding to h under the Shimura correspondence, and let I,,(h) be the
Duke-Imamoglu-Tkeda lift of 4 (or of f) to the space of cusp forms of weight
k for Sp,(Z). We note that I5(h) is nothing but the Saito—Kurokawa lift of h.
Let ¢r,(n),1 be the first coefficient of the Fourier—Jacobi expansion of I,,(h),
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and 0y,-1(¢r,(n),1) the cusp form in the generalized Kohnen plus space of

weight k — 1/2 for Fén_l)(4) corresponding to ¢, (n)1 under the Thukiyama
isomorphism o,,_1. (For the precise definitions of the Duke-Imamoglu-Ikeda
lift, the generalized Kohnen plus space and the Ibukiyama isomorphism, see
Section 2.) Then our main result expresses L(s,on—1(¢7,(n),1)) in terms of
L(s,h) and L(s, f) (cf. Theorem 2.1).

To prove Theorem 2.1, for a fundamental discriminant dy and a prime

number p we define certain formal power series Prgl_)Lp(do, el X, t) €
CIX, X Y][[t]] associated with some local Siegel series appearing in the
p-factor of the Fourier coefficient of ¢,,—1(¢r,(n),1)- Here € is the Hasse in-
variant defined on the set of nondegenerate symmetric matrices with entries

in Qp. We then rewrite L(s,0n-1(¢r,(n),1)) in terms of the Euler products

IL, P,El_)l’p(do,5l,ﬂp,p_s+k/2+"/4_1/4) with [ = 0,1, where j, is the Satake
p-parameter of f (cf. Theorem 3.2). By using a method similar to those
in [9, 10], in Section 4 we get an explicit formula for the formal power

series Pél_)lp(do,el,X,t) (cf. Theorem 4.4.1), which yields the desired for-
mula for L(s, 0n—1(¢1,(n),1)) immediately. The above result is very simple,
and the proof proceeds similarly to the one of [10], where we gave an ex-
plicit formula for the Koecher—-Maass series of the Siegel-Eisenstein series
of integral weight. However, it is more elaborate than the preceding one.
For instance, we should be careful in dealing with the argument for p = 2,
which divides the level of ,,—1(¢r,(n),1)- We also note that the method of
this paper can be used to give an explicit formula for the Rankin—Selberg
series of 0y,—1(¢7,(n),1), and as a consequence, we can prove a conjecture of
Ikeda [13] concerning the period of the Duke-Imamoglu-Ikeda lift; this will
be done in [15].

Notation. Let R be a commutative ring. We denote by R* and R* the
semigroup of nonzero elements of R and the unit group of R, respectively.
We also put S = {a? | a € S} for a subset S of R. We denote by M,,;(R)
the set of m x [ matrices with entries in R. In particular we write M,,(R) =
My (R). We put GL,,(R) = {A € M,,(R) |det A € R*}, and SL,,(R) =
{A € GL,,(R) |det A = 1}. For an m x | matrix X and an m x m matrix
A, we write

AX]="XAX,

where ! X denotes the transpose of X . Let S,,,(R) denote the set of symmetric
matrices of degree m with entries in R.

Furthermore, if R is an integral domain of characteristic different from 2,
let £,,(R) denote the set of half-integral matrices of degree m over R, that
is, L,,(R) is the subset of symmetric matrices of degree m with entries in
the field of fractions of R, whose (i, j)th entry belongs to R or %R according
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as ¢ = j or not. In particular, we put £, = L£,,,(Z) and Ly, , = L, (Z,,) for
a prime number p.

For a subset S of M,,(R) we denote by S* the subset of S consisting
of all nondegenerate matrices. If S is a subset of S,,,(R), we denote by Ss¢
(resp. S>0) the subset of S consisting of positive definite (resp. semi-positive
definite) matrices. The group GL,,(R) acts on Sy, (R) as GL,(R) X Sy (R) 3
(9, A) = Alg] € Sm(R).

Let G be a subgroup of GL,,(R). For a G-stable subset B of S,,(R), we
denote by B/G the set of equivalence classes of 5 under the action of G. We
sometimes identify B/G with a complete set of representatives for B/G. We
abbreviate B/GL,,(R) as B/~ if there is no risk of confusion.

For a given ring R/, two symmetric matrices A and A’ with entries in R
are said to be equivalent over R', written A ~p A’, if there is an element X
of GL,(R’) such that A’ = A[X]. We also write A ~ A’ if there is no risk
of confusion. For square matrices X and Y we write X L Y = ()5 }O,)

For an integer D with D = 0 or 1 mod 4, let 0p be the discriminant of
Q(v/'D), and put fp = /D /op. We call D a fundamental discriminant if it
is either 1 or the discriminant of some quadratic field extension of Q. For
a fundamental discriminant D, let (%) be the character corresponding to

Q(v'D)/Q. Here we make the convention that (£) =1if D = 1.

We put e(z) = exp(2miz) for x € C. For a prime number p we denote
by vp(*) the additive valuation of @, normalized so that v,(p) = 1, and by
ep(*) the continuous additive character of Q, such that e,(z) = e(x) for
r € ZpY].

For a nonnegative integer r we define a polynomial ¢, (x) in x by ¢,(z) =
[T—, (1 — 2%). Here we understand that ¢o(z) = 1.

2. Main result. Put J,, = (Om 701: ), where 1,, and O,, denote the

Im

unit matrix and the zero matrix of degree m, respectively. Furthermore, put
™ = Sp(Z) = {M € GLop(Z) | Jin[M] = Jpn}.

Let [ be an integer or a half-integer. For a congruence subgroup I" of I'(™) | we
denote by 9% (") the space of holomorphic modular forms of weight [ for I.
We denote by &;(I") the subspace of 9% (I") consisting of all cusp forms. For

a positive integer N, put Fom)(N) = {(ég) e rm } C = O,, mod N}.

Let F(Z) be an element of 9% ([ ém) (N)). Then F(Z) has Fourier expan-
sion

F(Z)= Y cr(Ae(tr(AZ)),

AE(Lm)ZO

where tr(X) denotes the trace of the matrix X. We then define the Koecher-
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Maass series L(s, F') of F as

cr(A)
L(s, F) = _
(s, F) 2 e(A)(det A)*’
A€(Lm)so/SLim(Z)
where e(A) = #{X € SL,,(Z) | A[X] = A}. We note that L(s, F) is nothing
but Hecke’s L-function of F' in the case where m = 1 and [ is an integer.
Now put

L ={A¢cL,|A=—"rr mod 4L,, for some r € Z™}.

For A € L], the integral vector r € Z™ in the above definition is uniquely
determined by A modulo 2Z™, and is denoted by r4. Moreover it is easily
shown that the matrix

(trj/ 2 (t?“AT:AJ/rzA)/ 4 )

which will be denoted by AM), belongs to Ly,+1, and that its SLpy+1(Z)-
equivalence class is uniquely determined by A. Suppose that [ is a positive
even integer. We define the generalized Kohnen plus space of weight [ —1/2

for Fo(m) (4) as
Mo (L5 (4)) = {F € My_1 o (13" (4)) | er(A) = 0 unless A € £},

and put & ,(I§"™ (4)) = M}, (15™ (4) N &S)_y (1™ (4)). Then there

exists an isomorphism from the space of Jacobi forms of index 1 to the

generalized Kohnen plus space, due to Ibukiyama. To explain this, let I" }m) =
™) x H,,(Z) be the Jacobi group, where I'"™ is identified with its image

inside I"™*1) via the natural embedding

(& »)
H

C D

and

Hm(Z):

0|k w A
0 1L,|%u On 0 1, \p)ezmaezm,
1

0 1 0 P/
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Let J; 1 (I (m)) denote the space of Jacobi forms of weight [ and index 1 for
r; (m) ,and J; SR (m)) the subspace of J; 1 (I} rm )) consisting of all cusp forms.

Let ¢(Z,z) € Ji (I } )). Then we have the following Fourier expansion:
(2, z)= Y. co(T,r)e(tr(TZ) +1"2).

TELm, r€EL™
AT —trr>0

We then define o,,,(¢) as
om(@) = D co((A+"rara)/4,ra)e(tr(AZ)),

A€(L7) >0
where r = r4 denotes an element of Z™ such that A + trara € 4L,,. This
74 is uniquely determined modulo 2Z™, and c,((A4"'rara)/4,74) does not
depend on the choice of the representative of r4 mod 2Z™. Ibukiyama [7]
showed that o, gives a C-linear isomorphism J; 1 (1" }m)) ~ M, /2(F (m) (4)),
and in particular, am(JlflfSp(Fﬁm))) S 1/2(F0m) (4)). We call oy, the Ibu-
kiyama isomorphism.

Let p be a prime number. For a nonzero element a € Q, we put x,(a) =
1,—1, or 0 according as Qp(al/Q) = Qy, Qp(a1/2) is an unramified quadratic
extension of Q,, or Qp(al/ %) is a ramified quadratic extension of Q,. We
note that x,(D) = (2) if D is a fundamental discriminant.

For the rest of this section, let n be a positive even integer. For T' € L,
put &(T) = xp((=1)2detT). Let T € LX. Then (—1)"/? det(2T) =0
or 1 mod 4, and we define 37 = 0(_1yn/2 geg(ory A fr = f(_1)n/2 des(2r)-
For T € Lj ,, there exists T € L)y such that T ~z, T. We then put
ep(T) = 1(f7) and [07] = 05 mod (Z*)D These do not depend on the choice
of T. We note that (— )"/2 det(2T) can be expressed as (—1)™2 det(27) =
dp*»(T) mod (Zy)" for any d € [o7].

For each T' € L, we define the local Siegel series b,(T) s) by

bp(T, S) = Z ep(tr(TR))p_Vp(P‘p(R))s’
ReSn(Qp)/Sn(Zp)

where p,(R) = [Zy + Z R : Z,]. We remark that there exists a unique
polynomial F,(T, ) in X such that

(1= p ) A0 =)
1_€p( ) n/2—s

(cf. Kitaoka [16]). We then define a polynomial ﬁp(T, X)in X and X!

bp(T,s) = Fp(T,p %)

Ey(T,X) = XD E (T, p~"tD/2X),
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We remark that ﬁ’p(T,X_l) = ﬁp(T, X) (cf. [14]). Now, for a positive even
integer k, let

h(z) = > cn(m)e(mz)
mEZ>0
(—=1)"/2m=0,1 mod 4
be a Hecke eigenform in the Kohnen plus space Gk n/2+1/2( 0(4)), and
f(z) =) cf(m)e(mz)
m=1

the primitive form in Sop_, (I (1)) corresponding to A under the Shimura
correspondence (cf. Kohnen [18]). Let 3, € C* be such that 8, + ;! =
p‘k+”/2+1/20f(p), which we call the Satake p-parameter of f. We define a
Fourier series I,,(h)(Z) on H, by

L(h)(Z)= Y cnm(Te(tr(T2)),
Te(Ln)sg

where

e (T) = en(Pr)ip > WHF (T, B,).

