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1. Introduction. Piatetski-Shapiro [I4] initiated the problem of find-
ing, for a given natural number s, a range of values of ¢ > 1 (¢ ¢ N) such
that the Diophantine inequality

pi+---+p5— B[ <R

has many solutions in primes pi,...,ps, for all sufficiently large positive
real numbers R. Here and below, 7 is a sufficiently small positive constant
depending only on ¢. For s = 3 (the smallest s that can be attacked at
present), we find papers by Tolev [16], Cai [4], Kumchev and Nedeva [12]
and most recently Kumchev [11], where it is shown that the range

1<e< o1 1.10909
c<—=1
55

is permissible. In the present paper we sharpen Kumchev’s approach to
obtain the following result.

THEOREM 1. Let 1 < ¢ < 10/9 = 1.11111.... The number of prime
triples satisfying
(1.1) i +p3+p5— Rl <R™"
is > R3/°~1=(log R)~3 for R > C(c).

We elaborate Kumchev’s use of Harman’s ‘alternative sieve’ by using two
decompositions of ) <p<oX e(zp®) in a similar way to Baker and Weingart-

ner [3]. To get satisfactory numerical results, we use five Buchstab iterations
in both decompositions: see Sections |4 and [5] for details.
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The quality of the result in Theorem [I] depends on being able to make a
satisfactory power saving for exponential sums (I, denoting a subinterval
of (N,2N])

St = Z am Z e(zmn®) (MN = X, X 18 < o < X37)
m<M  n€ln

with arbitrary a,,, |am,| < 1, for as long a range of M as possible (we obtain
this for M < X'/2); and a similar saving for sums

St = E E ambne(zm®n®) (X1 < < X37)
M<m<2M N<n<2N
X<mn<2X

with arbitrary ap,, by, |am| < 1,|b,] < 1, for sufficiently generous ranges
X® < N < X5 our ranges for Sy are [a, 5] = [%, %] and [a, f] = [;—g, %].
The latter range would vanish if the constant 10/9 in Theorem (1| were to
be increased. To get our results for Sy, we follow Kumchev [11, Lemma 7],
but fill in a great many details and aim for maximum generality, with a
view to further applications to be considered elsewhere. The first Sy range
above depends on work of Huxley [I0]. The second (as in [II]) depends on
work of Sargos and Wu [15]; we take the opportunity to fill in details not
given in [15].

We abbreviate ‘M < m < 2M’ to ‘m ~ M’ and ‘U <« v <« U’ to
‘=< U’. We write f@) for the jth derivative of a real function f on an
interval or a holomorphic function f on an open set V in C, and ¢ for
the partial derivatives of a function g of two real variables. For 0 < p; < po,
0 < a<m/4, we write

S(plap27a) = {reit eC: p1 <71 <p2, ’t’ < Oé}

We reserve the symbol X for a large positive number and write £ = log X .

Constants implied by ‘O’ or written as C,C1,Cs,... depend at most
on ¢, A, 0, c, 3. The numbering of the C; begins anew in each section. The
constant C' need not be the same in different occurrences in the same section.
Constants implied by ‘<’ are permitted also to depend on 7.

2. Type I exponential sums. We shall prove the following result
about ‘Type I monomial exponential sums’ Sf.

THEOREM 2. Let 6, \ be constants, 0(6 — 1)(6 — 2)A(X\ — 1)(0 + \ — 2)
X (0+A—3)(0+2)—3)(20+ A —4) £0. Let

St = Z Z ame(Bm)‘nG)

m~M nelp,
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where B> 0, M > 1, N > 1, |an| <1 and I, is a subinterval of (N,2N].
Let F = BMAN?. Then

(21) S << (MN>7](F3/14M41/56N29/56 + F1/5M3/4N11/20
+ FUSNISASNIAG 4 p3MAN 4+ MN3/* 4 MNP,
We require a number of preliminary lemmas.

LEMMA 1. Let L(Q) = ijl A;Q% +ZkK:1 BLQ, where A;, a;, By, by
are positive. For any H > 0, there ezists Q € (0, H] such that

J
<< Z AkaaJ 1/(aj+bk) + Z BkH_bk
_]:1 =1 k=1

The implied constant depends only on J, K.

Proof. This is a slight variation of Graham and Kolesnik [7, Lem-
ma 2.4]. m

LEMMA 2. Suppose that f has four continuous derivatives on I = [a, b]
and that f” <0 on I. Suppose further that I C [N,2N] and that o = f'(b),
B = f'(a). Assume that, for some F > 0,

fA2)=<FN7?  fU@) < FN7T (j=3,4)
on I. Let x, be defined by f'(x,) = v and let ¢(v) = vz, — f(x,). Then

22) Yefm)= 3 U LB o1 a) 4 12N,

nel Sts @)
Proof. This version of van der Corput’s B-process is Lemma 3.6 of [7]. =
It is helpful to note that if f0)(z) = (Kz*)W)(1+ O(p)) (0 <j < 1) for
constants K > 0, A > 0, A # 1 with sufficiently small p, then
(2.3) () = CLE " *Tux1 (14 O(p))

A
where C7 = /\_ﬁ — A" x-1, This formula needs a little modification if A < 0,
K < 0, or both; we disregard this for simplicity of exposition.

LEMMA 3. Let F > 0. Let A be a subset of R = [CoH,C3H]x[C4N, C5N]|

and
> f(hn)e(g(h,n))

(h,n)eA
where f and g are real functions on R with

2.4)  [f9(u,0)| < CGKH N ((u,0) € R, 0< 14,5 <1).
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Then for some subrectangle R’ of R,

(2.5) S < K‘ 3 elg(hn))-
(h,n)eANR/
The implied constant depends on Cs,Cs,Cy, Cs, Cg.

Proof. We apply the identity [9] p. 90]

Ho Hy
553 Gt = 70N 3 3 6

h=H, n=N1 h=H1 n=N1

Hy Hy No

+ | fA0@ N> N Ghyn)da
Hy h=z n=N;
No Hy N2

+ | FONHELY) > G(hn)
Ny h=H; n=y
N2 Ha Hz Na

+ ) § Y@ Yy Ghn)dedy.
N1 Hp h=x n=y

Our choices of Hy, Hy are the smallest and largest integers in [CoH,C3H |
and similarly for Ny, Na. Our choice of G(h,n) is x a(h,n) e(g(h,n)), where
XA is the indicator function of A. Each of the four summands on the right
side satisfies a bound of the form , and the lemma follows. =

LEMMA 4 (Rouché). Let v be a piecewise smooth simple closed curve in
a convex domain §2 in C. Suppose that f,g are holomorphic in {2 and

1f(2) —g(2)| <|f(2)]  on~.

Then f and g have the same number of zeros (counted with multiplicity)
enclosed by 7.

Proof. See [1l, p. 153]. m
LEMMA 5. Let 0,0 be constants, (0 —1)o(oc —1)((0 —1)o — 1) # 0. Let
B#0, N<X,1<q<N/L, and suppose that the function
o (1
@) = (@ + ) —a"))"
is positive on [N,2N]. Let Sy = S(tnN, N/(tn),n/t). Then f has a holomor-

phic extension to So with a holomorphic inverse @ on f(Ss2). Moreover, for
w € f(S3), j >0, we have

(2.6) ¢ (w) = (Lw'")Y (14 O(q/N))

where T = (0—1)o—1 and L = (C7|B|q”)~Y/™ with the constant C depending
on 0,0. The implied constant depends only on 0,0,n,j.
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Proof. In the region Rez > 0, we write log z for the branch of the log-
arithm that is real on (0,00), and z” = exp(Blogz) (B € C). We suppose
for definiteness that B > 0, 6 > 0, and approximate f (defined in this way
on S1) by g, itself defined by

9(z) = B((0¢2°"H)D = Kz (Rez > 0)
with K = C7yBq°.

Applying the binomial expansion to (1 + ¢/z)?, we find that
(2.7) f(z) = g(2)(1 + O(q/N))
for Rez > nN. Now g maps S bijectively onto

Ty == S(K(nN)", K(N/n)",n|t|).

Let w € f(S2). We claim that there is exactly one z in S such that
f(2) = w. This would certainly hold with ¢ in place of f. Now when z is on
the boundary of S,

(f(2) —w) = (9(2) —w)| < |g(2) — w].
(The left side is O(L£7t|g(2)|) and the right side is > |g(z)|.) Hence f(z)—
like g(2) — w, has exactly one zero in Sy. It is easy to see that f' # 0 in So,
so there is a holomorphic inverse @ of f, & : f(S2) — Sa.

