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A note on two linear forms

by

Nikolay Moshchevitin (Moscow)

1. Diophantine exponents. Let θ1, θ2 be real numbers such that

(1.1) 1, θ1, θ2 are linearly independent over Z.
We consider the linear form

L(x) = x0 + x1θ1 + x2θ2, x = (x0, x1, x2) ∈ Z3.

By |z| we denote the Euclidean length of a vector z = (z0, z1, z2) ∈ R3. Let

(1.2) ω̂ = ω̂(θ1, θ2) = sup
{
γ : lim sup

t→∞

(
tγ min

0<|x|≤t
|L(x)|

)
<∞

}
be the uniform Diophantine exponent for the linear form L.

We consider another linear form P (x). The main result of the present
paper is as follows.

Theorem 1. Suppose that the linear forms L(x) and P (x) are indepen-
dent and the exponent ω̂ for the form L is defined in (1.2). Then for the
Diophantine exponent

ωLP = sup{γ : there exist infinitely many x ∈ Z3 such that

|L(x)| ≤ |P (x)| · |x|−γ}
we have the lower bound

ωLP ≥ ω̂2 − ω̂ + 1.

Remark. Of course in the definition (1.2) and in Theorem 1 instead of
the Euclidean norm |x| we may consider the value maxj=1,2 |xj |, as done by
most authors.

Consider a real θ which is not a rational number and not a quadratic
irrationality. Define

ω∗ = ω∗(θ) = sup{γ : there exist infinitely many algebraic numbers ξ

of degree ≤ 2 such that |θ − ξ| ≤ H(ξ)−γ−1}

2010 Mathematics Subject Classification: Primary 11J13; Secondary 11J25.
Key words and phrases: Diophantine exponents, approximation by quadratic irrationali-
ties, Davenport–Schmidt’s theorem, Jarńık’s inequality.
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(here H(ξ) is the maximal value of the absolute values of the coefficients for
the canonical polynomial to ξ). Then for the linear forms

L(x) = x0 + x1θ + x2θ
2, P (x) = x1 + 2x2θ

one has

(1.3) ω∗ ≥ ωLP − 1.

This inequality follows immediately from the argument from [2]; see also
[1, Lemma A.5].

So Theorem 1 immediately leads to the following corollary.

Theorem 2. For a real θ which is not a rational number or a quadratic
irrationality, one has

(1.4) ω∗ ≥ ω̂(ω̂ − 1)

with ω̂ = ω̂(θ, θ2).

2. Some history. In 1967 H. Davenport and W. Schmidt [2] (see also
Ch. 8 from Schmidt’s book [11]) proved that for any two independent linear
forms L,P there exist infinitely many integer points x such that

|L(x)| ≤ C|P (x)| |x|−3,
with a positive constant C depending on the coefficients of L,P . From this
result they deduced that for any real θ which is not a rational number or a
quadratic irrationality, the inequality

|θ − ξ| ≤ C1H(ξ)−3

has infinitely many solutions in algebraic ξ of degree ≤ 2.
We see that for any two pairs of forms one has ωLP ≥ 3. But from the

Minkowski convex body theorem it follows that under the condition (1.1)
one has ω̂ ≥ 2. Moreover

min
ω̂≥2

(ω̂2 − ω̂ + 1) = 3.

So our Theorems 1 and 2 may be considered as generalizations of Davenport–
Schmidt’s results.

Later Davenport and Schmidt generalized their theorems to the case of
several linear forms [3]. In the next paper [4] they showed that the value of
the uniform exponent for simultaneous approximations to any point (θ, θ2)
is not greater than (

√
5 − 1)/2. This together with Jarńık’s transference

equality (see [5]) leads to the bound ω̂ ≤ (3 +
√

5)/2 which holds for all
linear forms with coefficients of the form θ, θ2. So for a linear form with
coefficients θ, θ2 one has

(2.1) 2 ≤ ω̂ ≤ 3 +
√

5

2
.
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D. Roy [9, 10] showed that the set of values ω̂ for linear forms under con-
sideration form a dense set in the interval (2.1). Moreover he constructed a
countable set of numbers θ such that

ω̂(θ, θ2) =
3 +
√

5

2
and ω∗(θ) = 3 +

√
5.

This shows that our bound (1.4) from Theorem 2 is optimal in the right
endpoint of the segment (2.1), namely for ω̂ = (3 +

√
5)/2.

Our Theorem 2 may be compared with Jarńık’s inequality between the
exponent ω̂ and the ordinary exponent

ω = ω(θ1, θ2) = sup
{
γ : lim inf

t→∞

(
tγ min

0<|x|≤t
|L(x)|

)
<∞

}
.

For numbers 1, θ1, θ2 linearly independent over Z Jarńık [6, 7] proved the
inequality

ω ≥ ω̂(ω̂ − 1).