Ikeda [12] showed that I,(h)(Z) is a Hecke elgenform in &, (I'™) whose
standard L-function coincides with ((s)[[;—, L(s + k — 4, f), where ((s)
is Riemann’s zeta function. The existence of such a Hecke eigenform was
conjectured by Duke and Imamoglu in an unpublished paper. We call I,(h)
the Duke-Imamoglu-Ikeda lift of h (or of f), as in Section 1. Let ¢y, (5,1 be
the first coefficient of the Fourier—Jacobi expansion of I, (h), that is,

n((2 7)) = S b (2, 2e(Nw),

N=1
where Z € H,,_1, z € C"! and w € H;. We easily see that ®1,(h),1 belongs

u n—1
‘]l: Slp/z (L 5 )) and

bl = Y Cfn<h>(<tr1/2 r;2>>e(tr(Tz)+rtz).

TELy 1,7€Z? L
AT —trr>0

Moreover we have

on-1(br,m)(2) = D enm(TW)e(tr(T2)).

Telfu-1)s

Put Te(s) = 2(27)~°T(s), and £(s) = Te(s)¢(s). Then our main result in
this paper is stated as follows:
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THEOREM 2.1. Let h and f be as above. Then

(n—2)/2
L(3,0n-1(1,(n)1)) = 27 %n (=2~ H £(2i)

(n—2)/2
x {L(s—n/2+1,h) [ L@s—n+2i+1.7)
i=1

(n—2)/2
+ (-1, h) T L(2s —n+2i, f)},
=1

where 02, denotes Kronecker’s delta.

In the case of n = 2, the modular form oy,1(¢y,, (),1) is h itself, and then
the above formula is trivial. We note that, unlike the cases of [8-10], there
does not appear any convolution product of modular forms in the above
theorem. However, the proof is not simple because the nature of Fourier
coefficients of the modular form o, 1(¢z,(x),1) is much more complicated
than in the papers cited above.

3. Reduction to local computations. It turns out that the Fourier
coefficient of o,,—1(¢r,(n),1) can be expressed in terms of a product of local
Siegel series taken over all prime numbers p, and therefore we can reduce
the problem to local computations. To explain this, we recall some termi-
nology and notation. For given a,b € Q, let (a,b), denote the Hilbert sym-
bol over Q. Following Kitaoka [17], we define the Hasse invariant ¢(A) of

AeSm(@p)X
e(A)= [ (aiai)

1<i<j<m
if A is equivalent to a1 L --- L ap over Q, with some ay,...,an, € Q. We
note that this definition does not depend on the choice of aq, ..., amn.
Now put
={A€Ly,y| A=~ "rr mod 4L, , for some r € Zy'}
Furthermore we set Sy, (Zp)e = 2L p and Spm(Zp)o = Sm(Zp) \ Sm(Zyp)e.
We note that £, , = Ly = Sm(Z )1fp7£2 Let A € £;, 1, Then

there exists an element r € Ly~ 1 such that ( /2 (A—:t/ri)/él) € Lyp Asis
easily shown, r is uniquely determined by A modulo 2Z;"~ 1 and is denoted

ra/2
tra/2 (A+trArA)/4)
is uniquely determined by A up to GL,(Zy)-equivalence, and is denoted
by AW,

by r4. Moreover, as will be shown in the next lemma, (
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LEMMA 3.1. Let m be a positive integer.

(1) Let A and B be elements of L! Then

m—1,p*

(trj/Q (A +7;iiliA)/4> - (tr;/g (B +Zi§3)/4> if A~ B.

(2) Let Ae L, ;.

(2.1) Let p#2. Then AY ~ (§9).

(2.2) Letp=2.1If ra =0mod 2, then A ~ 4B with B € Ly,_1 2, and
A ~ (3 %). In particular, vo(det B) > m or m+1 according
as m is even or odd. If r4 # 0 mod 2, then A ~ a L 4B with
a=—1mod 4 and B € L,,—22, and

1 1/2 0
AV~ 1/2 (a+1)/4 0
0 0 B

In particular, vo(det B) > m or m — 1 according as m is even

or odd.

Proof. The assertion can be easily proved. =

Now suppose that m is even. For T' € (£! _,)*, put O(Tl) = 071 and

f(Tl) = fru), and for T' € (L}, )", define [Dg})] and egpl) as [0, and
e, respectively. These do not depend on the choice of rr. We note that
(—=1)™/2detT = 2™~ 2]“ ) for T 6 (L],_1)*. We define a polynomial
(1)(T X) in X, and a polynomlal F ( X)in X and X!, by
F{(T,X) = Fp(TW, X),
FOO(T, X) = >(T> EO(T, p=m+)/2x),

Let B be an element of (L] _ 1p) . Let p # 2. Then
F)(B,X) = Fy(1 L B, X).
Let p = 2. Then

FY(B, X)
~ 1 1/2
F2<( / )LB’,X) if B=a 1l 4B with
1/2 (a+1)/4
a=-1mod4, B € Ly,_22,
Fy(11 B, X) if B=4B' with B’ € L,,_12.

Now let m and [ be positive integers such that m > [. Then for nonde-
generate symmetric matrices A and B of degree m and [ respectively with
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entries in Z, we define the local density oy,(A, B) and the primitive local
density Bp(A, B) representing B by A as

ap(A, B) = 2790 Tim pamiHHD/2 4 A (A B),

a—00
Bp(Aa B) — 2—(5m,l algglop (_ml+l(l+1)/2)#8a(A,B),

where

Aa(A, B) ={X € Mpu(Zyp) /p" Mnu(Zyp) | A[X] = B € p"Si(Zp)e},

Bu(A,B) = {X € Au(4, B) | rankg, /7 (X mod p) = l}.
In particular we write oy (A) = (A, A). Put

Fp =A{do € Zy | vp(do) < 1}
if p is an odd prime, and
Fo={do € Zz | dy =1 mod 4, or dy/4 = —1 mod 4, or vs(dp) = 3}.

Let m be a positive integer. For d € Z; put

S (Zyp, d)
={T € S,u(Z,) | (=) FV/2 det T = p*d mod Z," with some i € Z},
and Sy, (Zp,d)z = Sm(Zyp,d) N Sy (Zy), for = e or o. Set Egn)p:S (Zp)

e
and Li)y = (L},.,)*. We also define c&)p(d) S(Zy, d) N LD, for j =0,1.
Let ¢y, be the constant function on EX taking the value 1, and &, )
the function on L, , assigning the Hasse 1nvar1ant of Ato A€ L}, We
sometimes drop the suﬂﬁx and write ¢, , etc. as ¢, or ¢ if there is no rlsk of
confusion.

From now on, we sometimes write w = &' with [ = 0 or 1 according as
w=10rE¢.

Let n be a positive even integer. For dy € F,, and w = &' (I = 0,1) we
define a formal power series P,gl_)lp(do,w, X,t) in t by

P,slf)Lp(dvav Xv t)

(1)
F,/ (B, X
— /i(d(), n—1, l)flt(;g,p@fn) Z P ((é) )w(B)tV(det B)’
o

BeLl?, (do) P
where
k(do,m —1,1) = Kp(do, ™ — 1,1)

_ {( )lr r—2) /82 (r—2)(r— 1)/2}62p . ((_1)7‘/2’ (_1)7‘/2d0):lp p—(r/2—1)lu(d0)
for a positive even integer r. This type of formal power series appears in an
explicit formula for the Koecher-Maass series associated with the Siegel-
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Eisenstein series and the Duke-Imamoglu-Ikeda lift (cf. [9], [10]). Therefore
we say that this formal power series is of Koecher—Maass type. An explicit

formula for P( )

ARd] p(do, w, X, t) will be given in the next section.

Let F denote the set of fundamental discriminants, and put
FEY = {dy € F| +dy > 0}.

Now let h be a Hecke eigenform in 6Z—n/2+1/2(F0(4))’ and f, In(h), ¢1,(n)1
and 0n—1(7,(n),1) be as in Section 2.

THEOREM 3.2. Let the notation and assumptions be as above. Then for
Re(s) > 0, we have

L(S)Un—1(¢ln(h)71)) = K/n—l27(n72)87(n72)/2752m
. { > cnlldo])|do|" 2

doe F(-1)"/2)
H —s+k/24n/4—1/4
1p dOaL}%pr ® / n/ / )

+ (_1)n(nf2)/8 Z Ch(|d0|)|d0|fn/4fk/2+5/4
doeF((—=1"/?)

H 1p (do, £, Bps D s+k/2+n/471/4)}’

where Kp_1 = H(n 2)/2 Lc(2i).

Proof. Let T' € (L},_y)_,. It follows from Lemma 3.1 that the T'th
Fourier coefficient ¢, (4, " (1) of 6p—1(¢r, (k1) is uniquely determined
by the genus to which T belongs, and by definition, it can be expressed as

Conr(on, o) (D) = cr, ) (TV) = en (PR ) GE)E22 T FO(T, 5,).
p

We note that
(fg}))k—n/2—1/2 _ |DEF1)|—(k/2—n/4—1/4) (det T)(k/Q—n/4—1/4)2—(n—2)(k/2—n/4—1/4)

for T € (Ln—1)<o- We also note that

1 _ 3—n—02 p n/2 -1
Z T Kn—12 2n det T Hap(T)
T'eG(T) p

for T € S,-1(Z)<, where G(T') denotes the set of SL,_1(Z)-equivalence
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classes belonging to the genus of T' (cf. [17, Theorem 6.8.1]). Hence

Z C‘T”—l(‘z’ln(h),l)(T) — K 123—n—52,n—(n—2)(k/2—n/4—1/4)
e(1") "
T'eG(T)

xdet(Tk/2+”/4 1/4)|D I~ k/2+n/4+1/4H ((I;)Bp)
Qp

Thus, by using the same method as in |11, Proposition 2.2], snmlarly to [8,
Theorem 3.3(1)], and [9, Theorem 3.2], we obtain

L(s,0n-1(¢1,(h),1))
_ Hn_l2—(k/2—n/4—1/4)(n—2)+2—n—62,n Z Ch(\do\)!do!"/4_k/2+l/4

doe F(=1)"/?)

% {2(—s+k/2+n/4—1/4)(n—2) H“P<d0’ n—l,O)P(l) (do, Lp’ﬁp,p—s+k/2+n/4—1/4)

n—1,p
p

L o(=s+k/24n/4—1/4)(n—2) HRP do,n—1,1)P! () (d07€p7/8 p s+k/2+n/471/4)}.
p

We note that Hp((—l)”/2, (=1)"2dy), = 1. Hence [, kp(do,n —1,0) =
2—(n—2)(n—1)/2’ and Hp Hp(do, n—1, 1) — (_1)n(n—2)/8’do’—n/2+12—(n—2)(n—1)/2'
This proves the assertion. m

4. Formal power series associated to local Siegel series. Through-
out this section we fix a positive even integer n. We also simply write v, etc.
as v if the prime number p is clear from the context In this section, we give
an explicit formula for P( )1(d0, w, X,t) with w = €' (I =0, 1) to prove The-
orem 3.2 (cf. Theorem 4. 4 1). The idea of the proof is to express the power
series in question as a sum of certain subseries (cf. Proposition 4.4.3). Hence-
forth, for a GL;,(Zy)-stable subset B of S,(Qp), we simply write > g
instead of Y ;g /~ if there is no risk of confusion.