Let z = ®(w), w € f(S2). From (2.7),
w = C7Bq¢°2"(1+ O(q/N)).
An easy calculation gives in turn
w q w T g
7= C7Bq° < NNT’ “T <C’7Bq‘7> < N
)

This gives the case 7 = 0 of the lemma for all w in f(S2
smaller set f(.S3), we apply the Cauchy formula

o) (w) = gt S : P(¢) d¢

2mi 2, (¢ w)

N.

. If w is in the

where the circle C has center w and radius > Bq° N7, with C and its interior
contained in f(S3). This immediately yields (2.6)). =

Proof of Theorem 2. Suppose first that
F > MN.

We begin the proof like [2 proof of Theorem 4]. With @ € [1,£L~!N] at our
disposal, this yields

(28) i«MW MY Y Y etsmn)]

q<Q N<n<2N—q m~M




164 R. Baker and A. Weingartner

with
f(m,n) = Bm*((n+q)" —n?).

After conjugating the sum over m,n in (2.8) if necessary (the same device
occurs implicitly below), we apply Lemma [2[to the summation over m. This
gives rise to functions x, = z,(n) and ¢(v) = ¢(v, n), say. Explicitly,

o(v,n) = CsA”((n+ q) —nf)7v A7,
where Cs = Cg(),0) # 0 and 0 = =%, so that

o(lc—1)(c(@—1)—1)#0.
As pointed out in the last paragraph of [7, p. 35|, we have
1

e e = 10

Thus
S2  M?2N?
(2-9) E—IQ <=5
Z‘ Z Z 160 (v, n 2€(kAU((n+q) —n?)oyx= 1) +E.

q<Q N<n<2N—q vel,(n)

Here the interval I (n) has endpoints f(19(jM) (j = 1,2), and E; denotes
the total error arising from the error terms in ([2.2). Clearly

—1/2
(2.10) By < LMN2<1 + (i?) M>.

Let hy ' denote the inverse function of hy(n) := (n+¢)? —n? on [N, 00).
Applying Lemma (3| and rewriting the summation over n, v,

S22 MZ?ZN?

2.11) =L

( ) 52<< 0
ZFNlM ST (kA% ((n+q)? )M OY) |
q<Q (n,V)EIQXJQ

n€f3(V)
where I x Jy is a rectangle of the form
[N,2N —g] x [CoFq(NM)~", CroFg(MN)™'],
and the interval I3(v) has endpoints hfl(W) (j=1,2).
We now apply Lemma for a second time, to the sum over n € IoNI3(v)

in (2.11). Let us denote the new variable introduced by p (instead of v).
Rather than x,, and ¢(u), we write z(u,v) and fo(p, v). Thus

fo(p,v) = pz(p,v) — o(v, 2(p, v)).
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Let G = FgN~'. Using Lemma[5| and the remark after Lemma [2] we obtain
the approximation

212) () = Ao D1+ 0(g/N))  (0<a,b<4)
for v < G/M, u =< G/N, where the constant A satisfies
A(G/M)"(G/N) P =< G.
Here
-1 P
20+ 20+ )N
Writing (a)p = 1, (a)s = (a)s—1(a+s—1) for s = 1,2,..., we may
verify that

(2.13) (a)3(B)3(a+ B+ 1)2 #0.

With a little thought, we see that the range I4(v) of the variable u
when we apply Lemma [2| the second time is a (possibly empty) interval
whose endpoints, written as a function of the real variable v, are continuous

piecewise monotonic functions of v. We obtain, after a second application
of Lemma

52 M2N2 M2N 1/2 N3 1/2
(2.14) ﬁ<< Z( > <Fq> |S1| + Er + Eo,

where FEs is the total error arising from the error terms in (2.2]) for the
second application of Lemma [2| and

(2.15) Z Z (folu, v

vEly pely(v)
It is easy to see that
LMN M2N\? Fq Fq\ ~'/?
2.1 E 1 N
ew BT CR) (i (8) )
q<@Q
< E(MN1/2Q1/2 + MN?).

Let us write X = max(G/M,G/N), Y = min(G/M,G/N), W = XY,
d = q/N. Recalling the condition (2.13]) on «, 3, a variant of [2, Theorem 7]
enables us to give the upper bound

(217) Sl <<ﬁ(G1/3W1/2+W5/6+G_1/8W15/16+G1/2W1/2Y_1/2
1 §2PW2GA /5y 2/5 4 51/4W3/4Y1/4).

The variant is fairly straightforward if the following remarks are noted.
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(a) There are two further terms on the right side of the bound in [2]
corresponding to (2.17)). These can be omitted since

SYAGUAW L2y 14  (82/51/2GH /5y 2/5)5/8(GL/3 Yy 1/2y3/8,
GL2W 2y 512 o (G2 /2y —1/2)1/6(1y/5/6)5/6.
(b) Let us write (m,n) instead of (u, ) (if X = G/N) or instead of (v, u)
(if X = G/M), in order to make comparison with [2] easier. Let
fl(man) = f(m—i—s,n—l—r) - f(man)

for a given (s,7) € Z%\ {(0,0)}. Following the argument in [2], we must
estimate averages of |S(s,r)| over a rectangle R,

(s,r) € R\ {(0,0)}.
Here

S(S’T) = Z e(fl(m’n))

(m,n)eDN(D—(s,r))
where D is the set of pairs (m,n) given in the summation (2.15). Let us
focus on pairs (s,r) with

r

Y X\
In [§], fo is restricted to the form Ah(u)he(v) where hi, hy are ‘close to’

monomials. This does not matter, since for the estimation of S(s,r) we still
have the easily verified approximation

(2.18) ﬁ“%mm=c4ﬁ%“Am””””*Q&uCﬁ)+0@+®}

with

S
p =

Top(2) = (@)ar1(B)pz + (@)a(B)ps1-

(c¢) In [2, Theorem 7], only the case of a summation over a rectangle R,
rather than the more complicated domain D, is considered. This causes
no difficulty when, at certain points of the argument, we sum over subsets
E of RN (R — (s,r)) with the property that vertical and horizontal lines
intersect £ in O(1) intervals. (This property holds good if we replace £ by
ENDN (D —(s,7)).)

(d) Polynomial approximations arising from , together with Lem-
ma [} are used in [2] to prove that certain functions h(v) have a bounded
number of zeros. The most complicated example is

(219) () == —HOO (ko) ;7 (ky0) + HOD (ke 0) /1 (k, )
where k is fixed, v is restricted by
(I{J,U) ERN (R - (S,T)),
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and H denotes the Hessian fl(l’l)fl(Q’Q) —( 1(1’2))2. Once the polynomial ap-
proximation is given, and v is allowed to vary over a suitable open set in C,
it suffices to show that a pair of polynomials with coefficients depending on
a, B (two cubics in the case ) are not proportional. For full details, see
the argument following (3.10) in Baker and Weingartner [3]. No change is
needed in the present discussion because remains valid.

We have thus established (2.17]). We consider first the case M > N. We
rewrite (2.17)) in the form

ﬂ<< F7/4q7/4 . F5/3q5/3 . F8/5q2 . F4/3q4/3
L M15/16 N43/16 T pr5/6 N5/2 T pg9/105/2 T pf1/2 N11/6
F7/442 F
-1
MN11/4 N3/2

We use this in conjunction with (2.14)), (2.10]), (2.16) to obtain

S2 M2N?2 ) M2N5/2

r3 < Q +MN"+ F12Q1/2
+F3/4M17/16N5/16Q3/4 +F2/3M7/6N1/2Q2/3 +F3/5M11/10N1/2Q
+F1/3M3/2N7/6Q1/3 +F3/4MN1/4Q+M2N3/2

i F1/2MN1/2Q1/2

say. Since FF' > M N, M > N and @ > 1, we have
T, T3 <Tho, Ti<Ts.