Other results on approximation by algebraic numbers are discussed in
W. Schmidt’s book [11], in the wonderful book by Y. Bugeaud [1] and in
M. Waldschmidt’s survey [12].

Our proof of Theorem 1 generalizes ideas from [2, 3, 4] and uses Jarńık’s
inequalities [6, 7].

3. Minimal points. In the following we may suppose that ω̂ > 2, as
the case ω̂ = 2 follows from Davenport–Schmidt’s theorem (in this case our
Theorem 1 claims that ωLP ≥ 3). We take α < ω̂ close to ω̂ so that α > 2.

A vector x = (x0, x1, x2) ∈ Z3 \ {0} is defined to be a minimal point (or
best approximation) if

min
x′: 0<|x′|≤|x|

|L(x′)| = L(x).

As 1, θ1, θ2 are linearly independent, all the minimal points form a sequence
xν = (x0,ν , x1,ν , x2,ν), ν = 1, 2, . . . , such that for Xν = |xν | and Lν = L(xν)
one has

X1 < X2 < · · · , L1 > L2 > · · · .

Here we should note that

(3.1) Lj ≤ X−αj+1

for all j large enough. Of course each vector xj is primitive and each couple
xj ,xj+1 forms a basis of the two-dimensional lattice Z3 ∩ span(xj ,xj+1).

Let F (x) be a linear form linearly independent of L and P . Then

(3.2) max{|L(x)|, |P (x)|, |F (x)|} � |x|.
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We also use the notation Pν = P (xν), Fν = F (xν). We will need the deter-
minants

∆j =

∣∣∣∣∣∣∣
Lj−1 Pj−1 Fj−1

Lj Pj Fj

Lj+1 Pj+1 Fj+1

∣∣∣∣∣∣∣ = A

∣∣∣∣∣∣∣
x0,j−1 x1,j−1 x2,j−1

x0,j x1,j x2,j

x0,j+1 x1,j+1 x2,j+1

∣∣∣∣∣∣∣ ,
where A is a non-zero constant depending on the coefficients of the linear
forms L,P, F . We take into account (3.2), (3.1) and the inequality α > 2 to
see that

∆j = Lj−1PjFj+1 − Lj−1Pj+1Fj +O(LjX
2
j+1)(3.3)

= Lj−1PjFj+1 − Lj−1Pj+1Fj + o(1), j →∞.

The statement below is a variant of Davenport-Schmidt’s lemma. We give it
without proof. It deals with three consecutive minimal points xj−1,xj ,xj+1

lying in a two-dimensional linear subspace, say π. We should note that our
definition of minimal points differs from those in [2, 3, 11]. However the main
argument is the same. It is discussed in our survey [8]. One may look for the
approximation of the one-dimensional subspace ` = π ∩ {z : L(z) = 0} by
the points of the two-dimensional lattice Λj = 〈xj−1, xj〉 Then the points
xj−1,xj ,xj+1 ∈ Λj are the consecutive best approximations to ` with respect
to the induced norm on π (see [8, Section 5.5]).

Lemma 1. If for some j the points xj−1,xj ,xj+1 are linearly dependent
then

xj+1 = txj + xj−1 for some integer t.

The next statement has been known for a long time. It comes from
Jarńık’s papers [6, 7]. It was rediscovered by Davenport and Schmidt [4]
and discussed in our survey [8].

Lemma 2. There exist infinitely many indices j such that the vectors
xj−1,xj ,xj+1 are linearly independent.

The following lemma is due to Jarńık [6, 7] (see also [8, Section 5.3]).

Lemma 3. Suppose that j is large enough and the points xj−1,xj ,xj+1

are linearly independent. Then

Xj+1 � Xα−1
j ,(3.4)

Lj � X
−α(α−1)
j .(3.5)

Now we take large ν and k ≥ ν + 1 such that

• xν−1,xν ,xν+1 are linearly independent;
• xk−1,xk,xk+1 are linearly independent;
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• xj , ν ≤ j ≤ k, belong to the two-dimensional lattice Λν = Z3 ∩
span(xν ,xν+1).

From Lemma 1 it follows that for ν ≤ j ≤ k − 1 one has

Lj+1 = tj+1Lj + Lj−1, Pj+1 = tj+1Pj + Pj−1,

with some integers tj+1, and hence

(3.6) LνPν+1 − Lν+1Pν = ±(Lk−1Pk + LkPk−1).

Lemma 4. Suppose that

0 < r < α2 − α+ 1 < ω̂2 − ω̂ + 1,(3.7)

|Pν | ≤ LνXr
ν(3.8)

for ν is large. Then

(3.9) |Pν+1| � Xα−1
ν .

Proof. For j = ν consider the second term on the r.h.s. of (3.3). From
(3.1), (3.4), (3.7), (3.8) we have

|Lν−1PνFν+1| � |Lν−1LνXr
ν |Xν+1 � Xr−α

ν X1−α
ν+1 � Xr−α2+α−1

ν = o(1).