4.1. Local densities. Put

Dm,i:GLm(Zp)C”S"' o )GL (Z,).

For S,T € S,,(Zy,)* and a nonnegative integer i < m, we define

ap(S,T,i) =271 lim pem=Nm/2 A (S T 7),

where
Ae(S7 Tv Z) = {Y S Ae(sv T) | X € Dm,l}
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LeMMA 4.1.1. Let S,T € S,,(Zy)*.

(1) Let (S, T) = {W € My (Zy)* | SW] ~ T} and Q(S,T,i) =
Q(S,T) N Dyy. Then

Oép(S, T) _ #(Q(S, T)/GLm(Zp))p—m(V(detT)—V(det S))/2’
ap(T)
ap(S, T, Z) _ #(Q(S, T, Z-)/GLm(Zp))pfm(u(detT)flf(detS))/Q.
ap(T)

(2) Let QS,T) = {W € Mu(Z)* | S ~ TIWY} and Q(S,T,i) =
Q(S,T) N Dy, Then

ap(5,T) _ (G Ly (Zy)\E(S, T))pv det T)-v(det $)) /2
ap(S)

aP(Sa T7Z) _ #(GLm(Zp)\§<S, T)i))p(y(detT)fu(detS))/Z.
ap(5)

Proof. The assertion (1) follows from [4, Lemma 2.2]. Now by [14, Propo-
sition 2.2] we have

ap(S,T) = > Bp (S, T[W~H])p~det ).
W EGLm (Zp)\Q(S,T)

Then B,(S, T[W~1]) = a,(S) or 0 according as S ~ T[W~!] or not. Thus
(2) holds. =

A nondegenerate m x m matrix D = (d;;) with entries in Z, is said to
be reduced if it satisfies the following two conditions:

(a) For i = j, d;; = p® with a nonnegative integer e;.
(b) For i # j, d;; is a nonnegative integer satisfying d;; < p“ —1if i < j
and dij =0ifi>j.
It is well known that we can take the set of all reduced matrices as a complete
set of representatives for G Ly, (Zy)\ My (Zy)*. Let j = 0 or 1 according as
m is even or odd. For B € /:%?p put
QUN(B) = (W € Mu(Z,)" | BW '] € LJ),}.

Furthermore set ﬁ(j)(B, i) = SN)U)(B) N Dyi- Let ng < m, and ¢p, m be the
mapping from GL,,(Q,) into GL,,(Q)) defined by 1y m (D) = 1py—n, L D.

LEMMA 4.1.2.

(1) Suppose p # 2. Let © € GLy,(Zp) N Spy(Zyp) and By € Syy—ny(Zp)™.

(1.1) Let ng be even. Then 1y —ngm induces a bijection

GL g (Zp)\QY)(By) ~ GL(Z,)\QY) (0 L By),
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where j = 0 or 1 according as m is even or odd. In particular,
Lo (Z)\OD (pBY) = GLn(Z,)\39(O L pBy).
(1.2) Let ng be odd. Then Ymm—nym induces a bijection
G Ly (Zp)\QV (B1) = GLin(Z,)\2 (6 L By),

where j =0 or 1 according as m is even or odd, and j' =1 or
0 according as m is even or odd. In particular,

G Ly (Zp)\QY) (pBy) ~ GLy (Z,)\Q9 (O L pBy).

(2) Suppose that p = 2. Let m be a positive integer, ng an even integer
not greater than m, and © € GLyy(Z2) N Spy(Z2)e-

(2.1) Let By € Sp—no(Z2)*. Then m—ngy.m induces a bijection
GL g (Z2)\QYV (271 B)) ~ QL (Z2)\QY) (270 L 2771 By),

where j = 0 or 1 according as m is even or odd.
(2.2) Suppose that m is even. Let a € Zgy be such that a = —1 mod 4,
and By € Spm—nyg—2(Z2)*. Then 1y —ny—1,m induces a bijection

GLm—no—l (ZQ)\Q(l) (a 1 4Bl)

~ G L (Z)\ QY (@ 1 (i 1 +1a)/2) I 231).

(2.3) Suppose that m is even, and let By € Sy—ny—1(Z2)*. Then
there exists a bijection Vm—ny—1,m

GLm—ng—1(Z2)\QW(AB)) ~ GLp(Z2)\QV(© L2 1 2B)).
(As will be seen, {/;m—no—l,m is not induced from VYm—_ny—1,m.)
(3) Assertions (1), (2) remain valid if one replaces QW) (B) by QW (B, ).

Proof. (1) Clearly the mapping ¥, —n,m induces an injection from the
set GLp—n, (Zp)\fvl(j) (B1) to GLm(Zp)\ﬁ(j)(G 1 By), denoted by the same
symbol. To prove the surjectivity of v,—pn,m, take a representative D of
an element of GL,,(Z,)\QY (6 L B;). Without loss of generality we may
suppose that D is a reduced matrix. Since (© L By)[D™] € S,,,(Z,), we

have D = (180 131) with Dy € Q@ (By). This proves (1.1); and (1.2) can be
proved in the same way.

(2) First we prove (2.1). As in (1), the mapping ¥, —n,m induces an in-
jection from GLy,—no (Zo)\QW (29H1B)) to GLy(Z)\QW (276 L 27+ By),
denoted by the same symbol. Then the surjectivity of ;,—n,m in case
j = 0 can be proved in the same manner as (1). To prove the surjectiv-

ity of ¥mm—ny,m in case j = 1, take a reduced matrix D = (%1 %122) with
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D1 € My (Z2)%, Dy € Miy—ny (Z2)*, D12 € My mno (Z2). If (20 L4By)[D~Y]
e £ then there exists (r1,7m2) € Z5° x Z5'™ ™ such that

m,2°
2@[D1_1] = —'rr; mod 4Ly, 2,
—20[D; D19 Dyt = ~trory mod 2Miyg m—ng (Z2),
20[D; ' D19D5 Y| 4+ 4By [Dy '] = —'rarg mod 4L, pg 2.

We have v(det(20[D;'])) > no and v(20) = ng. Hence D; = 1,, and
r1 = 0 mod 2. Therefore 4B1[D; ] € £% and D1oD5t € My im—no(Z2).

m—ng

Consequently, D = U ( 180 [())2) with U € GLy,(Z,). Thus the surjectivity of

Ym—ng,m can be proved as above. The assertion (2.2) can be proved in the
same way.

To prove (2.3), we may suppose ng = 0 by (2.1). Let D € Q) (4By).
Then

AB[D™Y = ~trorg + 4B’
with 79 € Z5""! and B’ € L,,_12. Then we can take r € Z5*~" such that
4DV e D7 = Yrgrg mod 4L —12.

Furthermore, 2rD~! is uniquely determined modulo 2251_1 by ro. Put D=
(6 6) Then D belongs to Q9 (2 L 2B;), and the mapping D — D induces
the bijection in question. =

(1)

m_17p7

B<1>:( 1 rp/2 >
t?“B/2 <B+tTB7“B)/4

with rg € Zgl_l as defined in Section 3. Then there exists a bijection

COROLLARY. Suppose that m is even. Let B € L and

¢ 2 GLy1(Zp)\QW(B) ~ G Ly (2,)\QO (2020 B
such that v(det (W) = v(det W) for any W € GLm,l(Zp)\ﬁ(l)(B). More-

over, Y induces a bijection
bi: Gy 1 NIV (B, 1) = GLy(Z,)\0O (277 B, )
fori=0,...,m—1.

Proof. Let p # 2. Then we may suppose rg = 0, and the assertion
follows from (1.2). Let p = 2. If r5 = 0 mod 2 we may suppose that rg = 0,
and the assertion follows from (2.3). If r5 #Z 0 mod 2, we may suppose that
B =a L 4By with By € L) 5, and rg = (1,0,...,0). Then the assertion
follows from (2.2). =
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LEMMA 4.1.3. Suppose that p # 2.
(1) Let B € Sp(Zy)*. Then
ap(p'dB) = p"™ "D 20, (B)

for any nonnegative integer r and d € Zy.
(2) Let Uy € GLypo(Zp) N Spy(Zyp) and By € Sp—ny(Zp)™. Then

ap(pB1 L Uy) = 9 (no) a,(pB1)

no/2
[T =)@ +x((=1)™ 2 det U)p~™/) 7" if no even,
=1
(no=1)/2 |
H (1 _p—2l) if ng odd,
=1

for ng > 1, where r(ng) =0 or 1 according as ng = m or not.

Proof. The assertion (1) follows from [17, Theorem 5.6.4(a)], while (2)
follows from [17, p. 110, line 4 from the bottom]. =

LEMMA 4.1.4.
(1) Let B € Sp(Za)*. Then
az(27dB) = 27™m D20, (B)

for any nonnegative integer r and d € Z3.
(2) Let ng be even and let Uy € GLy,(Z2) N Spy(Z2)e. Then for By €
Sm—no(Z2)* we have

ag(Ul 1 231) = QT(nO)a2(2Bl)

no/2
[T =272 + x((~1)™ /2 det Uy )p~0/2) !
X =l Zf Bl S Sm—no (22)67
(no—1)/2 .
T a-2- if B1 € Sp—ny(Z2)o,
=1
and for uy € Z5 and By € Spm—ny—1(Z2)* we have
no/2 .
as(ug L 2U7 L 4By) = ap(2Bp)2m =D/ TT (1 — 272,
=1

(3) Let ug € Z3 and By € Sy—1(Z2)*. Then
OéQ(U() 1 531) = Ozg(u() 1 Bl).

Proof. The assertion (1) follows from [17, Theorem 5.6.4(a)], and (2)
follows from |17, (4), p. 111]. For a nondegenerate half-integral matrix A,
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let W4 be the quadratic space over Zj, associated with A, and n4 ;,q4 ; and
E4 j be the quantities nj, g; and Ej, respectively, from [17, p. 109] defined
for W4. Then the transformation ug 1 By — ug 1L 5B does not change these
quantities. This proves (3). m

Now let R be a commutative ring. Then the group GL,,(R) x R* acts
on Sp,(R) in a natural way. We write By ~p Bg if By ~r {B; with some
¢ € R*. Let m be a positive integer. Then for B € Sy,,(Z),) let gmvp(B) denote
the set of elements B’ € S,,(Zy) such that B’ ~7z B, and let Sy,_1,(B)
denote the set of elements B’ € Sy,,—1(Zp) such that 1 L B’ =z B.