Thus (arguing trivially for @ < 1) we deduce
52 M?N?
iz < 0
P35 MION20 4 U NBI2NTISQUS 4 E3IAN NYAQ 4 M2 NP2,

+ F3/4M17/16N5/16Q3/4 +F2/3M7/6N1/2Q2/3

for all Q, 0 < Q < L~'N. Applying Lemma we find that
S2

F <<F3/7M41/28N29/28+F2/5M3/2N11/10+F3/8M3/2N9/8

+F3/10M31/20N5/4 +F1/4M13/8N11/8 +M2N+M2N3/2
= U +---+ Uy,

say. Since ' > M N and M > N, we have
Us, Uy < Uz, U < Uy,
and Theorem [2| follows in the case FF > M N, M > N.
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Now suppose that N > M. Lemma [4] gives

S, FT/4q7/4 F5/3¢5/3 FT/4g2 FA/3¢4/3
f < M15/16 N43/16 + MB5/6 N5/2 + M3/AN3 + M1/2 N11/6
F8/5q2 Fq

M1/2N29/10 + MY2N

Proceeding as in the case M < N, we see that
S2 M2N2 ) M2N5/2
73 < 7@ + MN~+ 7F1/2Q1/2

+F3/4M17/16N5/16Q3/4 +F2/3M7/6N1/2Q2/3 +F3/5M3/2N1/10Q

—|—F3/4M5/4Q+F1/3M3/2N7/6Q1/3 —|—M3/2N2

=Vi+--+ Vi,

say. Since F' > MN, N > M and Q > 1, we have

V27‘/3 S‘/i07 V4§‘/67

+ FI2MNY2QV?

and, for 0 < Q < N,
5% M*N?
5 TQ
4 F3BAPBNVI0Q 1 F3ANBIAQ 4 FUBMBIENTI6QU35 4 M3/2N2,
Applying Lemma [I] we find that
ii < F3/T)[A1/28 \29/28 | [2/5 3 r3/2 \11/10 | p3/8 ) r13/8 6y

+F3/4M17/16N5/16Q3/4 + F2/3M7/6N1/2Q2/3

4 30 T/AN21/20 | pl/ANIB/8 NPIL/8 4 nr2 s 4 r3/2 2
— Ri+-+Ry,
say. Since F' > M N and M < N, we have
R3, Ry < Ry, Rg< Ry,
and

S 3/14 3 r41/56 A129/56 | 121/5 3 r3/4 Ar11/20 | 171/8 7 r13/16 A711/16 3/4
ﬁ<<F/ MA/F6 N29/56 1 p1/5 pp3/4 N11/20 4 pL/8 pp13/16 N1L/16 o ps/a
This completes the proof of Theorem [2in the case ' > M N.

Consider finally the case of F' < M N. By Theorem 1 of [I3], which has

no restrictions on F',

(2.20) S < (MN)n P PSS
' MN?2 N2 " F)

The third summand appears in (2.1]), and the second summand is acceptable.
Finally,

(MN)Y'FYVANMBANY? < (MN)YTMN3/4
and the theorem follows in the case F < MN. m
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COROLLARY 1. Let M > 1, N > 1, MN =< X, X6 <« o < X3
lam| < 1, and let I, be a subinterval of (N,2N]. Then for 1 < ¢ < 10/9,
M < X2, we have

Z Z am e(zm®n®) < min(X ' 271 X8/9),
m~M ne€l,
Proof. For X*/9t20n <« M <« X1/2 we apply Theorem 2| The term
MNF~! has a satisfactory bound since x > X ~¢t%7_ All other terms have

satisfactory bounds since < X", the restriction M < X1/2 coming from
FY8)\13/16 N11/16 a0 the restriction M > X4/9201 coming from M3/4N.

Now suppose that M < X*9t201 We apply ([2.20). We have already
discussed the term (MN)*7F~1 and the term (MN)"N~1/2 gives no
difficulty. For the remaining term,

VA X/ A p3/ANY2 o x1/24e/44 20 r1/4 X8/97317,

since ¢ < 10/9, M < X*4/9+200_and 7 is sufficiently small. =

3. Type II exponential sums. We begin with a bound for Si(z) that
holds over a wide range of N.

LEMMA 6. Let

Su(x) = Z Z amby, e(xmn®)
m~M n~N
X<mn<2X

where1 < ¢<6/5, M >1, MN < X, |an| <1, |by| <1, X8 < 2 < X3,
Then

Si(z) < X773 whenever X% < N <« X/,

Proof. Let Q = nN. Arguing as in [2, proof of Theorem 5],

2 Q
(3.1) Si(z)? <« ); + gz Z ‘ Z e(zm((n+q)° — n%)) ’

qg=1n~N m~ M

X<mn<2X
We apply the exponent pair (1/6,2/3) (see [7]) to the sum over m in (3.1)):
M
—1yey1/67r1/2
(3.2) XN;W e(xmc((n+q)c—nc)) L (zgN~X°) /6 p Y +m.
X<mn<2X

Inserting this into (3.1)) shows that the first term on the right in (3.2) pro-
duces < X278 since X¢/% <« X2/ and M > X'/2. The second term on
the right in (3.2]) produces < X267 since zX¢ > X%, u
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We need another four lemmas, the first two due to Bombieri and Iwaniec
(see e.g. [, Lemmas 7.3, 7.5]) and the others respectively to Fouvry and
Iwaniec [6, Lemma 2] and Sargos and Wu [15, Theorem 3].

LEMMA 7. Let 1 < M < N < Ny < M. Let
K(t) = min{M; — M + 1, (x|t|)~", (z|t|) 2}

Then
o0
‘ Z an| < S K(t)‘ Z ame(mt)‘dt.
N<n<N; —00 M<m<M;y
Moreover,
oo
| K(t)dt < log(M; — M +2).
—0oQ

LEMMA 8. Let {x;}ror, {ys}s~s be two sequences in [—1,1], and let
or, s € C. Let T > 0,

Bow =YY erthse(Tzys),

r~R s~S

B,(UT)= > > lewewl,

|, —x,n|<1/T
Bw(l/T) = ZZ |5t |-
[ysr —ygr |<1/T
Then
|Byy|* < 20(1 + T) B,(1/T)By(1/T).
LEMMA 9. Let N,Q > 1 and z, € C. Then
2
Z Zn| < (2 + N/Q) Z (1 - ‘q,/Q) Z Zn+qZn—q-
N<n<2N lg|<@ N<n—qn+q<2N
LEMMA 10. Let 1< Q< M'™M< X, A>0,0>0,a€R, a#0,1,2,
t(m,q) = (m+q)* — (m —q)*.

Let E(M,Q, A, ) denote the number of quadruples (m,m,q,q) with m,m
~M and Q < q,q4 < (1+0)Q satisfying

tm, q) — t(m, @) < AM°1Q.
Then there is a 6 € [1/Q, 1] such that

o Z E(M,Qp, A,6) < LYMQ + AMQ)? + (MQ*)/*)
0<k<K

where Qr, = (1 + 6)*Q, K = [(log2)/d].
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We are now ready to prove the following result, which is essentially [I5
Theorem 9].

THEOREM 3. Let

S = Z Z ambne(BmPn®)

m~M n~N
X<mn<2X

where M > 1, N > 1, a(a—1)(a—=2)B(6—-1)(8—2) # 0, |an| <1, |by| < 1.
Suppose that

F := BMPN® > MN.
Then
SX "« F1/20 \j19/20 r29/40 + J3/46 £\43/46 p r16/23 + F1/10 \79/10 5 r3/5
4+ F3/28 \23/28 ) r41/56 4 gl /11 £\53/66 3 p17/22 | pp2/21 ny31/42  r17/21
+ F1/5 NT/10 3/5 + N2 + FL/8N3/43/4

Proof. Obviously we may suppose that F' < (MN)2.

Let 1 < Q < N'7. It follows from Lemma |§| together with Cauchy’s
inequality that

M2N2
S? < E E ‘ e(BmPt(n,q))|.
<@ n~N m~ M
X<mn<2X

We apply Lemma [2]to the sum over m. After a simple splitting-up argument
and a partial summation, we obtain

Sz M?*N?

f<< 0
Z S (FgN M2 1/2‘ S e(Ci(Btn,q) Tl + B
q~Q1n~N ni1€l(n,q)

where 37 = ﬁ% and I(n,q) is a subinterval of [Ny,2N;], with N; =

FQ1/(MN), and
By = N2M((FQN~'M~2)712 4 1).