As ∆ν 6= 0 we see that

1� |Lν−1Pν+1Fν | � Lν−1|Pν+1|Xν � X1−α
ν |Pν+1|

(in the last inequalities we use (3.2) and (3.1)).

4. The main estimate. The following lemma presents our main argu-
ment.

Lemma 5. Suppose that r satisfies (3.7) and β0 > 0. Suppose that there
are arbitrarily large values of ν satisfying the following conditions:

(i) the inequality (3.1) holds for all indices j ≥ ν and

(4.1) Lν � X−β0ν ;

(ii) we have simultaneously

|Pν | ≤ LνXr
ν ,(4.2)

|Pk−1| ≤ Lk−1Xr
k−1,(4.3)

|Pk| ≤ LkXr
ν .(4.4)

Then

r ≥ α2 + 1− β0
α− 1

,(4.5)

Lk � X−β
′

k with β′ = r − α− 1 +
β0

α− 1
< β0.(4.6)
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Proof. First of all we note that

Lν+1|Pν | ≤ LνLν+1X
r
ν � LνX

−α
ν+2X

r
ν � LνX

−α
ν+1X

r
ν

� LνX
r−α(α−1)
ν = o(LνX

α−1
ν ).

Here the first inequality comes from (4.2). The second inequality is (3.1) with
j = ν + 1. The third one is simply Xν+2 ≥ Xν+1. The fourth one is (3.4)
for j = ν. The last inequality follows from (3.7) as r < α2 − α+ 1 < α2 − 1
(because α > 2). We see that the conditions of Lemma 4 are satisfied and
by this lemma we see that

Lν |Pν+1| � LνX
α−1
ν .

So on the l.h.s. of (3.6) the first summand is larger than the second. Now
from (3.6) we have

(4.7) LνX
α−1
ν � Lk−1|Pk|+ Lk|Pk−1|.

We apply (4.3) and (4.4) to see that

max(Lk−1|Pk|, Lk|Pk−1|) ≤ Lk−1LkXr
k � Xr−α

k X−αk+1 ≤ X
r−α2

k(4.8)

≤ Xr−α2

ν+1 � X(r−α2)(α−1)
ν .

Here the second inequality comes from (3.6) for j = k − 1 and j = k. The
third inequality is Lemma 3 with j = k. The fourth one is just Xk ≥ Xν+1.
The fifth one is Lemma 3 for j = ν.

Now from estimates (4.7), (4.8) and (4.1) we have

X−β0+α−1ν � X(r−α2)(α−1)
ν .

As ν can be taken arbitrarily large, this gives

r ≥ α2 + 1− β0
α− 1

.

So (4.5) is proved.

To get (4.6) we combine the estimate (4.7) with the left inequality of
(4.8), the bound (4.1) for j = ν and the bound (3.1) for j = k − 1. This
gives

Xα−1−β0
ν ≤ LνXα−1

ν � Lk−1LkX
r
k � LkX

r−α
k ,

or

Lk � Xα−r
k Xα−1−β0

ν .

But β0 > α(α− 1) ≥ α− 1 by (3.5), and Xk ≥ Xν+1 � Xα−1
ν by (3.4). So

Lk � X
α−r+α−1−β0

α−1

k ,

and this is the first inequality in (4.6).

Moreover, as β0 > α(α− 1), we deduce from (3.7) that β′ < β0.
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5. Proof of Theorem 1. One may suppose that there exist positive
c, β0 such that for every ν we have Lν ≥ cX−β0ν (otherwise ωLP =∞).

Suppose that r satisfies (3.7). We take an infinite sequence ν0 < ν1 < · · ·
such that

• for every i = 1, 2, . . . the vectors xνi−1,xνi ,xνi+1 are linearly indepen-
dent;
• for i = 0, 1, 2, . . . the vectors xj , νi ≤ j ≤ νi+1, belong to the two-

dimensional lattice Λνi = Z3 ∩ span(xνi ,xνi+1).

Note that we can take as ν0 an arbitrarily large number.
Now we suppose that the three inequalities (4.2)–(4.4) hold for all triples

(ν, k − 1, k) = (νi, νi+1 − 1, νi+1) for all i ≥ 0.
We define recursively

βi+1 = r − α− 1 +
βi

α− 1
.

Then

βi ≤ α(α− 1) +
β0

(α− 1)i
→ α(α− 1), i→∞.

Now we take an arbitrarily large integer w. We show that (4.1) is satisfied
for ν = νi with βi instead of β0, by induction on i from the range 0 ≤ i ≤ w.
This follows from Lemma 5. One should keep in mind that the constant in
� in (4.6) will depend on w. However ν0 can be taken large enough. So (4.5)
gives

r ≥ α2 + 1− βw
α− 1

.

We let w →∞ to see that

r ≥ α2 − α+ 1.

This contradicts (3.7). So there exists j such that Lj ≤ |Pj |X−rj .
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