LEMMA 4.1.5. Let m be a positive even integer. Let B € Sy, (Z2)). Then

1 - #(gm,Q(B)/N)
Z as(B') 200(B)

B'€Spm—1,2(B)/~

Proof. For a positive integer [ let ] = 1; + --- + [, be the partition of [

by positive integers, and {s;};_; the set of nonnegative integers such that

0 <s; <---< 8. Then for a positive integer e let Sl(o) (Z2)2°Z2, {1;},{si})

be the subset of S;(Z2/2¢Z2) consisting of all symmetric matrices of the form

251Uy L --- L 2°°U, with U; € Sj,(Z2/2°Zy) unimodular. Let B € Sp,(Z2),

and det B = (—1)m/ 2d. Then B is equivalent, over Zs, to a matrix of the
form

oWy L ... L 2w,

where 0 =t; < -+ < t, and Wy,..., W, are unimodular matrices of degree
ni, ..., Ny, respectively, and in particular, W; is odd unimodular. Then by
[11, Lemma 3.2], similarly to [11} (3.5)], for a sufficiently large integer e, we
have

#(Sma(B)/~) _ 1
az(B) EeggB)/N az(B)

_ 2m—12—1/(d)+2§:1 ni(ni—1)e/2—(r—1)(e=1)=3 1 <j i<, Minjt;

x [T #(SLn,(22/2°Z5)) " %S (22/2°Zs, {1}, {t:}, B),

i=1
where S (Zy/2°Zs, {n;}, {t;}, B) is the subset of S\ (Z2/2°Zs, {n;}, {t;})
consisting of all matrices A such that A ~g, 57, B. We note that our local
density ao(B) is 27™ times that in [11] for B € Sp(Zs). If ny > 2, put

r=r,nf =n—1,n5 =ng,...,n, =n,,and t, =t; for i =1,...,7,
and if ny = 1, put v’ = r —1, n) = nipq and ¢ = ¢4 for ¢ = 1,...,0".
Let S\ (Z2/2°Z, {n]},{t'}, B) be the subset of S | (Z,/2°Zy, {n}}, {t}})

consisting of all matrices B’ € Sy,—1(Z2/2Zz) such that 1 L B' =z, j9ez, B.
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Then, similarly, we obtain

/
_ 2m—22fy(d)+2::1 nj(n;—1)e/2—(r'—1)(e—1)= 31 < j i<y MTE;
7,,/

x [T #(S L (Z2/2°22)) " #SC) | (2/2°Z, {01}, {11}, B).

=1
Take A € S (22/2622,{712} {ti}, B). Then
A=21U; L ... L2,

with U; € Sy, (Z2/2°Z2) unimodular. Put Uy = (uy,). Then by the assump-
tion there exists an integer 1 < X\ < m; such that uyy € Z3. Let A\g be the
least such integer, and V; be the matrix obtained from U; by interchanging
the first and Agth rows and the first and A\gth columns. Write

vV
v=(o )
Vi 1%
with vy € Z3, vi € Zi* ™' and V' € Sy, _1(Zs). Here we understand that
V' — tvyvy is the empty matrix if n; = 1. Then

0
i~ (”1 . )
0 V' —w] [vq]

Then the map A b—> oMV — v ve]) L 2t2U2 L --- L 2%U,) induces
a map T from S (22/26Z2, {ni}, {t:}, B) to S( 1(Zo)2Zo, {n}},{t}}, B).
By a simple calculation, we obtain

#T—l( /) — 2(6—1)n1 (2n1 _ 1)
for any B’ € S( " 1(Zy)2°Zo, {n}, {t;}, B). We also note that
H#S Ly, (Zg)2°%) = 2~ VCm=Dom=Yom _ 1) (SL, | (Zy/2°Zs)) or 1

according as n; > 2 or n; = 1, and

an ni—1)e/2—(r—1)(e—1) Z nin;t;
1<5<ilr

,',./

:em—i—Zn;(n;—l)e/Q—(r’—l)(e—l)—i— Z n;n;t;,

i=1 1<j<i<r!

where e,, = (n1 — 1)e or e,, =1 — e according as n; > 2 or n; = 1. Hence
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2m*12_V(d)+ZZ:1 ”i(”i_l)@/Q_(7’_1)(5_1)_21§j<¢§r nin;t;

x | [#(SLni(Z2/22s)) " #5W) (22/2°Zs, {ni}, {t:}, B)

=1

—9. 2m—22—1/(d)+z:/:1 nj(n;—1)e/2—(r'=1)(e—1)=3", < j<i<p M5}

) [T #(S L (Z2)2°22)) T 4SS | (2/2°Z, {n}}. {11}, B).
=1
This proves the assertion. m

4.2. Siegel series. For a half-integral matrix B of degree m over 7Z,,
let (W,q) denote the quadratic space over Z,/pZ, defined by the quadratic
form g(x) = B[x]| mod p, and define the radical R(W) of W by

RW)={xeW|B(x,y) =0 for any y € W},

where B denotes the symmetric bilinear form associated to g. We then put
lp(B) = rankg, /7, R(W)*, where R(W)* is the orthogonal complement
of R(W)* in W. Furthermore, in case l,(B) is even, set £,(B) =1or —1
according as R(W)1 is hyperbolic or not. In case I,(B) is odd, we put
§,(B) = 0. Here we make the convention that &,(B) = 1 if [,(B) = 0.
We note that &,(B) is different from §,(B) in general, but they coincide if
B € Ly NG Ly (Zy).

Let n be a positive even integer. For B € v

nflvp

Bl = (tr1/2 (B :i’i")/‘l)’

where r € ZI'~ ! is such that B+*rr € 4L, _1,. Then we set {(V)(B) = £(BW)
and 5(1)(3) = £(BW). These do not depend on the choice of r, and we have
£M(B) = x((-1)"/? det B).

Let p # 2. Let j = 0 or 1. Then an element B of 52]2 jp 18 equivalent, over
Zp, to @ 1 pB; with © € GLnfnlfj(Zp) N Sn,nlfj(Zp) and B; € Snl (Zp)x.
Thus £€7)(B) = 0 if ny is odd, and € (B) = y((~1)"™)/2 det O) if n, is
even.

Let p = 2. Then an element B € L'S_)LQ is equivalent, over Zs, to a

matrix of the form 20 | By, where © € GL,,_p,—2(Z2) N Sp—n,—2(Z2). and
B is one of the following types:
(I) B1 =a L 4By with a = —1 mod 4, and By € Sy, (Z2));
(II) B, € 4Sn1+1<Z2)X;
(ITT) By = a L 4By with a = —1 mod 4, and Bs € S, (Z2),.

put
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Thus E(l)(B) = 0 if By is of type (II) or (III). If By is of type (I), then
(=1)(»=m1)/2g.det © mod (Z3)° is uniquely determined by B, and we have
E(l)(B) = x((—=1)(»="1)/2¢ det ©). Moreover, an element B € 51(10)2 is equiva-
lent, over Zo, to a matrix of the form © 1 2B;, where © € GLninl_Q(Zg) N
Sn_nl_Q(ZQ)e and B; € Snl (Zz)x.

Suppose that p # 2, and let &/ = U, be a complete set of representatives
for Z;/(Z;)". Then, for each positive integer [ and d € Up, there exists a
unique, up to Zy,-equivalence, element of S;(Z,)NGL;(Z,) whose determinant
is (—1)[(+1/2ld, which will be denoted by @ 4.

Suppose that p = 2, and put U = Us = {1,5}. Then for each positive even
integer [ and d € Uy there exists a unique, up to Zo-equivalence, element of
S)(Z2)e NG Li(Zs) whose determinant is (—1)"/2d, which will also be denoted
by ©; 4.

In particular, if p is any prime number and [ is even, we put ©; = ;.
We make the convention that ©; 4 is the empty matrix if [ = 0. For d € U
we use the same symbol d to denote the coset d mod (Zy)".

For B € C( )1 o Lot }7’;1)(3, X) be the polynomial in X and X ! defined
in Section 3. We also define a polynomial G](Jl)(B ,X) in X by

GV (B, )

—_

= (—U%“FD/Z(X%")" > FY(B[D™, X).
i=0 DeGLp1(Zp)\Dn—1,i

(1)

LEMMA 4.2.1. Let n be a positive even integer. Let B € L, ,

é0 = x((~1)"/2det B).

and put

(1) Let p # 2, and suppose that B = ©y,_y,, 14 L pB1 with d € U and
By € Sy, (Zy)*. Then

1
G\V(B,X)

' 1—§0P"/2X e e
| | 1—p "X
1— n1/2+n/2£

if ny is even,

(nl—l)/2
1-&p™?x) [ @-p""Xx?) if my is odd.
L i=1
(2) Let p = 2. Suppose that ny is even and that B = 20 1 By with
GRS Sn7n172(22)6 N GLn,nI,Q(ZQ) and By € Sn1+1(ZQ)X. Then
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6, (B.X)
1— 272X e -
0 [T —2"*t"X?) if By is of type (1),
B 1— 2n1/2+n/2§ (B)X 1
- ni/2 ‘
(1 —&2"2%X) H (1—2%9"X?2)  4f By is of type (II) or (III).
i=1

Proof. By the Corollary to Lemma 4.1.2 and by definition we have
Gz()l)(B, X)=G,(BW, X). Thus the assertion follows from [16, Lemma 9]. u

REMARK. In the above lemma, we have 5(1)(B) = &(B) if n; = 0. Hence
Gél)(B,X) = 1 in this case.

LEMMA 4.2.2. Let Be L), . Then

=(1) _ —e(p) ap(B', B)
FY(B, X) > X o (5

Becl,

/GLnfl(Zp)
« G}()l) (B/7 p(—n—l)/QX)(p—lX)(l/(det B)—v(det B’))/Q.

Proof. We have
FY(B,X)
_ Z X—e<1)(B)Gél)(B[W—1]’p(—n—l)/2X>X21/(det w)
WEGLy—1(Zp)\QM) (B)
— Z Z x M (B)
BreL'’, /GLn 1(Zy) WEGLn-1(Zp)\Q(B',B)
y G}(jl)(B/,p(—n—l)/ZX)X%/(det W)

_ Z X_e(l)(B/)#(GLn_l(Zp)\ﬁ(B/,B))p(V(detB)_V(detB/))/Q
B JGLu 1(Zy)
% GI()l) (B,, p(—n—l)/2X)(p—1X)(u(det B)—v(det B’))/2'

Thus the assertion follows from Lemma 4.1.1(2). =

4.3. Certain reduction formulas. To give an explicit formula for the
power series Péi)l(do, w, X, t), we give certain reduction formulas, by means

of which we can express Pél_)l(do7 w, X, t) in terms of the power series defined
in [11]. First we review the notion of canonical forms of quadratic forms over

Zs in the sense of Watson [20)].
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Let B € 5272. Then B is equivalent, over Zo, to a matrix of the form
T .
‘J'o 2°(V; L Uy),
=

where V; = L% | ¢;j with 0 < k; < 2, ¢;j € Z5 and U; = $0,, g with 0 < m,
d € U. The degrees k; and m; of the matrices are uniquely determined by B.
Furthermore we can choose the matrix L, 2/(V; L U;) uniquely so that it
satisfies the following conditions:

(c.1) ¢ ==+l or £3if k; =1, and (¢1, ¢i2) = (1, £1), (1, £3), (-1, —1),
or (—1,3) if k; = 2;
) k2+2 =k =0 if Uz+2 = l®mz+2 5 with ml+2 > O'
3) —detV;=1mod 4 if k; =2 and U1 = 6m1+1 5 with m;1q > 0;
) (=D ~1det V; =1 mod 4 if ki, kiy1 > 0;
5) Vi () 02)1fk‘z 1>0;
6) degV; =0, 0r V; = (1), (§ %), or (¢ %) if ki > 0.
The matrix satisfying the conditions (c.1)—(c.6) is called the canonical form
of B, and denoted by C(B). Now for V = J_;?Zl c; with 1 < k < 2, put
V= 5cy or V= 5c1 L cg according as V =c; or V =¢; L co.
LEMMA 4.3.1. For B € S,,(Z2)}, let C(B) =Vp L LI_(U; LV;) be the

canonical form of B stated as above. Let | = g be the smallest integer such
that kojro = 0. Then

~ r 2[—-1 ~ r
CWo L L LV)) =Vo L L (Ui LV) LU LC(Ta) L L (Us L V).
Proof. We note that 5a; L 4as ~ a1 L 4-5ay for aj,as € Z5. Hence
~ ! -1 ~
Vo L {-1‘/2@' ~ VoL .J:leiJ-Vm-

This proves the assertion. m

COROLLARY. For B,B’ € Sopmy1(do)o, let C(B) = Vo L Li_1(U; L'V;)
and C(B') = V§ L Li_, (U] LV}) with Vo = L% co; and V§ = L2, ¢;.
Put

By = ; coj L J_(U 1V, and B = J_ L5 L J_(U’J_V)
=
Then B ~ B’ if and only if cop L 5By ~ ¢{y L 5B1.