Using Lemma we replace the condition ny € I(n,q) by n; ~ Nj at the
cost of a factor £. Then we apply Lemma [9] again. Write

ti(ny,r) = (n1 + r)'Bl —(n — r)ﬁl.
We find that for any R, 1 < R < Nllfn, there is an Ry, 1 < Ry < R, such
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that
sS4 MAN*  NOMHA
3.3) = N4 M2
(3.3) £4<< o + FO +
M4N h 1 ||
FY SRR (-5
n~N g~Q1 r~Ry

X Z Cl Bt(n q))llﬁtl(nl,r))}.

n1€I( )

Here I(r) is a subinterval of (Ni,2N;]| depending on 7. Let U denote the
quadruple exponential sum over n, ¢, ny, r on the right side of . We split
up the range of ¢,r into (K7 + 1)(K2 + 1) parts as in Lemma so that
61 =6(M,Q1), K1 = [(log2)/é1], 62 = 6(N1, R1), K2 = [(log2)/d] and

Ki Ko K1 K
U=3" 3 Ulki k), U< (0182)7" Y Z U (K1, ko))

k1=0ko=0 k1=0 ko=

Applying Lemma [§] to each subsum U (kq, k2) we deduce

Ky Ky 1
2
U << 5152 Fl Z Z 5<M Q k;l ) (NlaR(k2)7P11752>
=0ko=0
where Fy = FQlRlN—lN; = MRy, Q(k1) = (1+61)"Q1 and R(ks) =
(14 62)*2Ry. The bounds arising from Lemma [10| show that
2

1% (NQI) 1/4,9/4
5 < MR {NQ1+ an, Vel

4,9/4
L[ FQiR | FPQiR: FY4QY*RY
MN MB3N?2 M1/AN1/A
We insert this bound into (3.3)) and multiply out. Noting that all powers of
@1 and R; obtained are positive, we may replace @1, R1 by @, R in all but
three terms:

SS N8M8 - NIOMB N6M4Q?F2
Elﬁ < Q4 + NTM" + FQQQ + Q4R2
+ N27/4M27/4Q73/4R5/4F1/4 + N31/4M23/4Q1/4R1/4F1/4
L NANBQIAR L NYTANAQIAF? NU%)/[;;Q?
6713126
+N6M27/4Q1/2R5/4F1/4+N6M6F+ N ]g4F Ql +N5M4QF2
R

=T+ +Tis,
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say. From the condition R < CAQ/}]I; we have N < C’]%/[l g . Thus

F 2
Ty = N®M* < NS (%R) MY < N°M3QIR'F? = 1T9,,

say;
F 4 N6M4Q4F2
T :NIOMS —2F—2<N6 & MS —2F—2<71: /
3 Q = MR Q = Q2R2 45

say. Finally,

_ NTMOFQY _ no [ QF MPQYF  NSMAQSF?
- Q*R MR) Q*R —  Q'R?

Ty

Hence
8
% < N6M6F+N8M8Q_4+N21/4M6Q5/4F+N17/4M4Q9/4F2
N6M4Q411F2
Q2R2

+N31/4M23/4Q1/4R1/4F1/4 + N27/4M27/4Q73/4R5/4F1/4

+ N MIQF* + + N MPQIR™F?

+ N6M27/4Q1/2R5/4F1/4.

If we recall the first appearance of R in (3.3), this estimate holds trivially

for 0 < R < 1. Optimizing via Lemma [l over 0 < R < (%}f;)l_n, we

obtain

S8
(34) W < N6M6F+N8M8Q—4+N21/4M6Q5/4F

+N17/4M4Q9/4F2 +N5M4QF2 +N68/9M50/9Q4/9F4/9
+N37/5M26/5Q3/5F3/5 +N84/13M74/13Q4/13F12/13
+ N19/3M14/3Q7/9F11/9 + N6M14/3Q4/3F11/9
+N6M74/13Q14/13F12/13 +N8M6 +N7M4QF

=Vi+---+ Vi3,

say. We can discard Vg and Vig, because
Vo = N19/3M14/3Q7/9F11/9 _ ‘/}]4/9‘/75/9,
Vip = N6M14/3Q4/3F11/9 _ ‘/44/9‘/}5/9‘
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Since ([3.4) is trivial for Q < 1, we can optimize the remaining expression
on the right side of (3.4)) over 0 < @ < N'~" to obtain
S® 38/5 3,729/5 172/5 172/23 3 r128/23 212/23
(3.5) iy € N PMREERE NI
+ N36/5M24/5F4/5 + N46/7M41/7F6/7
L N212/33)768/11 p8/11 | \r124/21 ) r136/21 [016/21

o N28/5 ) 24/5 28/5 4 \28/5 ), 136/25 [32/25

+ N4M® + N8 MO + NOMOF
=Ur+---+ Uy,
say. Since F' > MN,
F 2/5
UlO — N8M6 < N8M6( > < N38/5M29/5F2/5 — Ul‘
< WUN <

Also
Us = N28/5)136/25 732/25 _ U621/75U750/75U§/75.

Removing these two terms from (3.5)), we obtain the theorem. =

COROLLARY 2. Let Sii(z) be as in Lemma[f] Suppose now that 1 < c
< 10/9,
X< <X,

Then

(3.6) Si(x) < xtx 1
whenever

(3.7) XW02T « N« X1/,

Proof. We apply Theorem [3] with
F=<zX°> MN.

The term F3/28N23/28 \f41/56 gives rise to the condition N < X19/45; the
term F2/21 N31/42)17/21 gives rise to the condition N > X'9/27: and the
term F1/8N3/4)M3/* gives rise to the condition ¢ < 10/9. The other terms
are easily dealt with, and the corollary follows. =

By using two results of Huxley [9], we can alter the endgame in the proof
of Theorem [3| to obtain (3.6|) for a different range of N.

LEMMA 11. Let G(w) be four times continuously differentiable on [1,2].
Suppose that

(3.8) G (w) <1
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forr=2,3,4 and

(3.9) 1GP (w) GD(w) — 363 (w)| > 1.
Let
My
S= > e(TG(m/M)),
m=M
where 1 < M < My <2M and
(3.10) T3+ < < I87/328—n
Then

S<< M1/2T32/205+n-
Proof. This is a consequence of [9, Theorem 1]. m
Note that (3.8]), (3.9)) are satisfied if
(G))V* = ()DL +0(m) (1<j<2),
for a real g with 5(8 +1/2) # 0.

LEMMA 12. Let G(w,y) be a function on R = [1,2]| x [0, 1] having partial
derivatives G (i,j < 5). Suppose that on R,

(3.11) GO (w,y) < 1

forr=2.3,4 and

(312)  |GUTEO(w,y) G (w,y) — G (w, y) GO0 (w, )| < 1
forr=2,3. Let y1,...,y; satisfy

(3.13) 0<y1 < - <ys<1, wyjr1—y;>J "
Let
Ms(y)
S)= > e(TG(m/M,y)),
m=Mi(y)
where 1 < M < Mi(y) < Ma(y) < 2M and
(3.14) TY3+n < M < T2,
Then

J
(3.15) > [S(y)P
j=1

< M(J43/69 )[40/ 138 063/138 | 7 59/3487/54 | g\ r5/2141/190y
Proof. This is a consequence of [9, Theorem 2]. m

Let G(w,y) = g1(w)g2(y) where
(g1 (w) ) = @)1+ 0m),  (g26)? = ((y+ 1))V 1+ O(n))
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for j < 5. It may be verified that (3.11), (3.12)) hold provided that we have
YB(B—1)(B —2) #0.
LEMMA 13. The conclusion of C’orollary remains valid if (3.7) is re-

placed by
X2/9 « N « X127/470

Proof. We begin with , where now « = 8 =¢, B =z, F < zX¢.
We choose Q = X2¢7249 and R = Q3 X 2Na. Tt is easy to check that
Q < N'"" since N > X?/9 With N; < FQ;/(MN), we may verify that
R < Nllfn. Because of the choice of @ and R, the terms M*N*/Q? and
M*N5N2Q1/(FQ*R) on the right side of are acceptable. The terms
NSM*/(FQ) and N*M? are also acceptable:

N°M4 NSM*  NAM#
S C

4M4

since QN <« N? <« X731,

N
NM? <« since Q < N < MX /3,

Q212
We now choose ¢ ~ @1 and r ~ R; so that the remaining term in (3.3)) is
bounded by

M4N4N1qr Z ’

o e(Cy(Bt(n, q))ﬁtl(m,r))]

n~N ni€l(r)
M4N Nigr
- FQ?R Z [Val,

say. Thus we need to show that

FR
(3.16) S Val < ——

rNijxt’
N qrivi

We shall show that one of Lemmas is applicable to Y, |V, (with
n1, N1 in the roles of m, M). Let us write

We show to begin with that
Nl < T187/328X777,

that is,
X328c—328(qx)328 < X187-Cn, 187 \r—18T

It suffices to show that
NI87 o x187-084(c—1)~Cn _ x1171-984c—C

For this, N < X3/10 guffices.
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We show next that
Ny > TY3X",

that is,
(3.17) (X tqx)® > X /N.
The right side of (3.17) cannot exceed ¢3X ¢ '+2725 and (3.17) follows at

once.
We now divide the argument into two cases.

CASE 1: N; > TM1/328 X7 We shall obtain (3.16)) by showing for each

n ~ N that
FR

grN1z* N~

It is clear that Lemma |[11]is applicable, since the exponent in the approxi-
mating monomial for f(n1) := C1(Bt(n,q))Y =Pt (ny,r) is

c 1 1
c—1 c—1

Vo <

and
f9 =TN .
Thus it remains to verify that

X\ 32/205 FR X g

Xc—l 12 A" X" - )
( 2 N < qrN1z4N r

We require

237/205 ql/Qxl/QX(C_1)/2_32/205_”N32/205.
We recall that
X328(c—1)<q$)328 - Nf,zs S Ly o y141,141 \y—141

or
7,141 < X32807469N141 (qx)328.