Proof. We note that cp1 L 5B1 ~ ¢, L 5B if and only if 5¢co1 L By ~
5¢, L Bi. Hence the assertion follows from the lemma. =

The following lemma follows from [17, Theorem 3.4.2].
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LEMMA 4.3.2. Let m and r be integers such that 0<r<m, and dy EZ;.
(1) Let p#2 and T € Sy(Zyp,do). Then for any d € U we have
e(Om_pa LT) = ((—D)lm=+1/2g do) e (T).
Furthermore
(p, do)pe(T) if T even,
e(pT) = /2 )
(p, (=1)"HV2)e(T) if r odd,
and e(aT) = (a,do)ye(T) for any a € Z.

(2) Let p =2 and T € S;(Za,dp). Suppose that m — r is even, and let
deU. Then for © =20, q or 20,,_,_s 1 (—=d), we have

6(9 L T) _ (71)(m—r)(m—r+2)/8((71)(m—r)/2d’ (*1)[(T+1)/2]d0)26(T)

and

E':(Qm—r,d 1 T)
_ (_1)(mfr)(mfr+2)/8(2’ d)Q((_l)(mfr)ﬂd7 (—1)[(T+1)/2}d0)2€(T).
Furthermore, £(2T) = (2,do)5™'e(T),
ela LT) = (a, (~1)+D/2H go)oe(T))
for any a € Z3, and
(aT) {(a,dg)gz—:(T) if T even,
a =
: (a, (=1)FD/2)05(T) if 7 odd
for any a € Z3.
Henceforth, we sometimes abbreviate S,(Z,) and S,(Zy,d) as S, , and
Sy p(d), respectively. Furthermore we abbreviate S,(Z2), and Sy (Zs,d), as
Sr.2.¢ and Sy a(d),, respectively, for x = e, 0.
Let R be a commutative ring. A function H defined on a subset S of

Sm(Qp) with values in R is said to be GLy,(Zy)-invariant it H(A[U]) =
H(A) for any U € GLy,(Zp) and A € S.

Let p # 2. Let {H{, . | j € {0,1}, 1—j <r <nj2-j, &= +1}

be a set of G Lo, j(Zy)-invariant functions on Sa,4;(Zp)* with values in R
satisfying the following conditions for any positive even integer m < n:

(H-p-0) Hy(r?,)g(gm,d) =1and Hr(;)fm(@m_m) =1 for d € U;
(H-p-1) H;,?’)g(@mf%,d 1pB) = HQ(S,)éx(d) (pB) for any r <m/2 — 1, £ = +1,
d €U and B € So,(Zy)™;

(H-p-2) Hqg),l,g(@m—w—zd 1L pB) = Héi)ﬂ,g

E==1,dec U and B € Sy 41(Zp)";

(pdB) for any r < m/2 — 2,
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(Om_sr—1.4 L pB) = H

0
(H-p-3) H,,) 2r+1,€

m,§
£ ==x1and B € Sor41(Zy)";
(D) )
(H-p—4) Hmili(@m—Zr—l,d J—pB) - H2T7§X(d)
§==1,de U and B € So,.(Zp)™;
(H-p-5) g(r)g(dB) = Hég)g(B) for any r < m/2, £ = £1, d € Z, and
B 6 SQT( p)X-

(=pdB) for any r < m/2 — 2,

(pB) for any r < m/2 — 2,

Let dy € Fp, and m be a positive even integer such that m < n. Then
for each 0 <r <m/2 —1 we put

QW(do, HY | . 2r +1,¢.) = w(do,m — 1,1)"
(1) !
H 1 (@m_gr_gdJ_pB)E(@m_Qr_QdJ_pB)
m 75 ? El

o, (O -9 _QdJ_ B
deUl Bep=152,41,p(dod)NS2r41,p p( TS pB)

« tv(det(pB))
Let d € U. Then we put

QW (dy, d, T(n) 16027, e t) = r(dy,m —1,1)7!
" Z Hﬁr}) 16(©m—2r-1,4 L pB)e(Om—2r—1,4 L pB)!

tl/(det(pB))
BESap(dod) p(Om_2,1.4 L pB)

for each 1 <r <m/2—1, and

QO o, 10 21,1
H$?§(@m—2rad 1L pB)e(Om_2ra L pB)!

BeSar,p(dod) ap(em—Zr,d L pB)

((det(pB))

for each 1 < r < m/2. Here we make the convention that

HY,(pB)e(pB)’

v(det(pB))
a,(pB)

Q(O (do, 1 ,Hr(r?)g,m €,t) = Z

BESmJ)(do)
We also define
QW (do, d, HSY | ,0,¢,t) = QO (do, d, H,. 0,€ 1) = 5(d. do),

where 6(d,dyg) = 1 or 0 according as d = dy or not. Furthermore put
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Q()(do, (0) 27‘—|—1e t)

m{’

=2 2.

deU Bep=182,41,p(dod)NS2r41,p

Hr(y?,)g(_@mf%fl,d 1 pB)€(—@m72r71,d 1 pB)l
ap(_@mf%fl,d LPB)
% tu(det(pB))

for each 0 <r <m/2 — 1.

Let {Hy, .. |j€{0,1},1—j <r <nj2—j &= +1} be a set of
G Lor+(Zso)-invariant functions on Sa,4;j(Z2)* with values in R satisfying
the following conditions for any positive even integer m < n:

(H-2-0) H\(Oma) = HY | ((~d L20,,_5) =1 for d € U;
(H-2-1) H\(Om-ara L 2B) HY) ()(2B) for any r <m/2 -1, £ = %1,

d €U and B € Sy, (Z2)™;

1 1
(H-2-2) H\) | (202,24 L 4B) = Hy),

fz :tl, del and B € SQT+1(ZQ) )
(H-2-3) HY: (21022 12B) = H{l, | (4B) for any r < m/2-2, € = £1
and B € SQT+1(ZQ)X;

1 0
(H-2-4) H\) | (~a 120, 551 4B) = Hér,)gx<a>

E==x1,a €U and B € Sy, (Z2)"™;
(H-2-5) ér)g(dB) = Hz(g?g(B) for any < m/2, £ = x1, d € Z% and
B € S5 (Z2)™;
(H-2-6) HyY,, (4(uo L B)) = Hy),| (4(ug L 5B)) for any r < m/2 — 1,
f: +1 and ug € Z;, B e Sgr(Zg)X.

(4dB) for any r < m/2 — 2,

(2B) for any r < m/2—2,

Let dy € F2, and m be a positive even integer such that m < n. Then for
each 0 <r <m/2—1, we put
Q(ll)(d an) 16 2r + l,al,t) = k(dy,m — 1,1)7127™ x

Z Z H,%)_17§(29m—27"—2,d 1 4B)€l(29m—2r—2,d 1 4B)
a2(2@m_2r_2,d €L 4B)

deU BESa,41,2(dod)e

« tm—2r—2+u(det(4B))

Q(12)(d Hr(n) 1§a2""+1,81,t) = K(do,m* 1 l)_1t2_m X
5 HY | (20035 L 4B)e! (20, _5,—2 L 4B)
BGSQr+1,2(d0)o a2(2®m 2r—9 1 4B)

$m= 2r—2+v(det(4B))
)
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and
Q") (dy, HT(n) Lo 2r + 1,et)
= w(do,m — 1,072 ™ S HY | (~1126,5-4 L 4B)
BeSar12,2(do)o

el(—1 L 20, 2,4 1 4B) m—2r—4tv(det(4B))
(=1 120y, 2,4 L 4B) '

Moreover put

Q(l)(dO,Hfr}) 1e2r +1, et) = Q(H)(do, fn) 1e2r +1, el t)

+ QD (do, HY | (20 +1,64) + QU (do, HYY | (2 +1,€L,8).
We note that
Q( )(dO’Hﬁn)IQ _1761775)

1
— w(do,m— 1,07 S gD, g(43)1(43) ((det(4B))

BESmfl’Q(dO) O[Q(4B)
Let d € U. Then we put
Q(l) (dUa d H7(n) 1,6 27’, elv t)
= k(do,m — 1,07 N H | (~d 120,55 1 4B)

BeSsr2(dod)e

6(_d 120y 22 L 4B)l tm—2r—2+y(det(4B))
OéQ(-d L 2@m72r72 1 4B)

for each 1 <r <m/2—1, and
QO (do,d, H\, 2r, € )

(0) !

H9.(0,, 94 L 2B)e(©,, 9,4 L 2B
= r(do,m, 1)~ Z e - ’d@ ) 1232 . !
BESar.a(dod)e 042( m—2r,d )

for each 1 < 7 < m/2, where k(dg, m,l) = {(=1)"™"+2/8((=1)"/22, dy)»}.
Here we make the convention that

tu(det(QB))

QO (do, 1, ;Q,M,el) — wdo,m, ) S m.g p(det(2B))

BGSm,Q(dO)e

We also define
QW (dy, d, H

m— 1{’

0,é,t) = QO (dy, d, HO., 0, €, ) = 5(d, do).

m,&?
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Furthermore put

QO (do, HY,, 2r +1,¢,1)

m7£7

H (©_9—5 L 2B)e(Op_9r—» L 2B

- K(d07m7l)71 Z m,{
m—2r—2 L 28
BESar42.2(do)o a2(Om—_or—2 )

)l
tu(det(ZB))

for 0 <r < m/2— 1. Henceforth, for dy € F, and nonnegative integers m, r
such that » < m, set U(m,r,dy) = {1}, U N {dy}, or U according as r = 0,
r=m2>1l,orl<r<m-—1.

PROPOSITION 4.3.3. Let the notation be as above.
(1) For 0 <r < (m—2)/2, we have

QW (do, HyY, ¢ 2 +1,¢\,1)

P(m—2r—2)/2(p72)

Q(O)(dOa ny??gv 2r+1, 5l7 t) =

if lv(dy) =0, and
Q) (do. H,,

m)g’

2r+1,e,t) =0

if v(do) > 0.
(2) For1<r<m/2 andd e U(m,m — 2r,dy), we have

QO (do,d, HYY, 2r,¢' 1)

—(m—2r (0)
(1+p=m=202x(d) Q) (dod, 1, Hy,. (- 27, 1)

20(m—2r)/2(p72)
if lv(do) =0, and
QO (do,d, HY,, 2r,e,1) = 0
if I/(do) > 0.
Proof. First suppose that p # 2. We note that
(_@m—Qr—l,d) J—pB ~ d(_@TYL72T71) J—pB ~ (_@m72r71) L de
for d € U and B € p~1S941(dod) and the mapping
p ' Sori1p(dod) N S2r11p D B dB € p~ ' Sari1,(do) N Sari1p

is a bijection. By Lemma 4.3.2, e((—=O,—2,-1,4) L pB) = (d, dp)pe(pB) and
e(dpB) = e(pB) for B € p~1S941,(dod). Thus (1) follows from (H-p-3),
(H-p-5) and Lemma 4.1.3.
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By (H-p-2) and Lemmas 4.1.3 and 4.3.2, we have

(1+ p=(m=29/2x(d)) ((—1)"=2)/2d, dg)!,
20 (m—2r)/2(p72)

X Q(O) (dod, 1, Hég?ﬁx(d)’ or, e, t).

Thus (2) follows immediately in case lv(dp) = 0.

Now suppose that [ = 1 and v(dg) = 1. Take a € Zj such that (a,p),
= —1. Then the mapping So,(Z,) > B + aB € S2,(Z,) induces a bijection
from So,,(ddp) to itself, and e(apB) = —e(pB) and ay,(apB) = a,(pB) for
B € Sy p(ddp). Furthermore by (H-p-5) we have

QO (do,d, HY, 2r,¢' 1) =

©)
OO, LHY, oty = Y e ®DE@D)

* BESsa,(ddp) ap(apB)
P (0)) (0) l
= Q (dod, 1, H27“7Ex(d)’ 21", £ ,t).

Hence Q) (dod, 1, H2(10~)§X(d)’ 2r, ¢!, t) = 0. This proves (2) in this case.
Next suppose that p = 2. First suppose that [ = 0, or [ = 1 and dy =
1 mod 4. Fix a complete set B of representatives for (S2,422(do),)/~. For

B € B, let Syr112(B) and §2r+2,2(B) be those defined in Subsection 4.1.
Then, by (H-2-1) and (H-2-5) we have

QO (do, HY,, 2r + 1,1,1)

m7§ ’

(0
- HY,, (2B)

a Bze% Pm—2r—2)/2(272)20 TN +3) 0y (B)

We have SQT+]_72(dO) = UBE!S’SQTJFLQ(B), and 1 L B’ = B for any B e

Sors1.2(B). Hence v(det(2B)) = v(det(4B')) — 2r and H" , .(2B) =

2r 42,6
H2(21L2,§(2 12B) = Héi)ﬂ,g(‘lB/)- Thus by Lemma 4.1.5 we have

# (§2r+2,2 (B) /N)t’/(det(ZB)) ‘

QO (do, HY,, 2r + 1, 1)

1
=9 Z H§TL1,§(4B/) poldet(4B") 20
B’€S2r41,2(do) 2(T+1)(2T+3)¢(m_27"_2)/2(2_2)a2<B,)
(1)
=20 ) Hori1 (U5 v(det(4B))

—2 /
B'€27185, 11 2(do)NS2r 41,2 ¢(m—2r—2)/2(2 >a2(4B )

This proves (1) for [ = 0. Now let dy = 1 mod 4, and put &y = (2, dp)2. Then
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by Lemma 4.3.2 we have
5(@m72r72 n QB) _ (_1)m(m+2)/8+r(r+1)/2+(7’+1)2SOE(B)‘

Furthermore for any a € Z§ we have £(aB)! = ¢(B)! and as(aB) = as(B).
Thus, by using the same argument as above we obtain

QO (do, HY,,2r + 1,¢,1)
— (—1)mm+2)/3¢ Z HQ(SLQ5(23)(_1)m(m+2)/8+T(T+1)/2+(T+1)2505(B)

Pm—2r—2)/2(272)20 TN+ 0y (B)

X #(Sarp2,2(B)/~ )t 1B,
We note that e(1 L B') = ¢(4B’) for B’ € Sy,412. Therefore, again by
Lemma 4.1.5, we have

Q(O)(do,Hﬁgv)g,QY’ + 1,El,t) _ (_1)r(r+1)/2((_1)r+1 (_1)r+1)22(2r+1)rt72r
H | (4B")e(B)

2r+1.€
<D Doy (1D
B’€8S27+1,2(do) ¢(m—2r—2)/2( )Oéz(4B )
This proves (1) for I = 1 and dy = 1 mod 4.
Next suppose that [ = 1 and 4 'dy = —1 mod 4, or [ = 1 and 8 'dy € Z3.
Then there exists a € Z3 such that (a,dp)2 = —1. Then the map 2B — 2aB

induces a bijection of 259,42 2(dp), to itself. Furthermore Hérerg(QaB) =
7O

ori2¢(2B), €(2aB) = —€(2B), and a2(2aB) = a2(2B). Thus (1) can be
proved by using the same argument as in the proof of (2) for p # 2. The
assertion (2) for p = 2 can be proved by using (H-2-1), Lemmas 4.1.4 and
4.3.2 similarly to (2) for p # 2. =

PROPOSITION 4.3.4. Let the notation be as above.
(1) For 0 <r < (m —2)/2 we have

BeB

v(det(4B"))

Q1 )(do, 2(7"11 & 2r +1,€l,t)

¢(m—2r—2)/2( _2)

(2) For1<r<(m-—2)/2 anddeU(m—1,m—2r —1,dy) we have

QO (dod, 1, Hy).
2¢(m—2r—2)/2( )

QW (do, Hy,) ¢, 2r 1,6 1) =

1,60

,2r, el t)

QW(do,d, HY | ., 2r,e',t) =

if lw(dy) =0, and
QW(do, d, HY | ., 2r,e',t) =0
otherwise.

Proof. We may suppose that r < (m—2)/2. First suppose that p # 2. As
in the proof of Proposition 4.3.3(1), we have a bijection p~1Sa,41 ,(dod) N
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Sory1p 2 B = dB € p_15’27~+17p(d0) N Sor+1,p. We also note that e(dB) =
e(B) and «a,(dB) = a,(B). Hence, by (H-p-2), Lemmas 4.1.3 and 4.3.2,
similarly to Proposition 4.3.3(2), we have

QW (do, Hr(i,)gv 9 + 1,6l 1) = pm/2=Dlwldo) (_1ym/2g, (_l)lm/Q)p
(1) l
Z Hy, 1 (pB)e(pB) (et (pB))
20 (m—2r—2)/2(07 %)y (pB)

X
Bep=1S2,41,p(do)NS2r41,p
¢ S0 (14 0D (@) (—1) 22, (1) dgd),
deu
Thus (1) clearly holds if lv(dyp) = 0. Suppose that [ = 1 and v(dp) = 1. Then

((_1)(m72r72)/2d’ (_1)T+1d0d)p
= x(d) (=)™, (=1)"dod), ((—1)™/2, (=1)™/2dy),,
and therefore

D (L AN (@) ()RR, (1) ),
del

_ 2p—(m—2r—2)/2((_1)r+1’ (_1)r+1d0d)p((_1)m/2’ (_1)m/2d0>p'

This completes the proof of (1).
By (H-p-4) and by Lemmas 4.1.3 and 4.3.2, we have

Q(l) (d07 d7 Hy(ill,gv 27’, Elv t)

o Q(O) (dodv 17 Hg(g?gx(dy 27" 6l7 t)

20 (m—2r—-2)/2(P7?)
Thus (2) follows immediately if [v(dy) = 0; and for | = 1 and v(dp) = 1 it
follows from Proposition 4.3.3(2).
Next suppose that p = 2. We have

5(2®m72r72,d L 4B) _ (_1)m(m—2)/8(_l)r(r+1)/2((_1)m/2’ (—l)m/2d0)2
x (1), (=1)""'dyd)2(do, d)2 £(4B)
for d € U and B € Say41.2(ddp). Thus, similarly to (1) for p # 2, we obtain

((_1)(m—27")/2d7 dO)é

Q(ll)(do,H(l) o + 1,€l,t) _ (_1)7"(1“+1)l/21572r((_1)1“Jr17 (_1)r+1d0)12

m—1,¢?
r(2r+1 1) l
o 9(m/2=1)lu(do) Z 2t )H2r+1,5(4B)5(4B) v(det(4B))
2:2m72 2B on_9y/2(272)a(4B)

BeSari1,2(do)e

x> (1427022 (d))(d, do)y
deld
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Q) (dy, érllg,2r+ 1,el,t)

P1+m—2r=2) (1= (do)/2)

= > (1427222 (d))(d, do )y
del

In the same manner as above, we obtain

QU (dg, HYY y ¢,2r +1,¢!, 1) = (=) 0 DY22r (1)L, (<1) 1y )

2r(2r+1)H( 1_1 5(4B)€(4B)l

2m_27‘_2¢(m72r72)/2(2_2)a2(4B)

= Q(ll)(d07 571“)+1§7274+ 1’€l’t)
2(m 2r—2)(1— ll/(do)/2)¢(m_2r—2)/2(2_2)

(m—2r—2)/2(272)

s« 9(m/2=1)lw(do) Z
BeSar41,2(do)o

tu(det(4B))

Furthermore we have
e(—=1 L 20, _9r_4 L 4B) = (—1)™m=2/8(_q)r(r+1/2((_1)ym/2 (1)),
X (1), (=1)" 1 do)2(2, do)2e(2B)
for d € U and B € Sop422(ddy),. Hence
Q(13)(d H( ) o + 1,5l,t) _ (_1)7‘(7‘+1)l/2t—2r—2((_1)r+1’ (_1)r+1d0)l2
7Y | (2B)e(4B)!

X (2, dg)b 2(m/2—1)w(do) 2r+2,¢ J
BGSQ%Q(dO) ¢(m—2r—4)/2(2 2)0[2(23)

r r r lo(m v
= (((—1) +127d0) ( )( +1)(r+2) /2) 2 /2—1)lv(do)

1,6

tu(det(4B))

(0)
y Z Hy, oo E( )i(ZB) v(det(2B))
¢(m 2r— 4/2(2 )0(2( )

BeSar42,2(do)o

QO (do, HYY, ¢ 2 +1,¢\,1)

(m/2—1)lv(do) )

¢(m—2r—4)/2(272)
First suppose that [ = 0 or v(dp) is even. Then (d,dp)}, = 1. Hence
QU (do, HY | (2 +1,614) + QU (do, HYY | (2 +1,€',1)

Q( )(d07 2(r11€727“+175l7t)
- 2(m72’f‘ 2)(1 l/(dO l/2 ¢(m—27”—2)/2(272) ‘

Furthermore by Proposition 4.3.3(2), we have

QW (do, Hy, | ¢, 2r +1,¢l,1)

Dm—2r—a)/2(272)

QU (do, HY | (20 +1,€) =
if lv(dp) = 0, and

QU (do, HYY | 20 +1,6,8) =0
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if 4~1dg = —1 mod 4. Thus summing up these two quantities, we prove (1)
in this case.