Hence it suffices to show that
(X328c—469N141q328$328)237/(205~141) < q1/2$1/2X(C_1)/2_32/205_’7N32/205.

In verifying this, the worst case is gz = X2¢72+127_ After a short calculation,
the condition on N reduces to

57810 437511—-379701c—C
N < X e==n,

which is a consequence of ¢ < 10/9 and N < X 127/470,
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CASE 2: N; < TY/328 X1 We apply Lemma |12 with

—1

G(w,y) = ]\;]:1{<w+]:,1);1wﬁ}{<y+1+§7)c(y+1)c}c_l

(1<w<20<y<]),

taking (IV, Ni) in the role of (J, M) and y,—ny = (n — N)/N (N <n <2N).
If C5 is suitably chosen, then
;1
TG(n1/N1,yn—n) = C1(Bt(n,q))=1t1(ny,r).
Lemma [12] gives the estimate
Z !Vn\5 < Xn(N43/69Ni149/138T63/138+NN159/34T37/34+NN15/2T141/190)'
n~N

By Holder’s inequality

318 Y Wl < (2 )

n~N n~N
< XU(N319/345N;149/690T63/690+ NN159/170T37/170+ NN11/2T141/950).

There is in fact something to spare in bounding the right side of (3.18)) by the
expression on the right of (3.16). The worst case is z = X3, ¢ < X?2¢=2+9
r=< X7 8O N 50 that Ny < X3¢3+TCn T = X7e=7+Cn We require

319345 y3e=3)449/690( xTe=T)63/690 - y5—de—Cn.
N(X3c—3)59/170(X7c—7)37/170 < X5—4C—C7]
N(X3c—3)1/2(X7c—7)141/950 < X5—4C—C77‘

Each of these bounds follows from N < X'27/470 ¢ < 10/9. This concludes
the proof in Case 2, and the proof of Lemma [13]is complete. =

4. The alternative sieve. We require a variant of Theorem 3.1 of
Harman [§]. The details are intricate and deserve a full discussion.

LEMMA 14. Let w(n) be a complex function with support in (X,2X]NZ,
lw(n)| < X" (n~ X). Forr €N, 2> 2, let P(z) = [[,.,p and

S(r,z) = Z w(rn).
(n,P(2))=1

Suppose that, for some a > 0, f < 1/2, M > 1, Y > 0, we have (for
any coefficients ap, |am| < 1, and by, |by| < 7(n), the number of positive

p<z
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divisors of n)

(4.1) Z amz mn) <Y,

m<M

(4.2) Z am Z byw(mn) K<Y.

Xa<m<Xatp n

Let up (r < R), vs (s < S) be complex numbers with |u,| < 1, |vs] < 1,
ur =0 for( P(X")>1, vs =0 for (s, P(X")) > 1

(4.3) R<X® S<MX™

Then
Z Z upvsS(rs, XP) < Y L3
r<R s<S

Proof. We write z = X and define
P(m) = Zw(mn).

n

We have
S(rs, z) Z( Z ) w(rsn)
n d|P(z)
d|n
= > udplrsd) =3 (r,s)+y_ (rs),
d|P()
where
S s = Y p@etrsd). Y (e = Y pld)vrsd).
d|P(z) d|P(z)
rsd<M rsd>M
Now
Z Uy szzl(r, s) = Z Zurvs Z wu(d) p(rsd)
r<R s<S§ r<Rs<S d|P(z)
rsd<M
Z amz w(mn)
m<M
where

Am = upvsp(d
> >

d|P(z) r<R,s<S
rsd=m

Because m has at most ! prime factors > X", we get |a,,| < (21/7)2. Thus

Z ZUTUSZ << Y,

r<R s<S
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and it remains to show that

(4.4) Z Zurvsz T, 8) K Y3,

r<Rs<S
We make repeated use of the identity
(4.5) S (g -5
d|P(z) p<z d|P(p)
(see 8, (3.1.2)]). Fix r < R, s < S and take

drs) ifdrs> M,
M@Z{M ) .
0 otherwise.

Then ¢(1) = 0 from (4.3). Hence

>, == 3 Y udpdrs) = =(3 (9 + D (19)).

p<z_  d|P(p)
pdrs>M |2

where pr < X in ) 4(r,s) and pr > X*in ) _,(r, s).
We repeat this splitting procedure for ) 4(r, s). Let us give the general
form of the recursive step. For t > 1, let my = p1 - - - p; and

Zg(r,s,t)— > > u(d)y(drsmy)

Pt<--<p1<2 d|P(p¢)
mrdrs>M
Tr<X®

so that ) 4(r,s,1) = > 4(r,s). We apply (4.5)) for given 7, s, p1,...,p¢, with
{w(drsm) if drsm > M,

g9(d) =
(@) 0 otherwise.
Forr < R, s < S, mr < X%, we have

(rme)s < X¥(MX™) = M.

Hence g(1) =0,

Zg(r’ 5,t) = — Z Z Z p(d)y(drsmpis)

Pt <-<p1<2 pt+1<Pt d|P(pt+1)

7;3712}{\1/[ drsmipi1>M

= (X st )+ Y (st + 1)),

where 17 < X% in ) 4(r,s,t + 1) (in accordance with our notation for
Yoarys,...)) and mr < X, mpqr > X% in Y, (r,s,t + 1).
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‘We shall show that

(4.6) Z Z urvsz4(r, s) < YL?

r<R s<S

(4.7) DD wusy (nst+1) <YLY (t>1).

r<R s<S
Since ) 4(r, s,t) is clearly empty for ¢t > C1L/log L, (4.4) follows from (4.6)
and (4.7).

The key to proving (4.7) is that

rmpe > X0, rmpr < XOprg < X0

in the sum. But we need a little more work before we use (4.2)), because the

groups of variables rmpi11, ds are ‘linked’ by the condition d | P(py1).
Let o(u) be the indicator function of (M, o). By (4.5)),

(4.8) Z Z urvsz4(r, s,t+1)

r<R s<S
= Z Z Up Vs Z <cr(rs7rt+1)1/1(rs7rt+1)
r<R s<S Pr41<-<p1<z

<X, mpr> X

- Z Z M(d)w(drSWt—i—lpt-&-Q)).

d|P(pty2) Pt+2<pPt+1
drsmiy1pir2>M

We rewrite the subtracted part as

- Z Z UpVs Z Z w(d) Z w(rsdmy1pi2k).
%

r<R s<S Pt4+2<pt+1<<p1<z  d|P(pt42)
mr <X, mp1r> X drsmiy1pi42>M

Grouping the variables as m = p; - - - py+17, n = py25dk, there are just two
joint conditions of summation piio < pit1, drsmr1pire > M. These can be
removed at a cost of a factor £2; see [8, Section 3.2] for the discussion of
this standard ‘cosmetic surgery’, which we shall use again later in Section [4]
Moreover, for given m, the coefficient of m is <« 1 because p1,...,p; are
determined by 7. The coefficient of n is < 7(n) because in the equation

n = piyosdk,

once k is specified, there are O(1) possibilities for s, and py4 is the largest
prime factor of the remaining factor p;+2d. We conclude that the subtracted

portion in 1} is
<YL

The residual part of the right side of (4.8) can be bounded similarly. The
treatment of the sum in (4.6]) is similar but simpler. This establishes (|4.6]),
(4.7), and the proof of Lemma [14]is complete. m
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In the remainder of the paper, let 1 < ¢ < 10/9. Let R be a large
positive number, X = (R/4)Y/°. As in [3], we employ a continuous function
¢ : R — [0,1] such that

(4.9) ey)=0 (jyl=R™"), »y)=1 (ly|<4R™"/5)

o0

with Fourier transform @(z) = (= _e(—zy)p(y) dy satisfying

(4.10) | 19(2)dz < X5,
|z|>X?53n
We write briefly du = e(—Rx)®(x)dz and define
7= X8,

We also write
2X 2X

T(x) =Y e(z), Io(z)= | etw)d, I(z)= |
X

p~X X

e(tx)

dt.
logt

We let U(z) denote an arbitrary sum of the form U(z) = )",y une(nz)
with real u, < 1 (n ~ X), and U"(x) denote a sum with the further
property u, > 0 (n ~ X). It is convenient to write

2 127 10 19

Ty 470° w 175
and
7 1 7
=f—-d=— h==-—-d=— [ =0.291954.
9=1 135° 2 54’ 0.20195
In writing our exponential sums containing variables p1,...,p;, we set
aj = (oq,...,a;) = ((logp1)/L, ..., (logp;)/L), si = a1+ + o

(1<i<y),
m) — e(mfx) (m~ X),
F(m) { 0 otherwise.