Next suppose that [ = 1 and v(dy) = 3. Then
QU (do, HY | 2 +1,e,t) = 0.
We prove
1
QU (do, HY, ¢, 2r +1,6,8) = 0.

If » = 0, then clearly Sg,412(dp)o is empty. Suppose r > 1. Then for
B € 455,412, take a canonical form 4cg; L 4By with co1 € Z5, By € Sar 2,
and put B’ = 4c¢p; L 4 - 5B;. Then, by Corollary to Lemma 4.3.1, the
mapping B +— B’ induces a bijection from 4S55,412(do)o/~ to itself, and
e(B') = —&(B). Then, by (H-2-6), and Lemma 4.1.4(3), we can prove the
above equality in the same way as in the proof of (1) for p # 2. We also note
that Y o, (1 + 27 M=2=2/2y(d))(d, dy)o = 21~ (M=27=2)/2_ This proves (1).

The assertion (2) for p = 2 can be proved in the same manner as (2) for
pF2. =

4.4. Proof of the main result. In this section, we prove our main
result. First we give an explicit formula for the power series of Koecher—
Maass type.

THEOREM 4.4.1. Let dy € Fp, and put & = x(do). Then we have the
following formulas:

(pflt)lj(do)(l _ §0t2p75/2>
Pn—2)/2(p72)(1 = 2p~2X)(1 — t?p—2X 1)
1

1) P, (do, 1, X, t) =

X .
Hz(if)/?(l — $2p=2i-1X)(1 — 2p=2i-1X 1)

(p~ 1) (o) (1 — got*p~1/2 )
Pn—2)/2(p72)
1

2) PY (do,e, X, t) =

X .
[T (1 = 2p2X)(1 — 22X 1)

To prove the above theorem, we define another formal power series.
Namely, for I = 0,1 we set

KV (do, !, X, t) = r(do,n — 1,1)" 10202

G (B, p~"VPX)e(B) (5 iaet 57)
X Z ap(B’) X t .

Bec’, (do)
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PROPOSITION 4.4.2. Let dy be as above. Then

n—1
Pél_)1(do,w, X,t) = H(l - tQXPi_n_l)_lezl—)ﬂdO:vav t).
i=1
Proof. We note that B’ belongs to ﬁ( ) 1p(do) if B belongs to ££L )1 »(do)

and «,(B’, B) # 0. Hence by Lemma 4.2.2 for w = ¢! with [ = 0,1 we have
P (do,w, X, t) = k(dg,n — 1,1) 1 ¢02#(2~7)
5 1 5 G(B, p~ntD/2x) x V(B (B, B)w(B')
ap(B) I ap(B')
x (p) X )¥(det B)—v(det B)/2yv(det B)

X
Becl, (do)

Z GI(,I)(B’,p—(n-H)/?X)w(B’)Xfe(n(B/)

— - —1482 p(2—n)
k(do,n—1,1)""t (B

ap(B ,B) 1 o\ (v(det B)—v(det B'))/2,v(det B)
—_ X t .
- Z ay(B) (v )

Becl, (do)

Hence by [4, Theorem 5], and by Lemma 4.1.1(1), we have

Z (B, B) (p~1 X ) (V(det B)~v(det B') /2(det B)

ap(B)
B
_ Z ( 2Xp71 ,n+1) (detW)tu(detB’)
WEMp1(Zp)* /GLu-1(Zp)
n—1
_ H (1 N t2Xpi—n—l)—ltu(det B’)'
=1

Thus the assertion holds. =

For a variable X we introduce the symbol X'/ so that (X'/?)? = X,
and for an integer a we write X%? = (X/2)?. Under this convention,
we can write X—e(l)(T)tl/(detT) as X§2’p(n_2)/2Xy(d0)/2(X_1/2t)y(detT) if

T € L;,_1,(do), and hence we can write K,Sl_)l(do, e, X,t) as

K (do, €', X, 8) = w(do,n — 1,1) 7} (¢X~1/2)020(2m) xv(do) /2

Z Gg(ol) (B, p—(n+1)/2X)5(B/)l (tXfl/Q)u(det B')

- ap(B’)

In order to prove Theorem 4.4.1, we introduce some power series. Let m be
an integer and [ = 0 or 1. Then for dy € Z; put
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l
Cm(do, gl’ u) = Z ﬂuv(det T) :

resmptio)/~ 2T

and for dy € ZJ put

!
¢ (do, ety u) = Z ﬂuu(det T)

Tesoatdores~ 22F)

We make the convention that ¢o(do,e',u) = ¢, (do, !, u) = 1 or 0 according
as dy € Z,, or not. Now for d € Z), let Zm(u,el,d) and Z7, (u, €', d) be the
formal power series in Theorems 5.1, 5.2, and 5.3 of |11], which are given by

Znlwel =2 omys Y Sl ey,

i=0 TS (Zp,pid) /~ (1)
l
7 (’U, 8 d _2—mz Z E(T) (77%12(771-"-1)/2,111)7,7
1=0 T€S,,(Z2,2%d)e/~

where S,,,(Zp,a) = {T € Sn(Zp) | detT = a mod Z;"}, Sy(Zp,a)e =
Sm(Zp,a) NS (Zp)e, and 0y, = (( 1)m+D/2 5), or 1 according as m is odd
or even. Here we recall that the local density for T € S,,(Z,) in our paper
is 2792+ times that in [11]. Put

Zme(u,e'yd) = 3(Zim(u, €' d) + Z(—u, €', d)),

Zmo(u,e'yd) = 3(Zim(u, €', d) — Zp(—u, €', d)).

We also define Z};, (u,e',d) and Z;, ,(u, &', d) in the same way. Furthermore
put z(i) = e or o according as i is even or odd. Let dy € F,. Let p # 2. Then

or
Cm(d(]a Elv u) = Zm,x(u(do)) (p—(m+1)/2u’ Ela p_y(d()) (_1)[(m+1)/2] dO)

according as m is odd and I = 1, or not. Let p = 2 and suppose m is odd.
Then

Cm(d07 Elv U) = 2mZm,x(u(do)) (27(m+1)/2u’ Ely ziy(do) (_1)(m+1)/2d0)-
Let p = 2 and suppose m is even. Then
Gr(do, €' u) =227, (y(do))(Q_(mH)/QU, el, (—1)m/227vd) ),

PROPOSITION 4.4.3. Let dy € Fp. For a positive even integer r and d € U
put
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r/2—1
c(r.do,d. X) = (1 = x(do)p~2X) J] (1 =p* "X (1 + x(d)p*12X),
i=1
and put ¢(0,dy,d, X) = 1. Furthermore, for a positive odd integer r put
(r—1)/2 ‘
c(r,do, X) = (1 — x(do)p~ /2 X) H (1 - p¥-lx2).
i=1

(1) Suppose that p # 2.
(1.1) Letl =0 orv(dg) =0. Then

K»,(Ll_)l(dm Elv X: t)

(n—2)/2 —r(2r — r
_ Xu(do)/2{ Z Z p D (X Y22 e(2r, dy, d, X)
217000, or_9y/2(p72)

r=0 deU(n—1,n—2r—1,do)
l l -1/2
x (p, dOd)p Gor(dod, €', tX )

(n—2)/2 p (D@D (1 X -1/2)2r 41090 41, dy, X))
¢(n72r72)/2(p_2)

+ C2r+1(p*d07€l,tX_l/2)},
r=0
where p*dy = pdy or p~tdy according as v(dy) = 0 or v(dy) = 1.

(1.2) Let v(dp) =1. Then

KW (do,e, X, t)
_ a2 ("22%/ 2 EDErD = (1 X 12)204 (2 41, dg, X))
= Pn-2r-2)/2(P2)

X (241 (pildo,e,tXfl/Z),
(2) Suppose that p = 2.
(2.1) Let 1 =0 ordy =1 mod 4. Then
K, (do,e!, X, 1) = X0/

(n—2)/2
> { Z Z (tX71>2r27r(2r+1) c(2r,do, d, X)

=50, -
r=0 del(n—1,n—2r—1,do) 2% ¢(n—27“—2)/2(2 %)
% ((_1)(7'Jr1)7“/2<27 dod)g)lggr(dod,é,tXil/Q)
(n—2)/2
— _ 2r +1,dg X)
+ £ X —1/2)2r+1g—(r+1)(2r+1) o( ) @0,
Z ( ) P(n—2r—2)/2(272)

r=0
X ((_1)(7‘4-1)7"/2((_1)7'+17 (—1)T+1d0)2)l<2r+1(d0751,tX_1/2)}.
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(2.2) Suppose that 4~1dy = —1 mod 4 or 8 'dy € Z}. Then

Ky(Ll_)l(dO; £, X7 t)

P(n—2r—2)/2(272)
« (_1)(7"—&-1)7'/2((_1)7"—&-1’ (—1)T+1d0)2<27~+1(d0, e, tX_1/2).

(n—2)/2
— XV(dO)/2 Z (tX—1/2)2r+12—(r+1)(2r+1)—ru(do) C(QT—I_ 17d07X)
r=0

Proof. Put HY), . (B) =1for j € {0,1}, 1 —j <r <m/2—j, € = +1,
and B € Syr4;jp. Then clearly the set {Héi)ﬂf |7 €{0,1},1—j <r<
n/2 — j, & = 1} satisfies the conditions (H-p-0)—(H-p-5) in Subsection 4.3
for any positive even integer m < n. Hence by Lemma 4.2.1 and Proposi-
tion 4.3.4, and by using the same argument as in [10, Lemma 3.1(1)], we have

qul_)l(d[)a 5l7 X7 t)

(n—2)/2
— doX”(dO)/2 Z Z 0(27", do, d, X)

176 T —2
r=0 deu(n—l,n—2r—1,do)2 ’ ¢(n—2r—2)/2(p )

e(pB)' < 1/9\u(det(pB))
NI S oS e TR
BESay.p(dod) ap(pB)

(n—2)/2
L vl Z ¢2r+1d0,dX)

n—2r 2/2( )
x 2

(=1)0/2, (—1)e+D/24g)L =10 (p B!
Bep=1S2r41,p(do)NS2r41,p

ap(pB)
« (t)(—1/2)1/(dot(;zﬂ3))7

where 7,4, = 1 or 0 according as v(dp)l = 0 or 1. Thus (1.1) follows
from Lemmas 4.1.3 and 4.3.2 by noting that p*152r+17p(d0) N Soyy1p =
Sor+1(p*dp). Similarly (1.2) can be proved by observing that e(pB) =
(=D)L, p)e(B) for B € p~1S211,(do) N S2r41,p. The assertion for p = 2
can be proved in the same manner. m

REMARK. As seen above, to prove Proposition 4.4.3, we have only to

prove Propositions 4.3.2 and 4.3.3 for the simplest case where {H2 } are

T+, §
constant functions. However a similar statement for more general {Hzr i, ¢
will be necessary to give an explicit formula for the Rankin—Selberg series of
0n—1(¢1,(n),1) (cf. [15]). Indeed, the proofs are essentially the same as those
for the simplest case. This is why we formulate and prove those propositions
in more general settings.
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Proof of Theorem 4.4.1 in case p # 2. (1) First let dy € Z;,. Then
by Proposition 4.4.3(1.1), we have

1) 1
KW (do, i, X, t) = ————
n-1(do ) Pn-2)/2(p2)
(n—2)/2 —r(2r —INr T[7— i—
+ Z ZP (2 +1)(t2X 1) Hi:ll(l_p2 1X2)
= = 20 (n—2r—2)/2(P7%)

x (1 —p Y26X) (1 + nap" Y2 X) Cor (dod, 1, t X 71/2)

. (n—2)/2 p@rN+1) (12 x ~1)r+1/2 I, (1 — p?—1x?)