Let P; be the region of R/ given by

Pi={(y1,--y) 19 <y <yjm1 < - <y,
y1+ - +yi—1+2y; <1+ (log3)/L}.
Let G =[a,b]Ud, flU[1 — f,1 —d] and
Gj:{yj:(yl,...,yj)EPj:Zyierorsomesetag{1,...,j}},
€0

Bj = Pj\ Gj.
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Foryjt1=(y1,...,Yj+1) € Pjt1, write yj 1 = (y1,...,y;). For EC P;, let
E'={yj+1 € Pjs1:¥;, € E}.

Let {1,..., 7} have a partition into two (disjoint) sets o1, 0o. We say that
a point y; € P; splits using o1, 09 if

dyi<d, Y y;<h

jEo1 j€Eo2
LEMMA 15. Let K(x) be either of the following:

(i) for Q; a polytope (i.e. a finite intersection of half-spaces) with

Qj € Gj,
K@= Y F(mn);
(al,...,aj)EQj
(n,P(p;))=1
(ii) for some partition o1,09 of {1,...,7},

K(x)= Y F(mn)
(a1,05)€L;
(n,P(X9))=1

where Lj is a polytope, L; C P; and every point of L; splits using
01,02.
Then for any U(x),
o0

(4.11) | T(2)U (2)K (2) dp < X372,

T

Proof. Recalling (4.10), it suffices to show that

/

yS T(z)U(2)K () dp < X372t

whenever 7 < y < X3, y < ¢/ < 2y. Now

/

S| (z |2dx—S{Zu +2 Z ununﬂ-e((ncf(nJrj)c)a:)}dx

Yy n~X X<n<n+j<2X

<Xy+ > Z

n~X ]<X

1 92—
<<Xy+ZnHZy < Xy+ X?>~°L.
n~X <X
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The same bound applies to Sz/ |TU|dz < %SZ(]TP + |U]?)dx. Since
[0 < R~ from (E9).

/ /

Yy Yy
(4.12) | TUK dp < X~ | |[TUK | da
Y Yy
< sup |K (z)|(X 1y + X27eeng),

[y,2y]
and it suffices to show that

(4.13) K(z) < min(X'™7, x27¢7g71),

In case (i), we rewrite the sum as

> > F(mpjei-pr)-
k<20 (aq,...,))€Q;
PjSPj+1<Spk
We use cosmetic surgery to remove the conditions ps < p¢, ps < pt, and
further conditions arising from (o, ..., a; ) € Q;, at the cost of a log power.
Now we group the variables into products my, me with (logm1)/L € G. The
desired bound follows from Lemma [6 Corollary [2] and Lemma
In case (ii), we apply Lemma |14 with

w(n) = { Szl T(x)U(x)e(nz)dp ifn~ X,

0 otherwise.
Take Y = X3¢ 21 M = X1/2 o =d, § =g. Then
yl
(4.14) Z amw(mn) = S T(x)U(x) Z am e((mn)°z)dpy,
m<M Y m<Xx1/2
mn~X
and
(4.15) )
y
Z ambpw(mn) = S T(x)U(x) Z amby e((mn)x) du.
Xo<m<Xo+B Y Xe<m<xoth
mn~X

The right-hand side in (4.14)), (4.15) is seen to be < Y, by arguing as in

(4.12)), (4.13]), using Corollary m Lemma |§| and Corollary [2. We conclude
that

Z Z upvsS(rs, X9)

r<Xd ng’/1
y
= S T(x)U(x) Z Z UpUs Z e((rsn)‘z)du < Y L3
Y r<Xd s<Xh rsn~X

(n,P(X9))=1
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We can bring SZ/ TUK dp into the form of the latter integral by writing
r = [lico, Pis 5 = llico, Pi» and summing over (a1,...,a;) € Lj. We have
to vary the proof of Lemma [14] to accomodate a bounded number of joint
conditions of summation coming from a; € L;, but the loss of a power of £
via cosmetic surgery is harmless. This completes the proof of Lemma "

Our proof of Theorem [I| requires two decompositions:
(4.16) T(z) = KY(z) = DW(z) = K@ (2) — D@ (z) + D) (2)
where KU) is of the form U(z), DY) is of the form U™ (z), and (for any U)

(4.17) | TURY dp < X372,

(K is for ‘keep’, D for ‘discard’!) We obtain the decompositions by using
Buchstab’s identity. We have

(4.18) T(z) = > F(n)
(mP((%)1/2))=1

= Y Fm)- )  F(pn)
n~X X9< 3X)1/2
(. P(XE))=1 P
When we iterate the procedure, our general step has the following shape. Let
E; be a polytope, E; C P;, and let H; 1, E; 11 be a partition into polytopes
of Bj+1 ﬂEé- (j=1,...,5), with E5 empty. We shall choose E; so that every
point of F; splits using suitable sets of indices. Let

(4.19) Sj = Z F(mn), K;= Z F(min),

a;el; ajck;
(n,P(p;))=1 (n,P(X9))=1
(4200 Kjy= >  F(mn),
OLj+1€E;-ﬂGj+1
(421) Dj+1 = Z F(7rj+1n), Sj+1 = Z F(7Tj+1n).
ojr1€H 41 oj+1€E)41

(n,P(pj+1))=1
Since E} partitions into E} N Gjt1, Hjt1, Ej+1, we have
(4.22) Sj = Kj = Kjy1 — D1 = Sja

Similarly, we partition the domain of «; in the subtracted part in (4.18))
into G1, H1, F1, where H; U E1 = By, giving

(4.23) T=FKy—K;—Di -5
in a notation analogous to (4.19)—(4.21)).
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For a small part of Hg, we iterate twice more. Let
Hs={as € Hs:s,>b}, L=H;\H;
so that
(4.24) Ds(z) = Ds(z) + Kg(x)
where ]_/55 is a sum over i‘.\’g,. The point is that each of the sums in

Kg(x) = Z F(msn) — Z F(mgn) + Z F(mn)
asel ageL’ are(L')
(n,P(X9))=1 (n,P(X9))=1 (n,P(p7))=1

can be handled via Lemma We have s5 < a in the first sum; sg < 3a/2 <
d in the second sum. In the third sum, a7 could not be in By, since this
would lead to

st <Ta/4 < f, hence s7<d, s3<d—2g9<b,

and finally
59 < s5 < a,

which is absurd. So K(z) = Kg(z) has the property ({.11).
We assemble f to get
T(z) = K(z) — D™ (z) + D" ()
where K is a sum of terms +K;, +K7,
Dt =Dy+ Dy, D~ =D+ Ds+ Ds.

For the splitting property of Ej, it clearly suffices to have

(4.25) ar<d (g € Fy),
(4.26) a1 +ag <d (ag S Eg),
(4.27) az < h (043 S Eg),
(4.28) artast+ag<h or ast+as<h (a4€ Ey).

We are now ready to write down the decompositions . We first
consider K?) — D@ 4+ DB) Here we let
Ey =lg,a) U (b,1),
Ey={as € E\NBy:aj+ay <d},
Es ={as € E5N By : a3 < h},
E4:{a4€EéﬂB4:a1+a2—i—a4<d or a3+a4§h},
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which fulfils (4.25)—(4.28)). Hence
1 log3
Hy=[l,d —
1= [, )U<f,2+ o ),
HQZ{QQGEEQBQ:Q1+O(2>JC},

H3:{a3€EéﬂBgia3>h},
H4:{a4€EéﬂB4:a1+a2+a4>f, a3+a4>h},

f]g, ={as EE&OB5:CJ41+042+043+044 > b}.
We shall prove several properties of Hs, Hy, }AI5.
LEMMA 16. Let aj € By, 0 C{1,...,j}, s =), -

(i) Let o' = (o \ {i}) U{k} where i € o, k ¢ 0. If |ayy — ay| < 0.0479,
then s and s’ = Y ,.,, oy are either both to the left, or both to the
right, of [a,b]. If |a; — ag| < g, then s and s' are either both to the
left, or both to the right, of [d, f].

(ii)) Leti ¢ o, k¢ oU{i}. If s+a; +ax < d, then s < a. If s > b, then

s+a; +ap > f.

) Let o = {4,¢,i"}, i <i <i". If s < d, then ay + an < a.

(iv) If j =05, sa <d, then ag — a5 < 0.041.

) If 7 =05, s3<d, then s5 <1— f.

(vi) If a3 € H3, then a; < a.

Proof. The first assertion in (i) follows from |s — §'| = | — ag| < b—a.
The second assertion is proved similarly.

For the first assertion in (ii), we need only note that s < d —2g < b. The
second assertion now follows.

For (iii), we observe that oy + oy < 2d/3 < b.

For (iv), we use ag — a5 < d/4 — g < 0.041.

For (v), we have s5 < 5s3/3 < 5d/3 <1 —d, hence s5 <1 — f.

For (vi), weuse vy <d—aa <d—az3<d—h<b. m

We can ‘concatenate’ in (i): for instance, if we have a1 +as + a3 > b and
max (s — ay, aq — ) < 0.0479, then oy + ag + a5 > b.

LEMMA 17. Let ooy € Hy. Then g < ay < az < ag < ay; either a; < a
orb<ap <l;oar+ay <d;az3 < h;ar+as+aqg > f; ag+ag > h;
max(a — (g + ag),as + a3 — b) > 0; max(a — (e + ay), s + a4 — b) > 0;
max(d — (a1 + as + a4), a1 + az + a4 — f) > 0; max(a — (a2 + a3 + ay),
ag + as + ag — b) > 0. Moreover,

(i) g+ a4 <a,

) sg<1—Ff,

i) a; +ayq > b,

) as 4+ ag + ayg < d.
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Proof. Everything except (i)—(iv) follows from the definition.

For (i), ag+ a4 < 2a3 < 2h < b. For (ii), (aq +a2)+ (as+aq) < d+a <
1 —d. For (iii), a1 + a4 > f —ag > f — d/2 > a. Finally, as + (a3 + a4) <
d/2+a < f, yielding (iv). m

LEMMA 18. Let a5 € ﬁg). Then g < as < ay < az < as < ay; ag < h;
8o < d; either a1 + as +ay < d or ag+ ayg < h; s4 > b; a1 < a. Moreover,
one of the following alternatives holds:

(i) sa<d, sa<a,as+as+as>b, s5> f;
(ii) s4<d, s9<a,as+as+ayg<a, o1 +as+as>b, s5>f;
(i) sy <d, o1 +as+as+as > b, s3 < a;

iv) s4> f, sa<a, a; +as+ a3+ as < d;

) crtastastas > f,83<d, cpotaztastas <d, as+az <a,
artag+as>b, a1 +ag>b, azst+ag+as<a,ss<1—f;
(Vi) ey +ast+ag+as > f,s3<d, aatas+agtas <d, as+as <a,

ast+ag+as>b, a1 +as>0b, s5<1—f;

(vil) co+as+as+as> f,s9<a, ss<1—f;
(vill) ag4ay < a, a1+asz > b, aj+as+ay < d, s3 > f, ag+az+as > b,
artast+ag+as>f,s5<1—f.

<

Proof. The first assertion we need to prove is a1 < a. This follows from
Lemmal[I6]if a1 +ag + oy < d. If a3 + a2 + g > f, then a3 + ay < h. This
leads to a contradiction if ay > b: we would have a1 + a3 + a4 > f from
Lemma [16] hence a3 > f — h > [, which is absurd. So a3 < a.

To show that one of (i)—(viii) holds, we observe that one of the following
alternatives is clearly valid:

A) sq<d, ag+ as+ ag > b;

B) sS4 <d, a0+ az+aq < a, a; +asz+ ayg > b;

C) sy<d,a1+a3+ay <a, sg>b

D) s4 < d, s3 < a;

E) ai+as+az+as>f,s3<d, az+az+ag+as<d;
F) s +az+ag+as > f, s3<d,;

G) s3> f, a1 + s+ ay < d;

H) ar+as+ay > f, ag+ag < h.

Suppose (A) holds. Then a; < d—b < 0.1002. We cannot have ay < ag—
0.04, since then ag + a3+ a4 < 0.3006 —0.04 < b. Moreover, ay — as < 0.041
by Lemma (iv), so we obtain asg 4+ a4 + a5 > b by concatenation. Further,
s < a and s5 > f from Lemma [16] So (i) holds.
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Suppose (B) holds. Then sy < a, s5 > f from Lemma Now az+ay <
2a/3, a3 < 2a/3 — g, az — a5 < 2a/3 — 2g < 0.045. Hence oy + g + a5 > b
from Lemma [16] and (ii) holds.

Suppose (C) holds. Then sy < a, s5 > f from Lemma Hence ag <
a/2, as+as > f— (a1 +azg+as)>f—a=1/5 a5 >1/5—a/2 > 0.08,
a1 + az + a4 > 0.24, which is absurd.

Suppose (D) holds. We have 2as < a — g, aa < 0.09, ag — a5 < 0.04.
Hence a1 + a3 + a4 + a5 > b from Lemma So (iii) holds.

Suppose (E) holds. Since sy < a from Lemma[16] (iv) holds.

Suppose (F) holds. Then as+as < a, as < a—g, s5 < 1— f by Lemmall6]
Now a1 + a3 > as+as, 80 a1 +as > f/2, a1 +as+as > f/2+¢g > a and
o1 +az+as > b. Also ag+ag < d/?, ar+ag > f—d/2 > a, S0 ap+ag > b,
giving aq + a2 + a4 + a5 > f from Lemmal[I6 So aq + ag + a5 > f — s >
f—a+g>aand a1 + a4+ a5 > b If a3+ g + a5 < a, we get (v).
If ag + g + a5 > b, we have a1 + (a3 + a4 + a5) > b/2 + b > d, hence
a1+ ag+aqg+as > f. Also, ag + aq + as > b implies as < d — b < 0.1002.
Suppose a1 + a5 < a. Then, by Lemma as — as > 0.0479, as < 0.0523,
S0 ag + ay + a5 < 0.2004 + 0.0523 < b, which is absurd. Hence oy + a5 > b
and (vi) holds.

Suppose (G) holds. Lemmayields s5 < 1—f, ag + ag < a. We claim
that sy < a. For suppose sy > b. Now ag+as > f—a=1/5, as+aq+ a5 >
3/10, and a1 + a < 0.278, a2 < 0.139. Also a3 < d — b < 0.1002, hence
as > 0.3 —0.2004 = 0.0996, and ag — a5 < 0.04. We thus get a1 + a5 > b
from ay + ag > b. Now s5 > b+ s +as+ag >b+3f/4>1— f, which is
absurd. So s2 < a and (vii) holds.

Suppose (H) holds. Then ay + a4 < a from Lemma Next, s5 =
(a1 +az+as)+ (e+ag) <d+a<1l-—d sos; <1—f.Nowag <d/2,
a1 +ag > f—d/2>a,s0 a1+ as >b. Hence oy + a3 + ay + az > f from
Lemma Finally, s + g > f —a = 1/5, therefore ag + a3 + a5 > a and
ag + ag + a5 > b. So (viii) holds.

Suppose (I) holds. Now ag < d/2, so oy + a4 > f —d/2 > a, and
a1 + ag4 > b. We obtain a3 + a4 + ag + a5 > f from Lemma Hence
ag +ayg + a5 > f— oy > 1/5, contrary to the bound a3 + ay + a5 < 3h/2.
This completes the proof of Lemma, "

We now turn to the decomposition
T(z) = KW(z) — DO (x).

We use (4.19)—(4.24) with Hs, Hy empty, and so Dy = Ds = 0. We write
our choice of FE; as & and Hi,...,Hs,Hs rather than Hy,..., Hy, Hs.



190 R. Baker and A. Weingartner

Let
& = [g,19/90];
E =& NBy (sothat Hy = 0);
Hs ={asz € N Bs:s3> f}, so that
& ={asz €& NB;s:s3<d};
Es=E5N By (so that Hy = 0).

Thus

7:25:{015 654QB5:84>()}.

Note that in &, so < f, hence so < d; so any «; in &; obviously splits for
i=1,2,3. Any ay in &, splits using {1,2,3},{4}, since ay < ag < d/3 < h.

It is easy to write down the conditions satisfied by points of Hs, so we
simply note the following lemma for Hs.

LEMMA 19. Let a5 € ﬁ5. Then

g<as<ay<az<ay<a <19/90, s3<d.

Moreover, one of the alternatives (i)—(vii) of Lemma holds.

Proof. The first two assertions follow from the definition. Since ﬁg) C Hs,
one of (i)—(viii) of Lemma (18| holds, and (viii) is ruled out since s3 < d. =

In Section [5| we shall need bounds for several integrals. Let fi(a;) =
a7?, falew) = a7 tay?, and generally f;(e;) = (o - --aj_l)_laj_Z (j >2).
Let w(...) denote Buchstab’s function (see e.g. [8] for more information).
Now let

1-—s;
Jj=| fj(aj)w< ]> day -- - day,
Qj
H;
1—85
J5 = S f5(a5)w< >d041 -"d045.
= Qa5
Hs

Define JI,J;,JQ in the same way with Hl,Hg,ﬁg, in place of Hl,H3,I§'5.
Computer calculations yield

JI <0.992255,  J; < 0.704010,
Jo < 0.126406,
JI < 0.094570,  J3 < 0.050281,
Jy < 0.003991,
JI <0.006422, J5 < 0.007383.