—~ P(n—2r—2)/2(p72)

x (1= p %6 X)Cort1(pdo, 1, X '7?).
Here we put ng = x(d) for d € U. By |11, Theorem 5.1], we have

_1tX_1/2
i1 (pdo, 0, tX~1/2) = P ‘
1o )= S A Px ) [Ticy (T —p? 322X 1)
Con(dod, 1, £X—1/2) = (1+ €onap~")(L — &omap™" 22X 1)

61— p 2 PX DI, (1 P X))
Hence the assertion for n = 2 can be proved by a direct calculation. Suppose
that n > 4. Then Kflljl(do, t, X,t) can be expressed as

KO\ (do, 1, X, 1)
S(d07 Ly X? t)
—2 242 v 1) TT("=2)/2 2i—n—142y -1\
Pn—2)2(p~2)(1 —p 22X D[, 7" "(1—p t2X1)
where S(dp, ¢, X, t) is a polynomial in ¢ of degree n. We have

271 (1 —p 1 P6X) D (L4 mp® I 2X) (1 4 gonp~ (/)
n==x1

x (1 — &mp~ (/2722 X
= (1—&p 2X)(1 4 &opV/2X — &p /22 —pe2X Y.

Hence
(n—2)/2—1
9-1 Zp(nfl)(fn+2)/2(t2X71)(n72)/2 H (1 _ p2i71X2)
deuU i=1
x (1 —p V26 X)(1 + nagp™D2V2X) (o (dod, 1, t X ~12)
(n—2)/2
+ pf(nfl)n/Q(tQXfl)(an)/2+1/2 H (1 _ p2i71X2)(p72)71
=1

x (1= p 20 X)Cor(pdo, 1, tX 1/?)
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(p~ (=D X—142)(n=2)/2(1 gp—5/2t2)l—[(n 2)/2—- L1 — p2i-lx?)
On-22(p 2 (L = p 22X DI = p2in 12X )

and therefore S(dp,t, X,t) can be expressed as

(A) S(do,L,X,t)
(n—2)/2—1
_ (pf(nfl)Xfth)(an)/Q H (1 _ p2i71X2)(1 o p75/2£0t2)
i=0
+(1—p "X THU(X, 1),
where U(X,t) is a polynomial in X, X! and ¢. Now by Proposition 4.4.2,
we have

P (do, 1, X, 1) =
S(do,L X, t)
S22 (p2)(1 = p=22X V) [["22(1 = p2imn—1g2X 1) [[P51(1 — pin—1X¢2)

Hence the power series P( )1 (do,t, X, t) is a rational function in X and ¢.
Since F}S )(T,X D = FZS )(T,X) for any T € Eg)lp, it follows that
P,El_)l(do, LX) = Prgl_)l(do, t, X,t). This implies that the reduced denom-

inator of the rational function Péi)l (do, ¢, X,t) in t is at most

(n—2)/2
(1 o p_2t2X_1)( _2t2 H { 2@ n— 1t2X 1)(1 . p2i_n_1t2X)}.
Hence we have
(n—2)/2 ‘
(B)  S(o,e. X,t)= [[ (1—=p*"?X)(a0(X) + ar(X)?)

i=1
with some polynomials ag(X), a;(X) in X + X . We easily see ag(X) = 1.
By substituting p"~D/2X/2 for ¢ in (A) and (B), and comparing them we
see that a;(X) = —p~5/2¢y. This proves the assertion.
Next let do € pZj,. Then by Proposition 4.4.3(1.1), we have

KW (do, 1, X, t)
(n—2)/2

2r+1)(t2X ) Hr—l(l _ p2i71X2)
1/2 1 i=
RGP s T

=1 deud (n—2r—2)/2\P

X (14 nap" Y2 X)Cor(dod, 1, t X ~1/?)
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N (n—2)/2 p=CrED+1) (2 x —1yr+1/2 T (1 — p?~1x?2)

—~ P(n—2r—2)/2(p7?)
X <2T+1(p71d07 L, tXil/z) } :

By [11, Theorem 5.1}, we have

1
1 —1/2y _
Cor1(p™ do, L, tX7) o (D)1 — p 22X ) [[y (1 — p2—3-2r2x-1)’
pltx 12
. x—1/2 , .
C2 (dod L, t ) ¢r 1( )( _2t2X )Hl 1(1 _p2z—3—2rt2X—1)

Thus the assertion can be proved in the same manner as above.
(2) First let do € Z,,. Then by Proposition 4.4.3(1.1), we have
1
K(l_) (do, e, X,t) = ————~
nt ¢(n 2)/2(P72)
(n—2)/
1

2 (27"+1)(t2X—1)'r H:;ll(l _plx?)
" Z 20 (n—2r—2)/2(P™%)
r=1 deu noer

x (1 —p Y26X)(1 + nap™ V2 X)€onaCor (dod, e, t X ~1/?)

n—2)/2 - i
) ( Z)/ pCrEDEHD (2 X 1) T (1 — p21 X 2)
- P(n—2r—2)/2(p72)

x (1= p~ Y260 X)Corr1(pdo, £, tX 1),

By [11, Theorem 5.2],

L+ &onap™"
Gr(p72) [[imy (1 — p~22X 1)

pfrfltXfl/Q
or(p=2) [T21 (1 - p~ 22X 1)
Hence Kr(ll_)l(do, g, X,t) can be expressed as

T(do7 g, X, t)
n/2 ; ’

Sin—2)2(0~2) TI3(1 — p=2i2X 1)
where T'(dp, ¢, X,t) is a polynomial in ¢ of degree n, expressed as

(n—2)/2
(C)  T(do, e, X,t) = (p "X "2)"2(1 — &op~ V2 X) H (1— p¥~lx?)
=1

Cor(dod, e, tXV/?) =

C2r+1(pd07 &, tX_1/2> =

KW (dg,e, X, t) =

+ (1 —p X HV (X, 1),
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with a polynomial V(X,¢) in X, X! and #. On the other hand, by using
the same argument as in (1), we can show that

(n—2)/2
(D) T(do,e, X,t) = [ (1—p 2 '2X)(1+by(X)t?)
i=1
with b1 (X) a polynomial in X + X', Thus, by substituting p"/2X'/2 for ¢
in (C) and (D), and comparing them, we prove the assertion.
Next let do € pZ;,. Then by Proposition 4.4.3(1.2), we have

1<,,(Ll_)1(d0a g, ‘<7 t)
n—2)/2 r i
( )/ p—(2r+1)(r+1)—r(t2X 1)r+1/2 Hz 1(1 p2 1 X2)

— x1/2 Z

r=0

¢(n—2r—2)/2(p_2)
X <2T+l(p_1d05 87tX_1/2)°
By [11, Theorem 5.2],

1
¢r(p~2) [1ic (1 —p= 282X 1)

<2T+1 (p_1d07 g, tX_l/z) -
Hence

(n— 2)/2 —@r1)r (=22 1) TT7 (1 — p2i-1 X2
K() (d0,€ X t flt Z ( ) Hz:l( p )

P(n—2r—2)/2(p7?)
1
or(p~ ) [[iz (1 — p~ 22X 1)

Thus the assertion can be proved in the same way as above. m

X

Proof of Theorem 4.4.1 in case p = 2. The assertion can also be proved
by using Proposition 4.4.3(2) as above. =

PROPOSITION 4.4.4. Let k and n be positive even integers. Given a Hecke
eigenform h € S, n/2+1/2( 0(4)), let f € Sop_n(I'W) be the primitive form
as in Section 2. Then

L(s,h) = L(2s,f) Y cnlldol)ldo| SL(28k+n/2+1<Ci0>> ’
doeF(-1)/?)

where L(s, (do)) is Dirichlet’s L-function for the character (do).

* *
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Proof. The assertion can be proved immediately by noting that

o

> (il = o)L (25— -+ /241, (dO)) L(2s, /)

m=1

for dy € F(-D"),
Proof of Theorem 2.1. By Theorem 4.4.1, we have
Hp(l)lp (do, tp, 0tp, p s+k/2+n/4—1/4) _ ‘do‘—s+k/2+n/4—5/4

(n-2)/2

< 1 C(2i)L(25 k—n/2+3, (d°)> L(2s —n+2,f)
i=1
(n—2)/2
I] L@s—n+2i+1,f)
i=1
and
H (do, €p, ap, —sth/24n/A=1/4) _ | g (=5 +k/2+n/4-5/4
(n—2)/2 do _1n/2
X H ¢(2i)L <23—k+n/2—|—17 (*>> il:[lL(2s—n+2z,f)'

Thus the assertion follows from Theorem 3.2 and Proposition 4.4.4. =

REMARK. Let m be a nonnegative integer, and let k be a positive integer

such that k > m + 2. Let ElimH) be the Siegel-Eisenstein series of weight k

and of degree m + 1. (For the definition of the latter, see, for example, [6].)

Suppose that m > 0, and let e/,(c 1+ ) be the first Fourier-Jacobi coefficient

fE(m-i-l) Then e( o 1) belongs to J, 1([‘( ). In [6], Hayashida defined

the generalized Cohen-Eisenstein series E,g i /2 @S E]i % /2 = am(e,gmlﬂ)),

where o,, is the Ibukiyama isomorphism. It turns out that E,g i /2 be-

longs to 9 1/2(F(m)( )), and in particular, E,i )1/2 coincides with the

Cohen—Eisenstein series defined in [5]. Let & and n be positive even in-

tegers such that & > n + 1. Then Eé?_n is the Hecke eigenform corre-
)

n/2+1/2

be regarded as a noncuspidal version of the Duke-Imamoglu-Ikeda lift of

E,il)n J241/2° Therefore, by using the same method as in the proof of The-
(n—1)

orem 2.1, we can express the Koecher—-Maass series of Ek 1/2 explicitly in

terms of L(s, Elil)n/Q-‘rl/Q) and L('S?Eék)fn)'

sponding to E](:_) under the Shimura correspondence, and E,gn can
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