The integrals in j dimensions are bounded for j < 3 using a precise evalu-
ation. For each of the other integrals, we allow a possibly larger region of
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integration defined via Lemma [T7}, [I8 or [I9] and multiply its measure by an
upper bound for the integrand to give the upper bound quoted.

5. Proof of Theorem 1. We need just two more lemmas. Write do;
for doy - - - day.

LEMMA 20. Let E be a polytope, E C P;. Let

1
f(B;X) = Z Z Z m—1 log(X/me—1)

a;€E j+1<k<19 p;<pj+1<-<pk—1
Tk—1Pk—1<2X

As X — oo,

@j

FE:X) = (L o0) g § lag) o+ ) day
E

Proof. Fix p1,...,p; with a; € E. Let N(aj) be the number of integers
n with mjn ~ X, (n, P(pj)) = 1. The solution of

(X/m)'" = p;
is u = (1 —s;)/a;. Using a well-known asymptotic formula (see e.g. [§]), we
deduce that
vw(u) X X 1—sj
Nie) = (1 o) s 2 = (1ol w2

as X — oo, uniformly for a; € E. Hence

> ) = (1o ¥ (1Y),

a;eEE a;€E 71 J

Using the prime number theorem to approximate the sum by an integral in
standard fashion,

G X ey = (o) | Hlag)e( TV ) day.
E

T
ajEE J

On the other hand,

PIRUCOIED DY 2 2. L

a;eE aj;eF j+1<k<19 pj<pjt1<--<prp—1 X<pp<2X
Tp—1Pk—152X  Pr2Pr—1

The error incurred in removing the condition px > pir_1 from the last
summation is 0 unless

pr—1~Y = X/mp_1,
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in which case the error is O(Y £7!). Thus the prime number theorem yields

(52 > N(ay)

X
= (1+0(1)) Z Z Z T—11og(X/mk_1)

o;€F j+1<k<19 pj<pj+1<-<prp—1
Tk—1Pk—1<2X

X 1 1
+0 <£, 2 L X )
X9<pr<<pr_a K2 pp_1aY Pk—1
Tp—2<X

The error term on the right side of (5.2)) is readily seen to be O(XL£™2),

while the main term is clearly > XL~ for nonempty E. Hence the lemma

follows on comparing (5.1)), (5.2)). =

LEMMA 21. Let E be a polytope, E C P;. Let k be fized, j+1 < k < 19.
Then for0 <z <7,

(5.3) > > F(mjpj1---pr)
a;€E pj<pj1<-<pk
1 2 e(t°z)
N Z Z Th—1 S log(t/m—1) &
o€ pj<pjy1<-<pg max(mg_1Ppr—1,X)

+ O(X exp(—C1LY)).

Proof. By aslight variant of [3, Lemma 24], we have, for 1 < A < A’ <2A,
0<y< Afc+1f2n’

A
(5:4) Z e(ppy) = S 61(01; z) du + O(Aexp(—3(log A)1/4)),
A<Lp <A’ A

Fix aj € E and pjt1,...,pp—1 withpj <pjp1 < < pg1, Tp—1pp—1 < 2X
(other tuples give an empty sum on both sides of (5.3)). Set

A=max(px_1, X/m1_1), A =2X/m_1, y=rmi_x
so that log A > g£. We verify that
y < Afc+1X727]'
Indeed, we have

yAc—lXQT] < W](é_lX_c+10n(X/7Tk—1)C_1 — 7Tk_1X_1+10n < 1’
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since m;_1 X9 < 2X. Now (5.4) yields

> ellprpr)°a)

Dk >Pk—1
X<mp_1pp<2X

2X/§rk—1 e(ucﬂ'1§71$)

N log u

X
du+0<

Tk—1

exp(—01£1/4)>

max(pg—1,X/Tk—1)

with C; = 3¢g'/*. A change of variables gives the integral in the form

1 2§( e(tx)

Th—1 log(t/mk—1)

max(mg—1Pk—1,X)

and the lemma follows on summing over p1,...,pg_1. »

Proof of Theorem [1} Let N be the number of solutions of (L.1) with
pi ~ X (1 <i<3). Using an initial step that goes back to Davenport and
Heilbronn [5], we observe that

(5.5) N> " o@i+ps+p5—R) = | Tdu
pi~X —00
(1<i<3)
— S T>(K® — D® 4 DBy
= S T>(K® + D@y dy — S T(KY — DWYDP qp
—00 —00
> | (1?K® — 7KW D) dp.

—00

(Compare the argument below [3, (5.4)] for the last step.) In view of (4.17)),
then,

(56) N Z (TQK(Z) — TK(l)D(2)) du + O(X3—C—277)

| |
ﬂk/ﬁ\]ﬂf_’ﬁ\\

(1% = 7°D® — TDW D) dp + O(X3~727).

We now use approximations to T, D) that arise from ([5.4) with (A, A’)
= (X,2X) and from (5.3)). In [—7, 7],

DW(z) = Ij(z) + O(X exp(—C1LY*)) (1 <1<3).
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Here
Ii(z) = Qi(z) + Qs(x) + Qs(x),
Ir(z) = Q2(x) + Qa(x),
I3(z) = Qs(2) + Q7(x) + Qs(x),
with
Qilw)= > > 3 b 2§( _eltn)
€T, J+1E<19 1<y i prs ™ max(my_yprx) OB Th1)

Th—1Pk—152X
for 1 < j <4; Qs5,Q6,Q7, Qs are defined similarly with H; replaced respec-
tively by ]/'1\75,7-[1,7'[3,7/-[\5.
We make the simple observation that for any functions fi, f2 chosen from
{D1,Ds, D3, I1, I, I3} and for f = DU, fo =1;,

S ffifedp = S fofifo dp 4+ O(X37¢" M exp(—C1LYH)).

A similar approximation is discussed below [3, (5.13)]. Replacing T, DO,
D® DB by I,14, I, I3 one step at a time, we deduce from (5.6) that
(5.7) N = \(I* =PI, - I Ts) dp + O(X* T exp(—C1.L4).
—T
To extend this integral to infinity, we use the same bound as in [3],
namely
I(x),[(z) < |z|71L71X17¢ (z#0, 1<1<3).

Since
o

S IL'_?)X?)(I_C) dr < 7_—2X3(1—c) _ X3—c—167]7
.

we infer from ([5.7)) that

o0

Nz | (PP- 1L - ILI)dp+ O(X* T exp(—C1 L))
= | {P—%(Q2+ Qu) — 1(Q1 + Q3 + Q5)(Q6 + Q7 + Qs)} du

+ O(X3 M exp(—CL LYY)).

We now rewrite the various integrals {* I?Q;du, | 1Q;Qrdu in
terms of Siooo I3 dy. Consider, for example, the contribution to SO_OOO 1Q2Q7du
from ay € Hz, po < p3 < -+ < ppy, mpr—1 < 2X and a3 € Hs,
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Py <py <--- <pj_y, 1P,y < 2X (in an obvious notation). We write

s(t) =t{ +15+15 — R, dt = dt;dtadts.

This contribution may be brought, using Fubini’s theorem, to the form

PO P

P15 Pk~ 1p17 7pl 1

= 2 2

P1,--Pk— 1p1,...,pl 1

XXX e(2s(t))®(z) da dt

- M V| Togmosttame-) tosttarm )

S S S p(s(t))dt
TRT]_y (log t1)(log(t2/mk—1))(log(t3/m_4))

2X 2X2X

1 1
<H Z Z T _y (log X)(log(X/7y—1))(log(X/m)_,))’

P1;--Pk— 1p17 ,pl 1

where
oo

H= | Iyx)*dp.

—00

For the last step we replace the positive integrand by a larger one using
logt; > log X, and then reverse the order of integration. In this way we see
that

1 4% WoW-

where
Wi
Wa

f(H2; X) + f(Hy; X),
f(Hy; X) + f(Hs; X) + f(Hs; X),
= f(H1;; X) + f(H3; X) + f(H5: X).

Now we use Lemma [20] to obtain, as X — oo,

N2 (14 0(1) 25 (1 = (o ) = (- s+ )]+ 75 + D)

+ O(X3 = exp(—C1 LY)).

For large X, the upper bounds given in Section [4| for J;, JZT yield

0.0369H

Nz =20

Since
H> X3fcfcn

(Tolev [16]), this completes the proof of Theorem |1} =
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